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Abstract The ΛN and ΣN interactions are considered at
next-to-leading order in SU(3) chiral effective field theory.
Different options for the low-energy constants that determine
the strength of the contact interactions are explored. Two vari-
ants are analysed in detail which yield equivalent results for
ΛN and ΣN scattering observables but differ in the strength
of the ΛN → ΣN transition potential. The influence of
this difference on predictions for light hypernuclei and on
the properties of the Λ and Σ hyperons in nuclear matter
is investigated and discussed. The effect of the variation in
the potential strength of the ΛN -ΣN coupling (also called
Λ−Σ conversion) is found to be moderate for the considered
3
ΛH and 4

ΛHe hypernuclei but sizable in case of the matter
properties. Further, the size of three-body forces and their
relation to different approaches to hypernuclear interactions
is discussed.

1 Introduction

In 2013 the Jülich-Bonn-Munich group presented a study of
ΛN and ΣN scattering up to next-to-leading order (NLO)
in SU(3) chiral effective field theory (EFT) [1], following
closely earlier analogous investigations of the NN interac-
tion [2–5]. It demonstrated that one can achieve a satisfactory
description of the available low-energy ΛN and ΣN data
within such an approach. First applications of the underly-
ing hyperon–nucleon (Y N ) potential in calculations of bind-
ing energies for light hypernuclei were encouraging [6,7]. In
addition, and maybe most remarkable, it was found that the
resulting in-medium interaction for the Λ hyperon exhibits
quite unusual properties. Contrary to most phenomenologi-
cal Y N potentials [8,9], it becomes already repulsive at fairly
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low nuclear densities ρ, i.e. for ρ in the order of two-to-three
times that of normal nuclear matter [10]. For such an inter-
action the onset for hyperon formation in neutron stars could
be shifted to rather high densities, a feature that appears to be
promising as a possible explanation for the so-called hyperon
puzzle [11]. The latter refers to the still unsolved question
how one can reconcile the softening of the equation-of-state
due to the appearance of hyperons with the observed large
size (mass) of neutron stars [11–14].

The Y N potential up to NLO in SU(3) chiral EFT con-
sists of contributions from one- and two-pseudoscalar-meson
exchange diagrams (involving the Goldstone boson octet π ,
η, K ) and from four-baryon contact terms without and with
two derivatives. In deriving such an Y N potential in Ref. [1]
the SU(3) flavor symmetry was considered primarily as a
working hypothesis and not so much as a fundamental pre-
requisite, as emphasized in that work. Accordingly, the bar-
yon-baryon-meson coupling constants for the pseudoscaler
mesons were fixed in line with SU(3) symmetry and the
symmetry was also exploited to derive relations between the
various low-energy constants (LECs) that characterize the
strength of the contact interactions. At the same time, in the
actual calculation the SU(3) symmetry is broken, first by the
mass differences between the pseudoscalar mesons entering
the potential, and second by those of the baryons (N , Λ, Σ)
in the evaluation of the reaction amplitudes when solving
a coupled-channel (ΛN -ΣN ) scattering equation. For these
masses the known physical values were already utilized in
the leading-order (LO) study [15].

In addition, and contrary to past studies of the Y N inter-
action within phenomenological approaches [8,16], no use
of SU(3) symmetry was made to constrain the (strangeness
S = −1) Y N potential by information from (S = 0) NN
scattering. One reason for this was the observation that a com-
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bined (and realistic) description of the Y N and NN systems
with contact terms that fulfil strict SU(3) symmetry turned
out to be intractable. Specifically, the friction between the
strengths needed for reproducing the pp (or np) 1S0 phase
shifts and the Σ+ p cross section could not be reconciled in a
scenario which maintained SU(3) symmetry for the contact
terms [17]. Another and equally important reason was the
goal to explore in how far the Y N data themselves already
allow one to pin down the interaction in the S = −1 sector. It
should be emphasized that the aspects discussed above apply
only to the interaction in the S waves. Since there are practi-
cally no data for differential observables, it is impossible to
fix the Y N contact terms in the P-waves. In this case, imple-
menting constraints from the NN sector provided by SU(3)
symmetry is essential, cf. the corresponding discussion in
Ref. [1].

Evidently, under the premises described above, an excel-
lent reproduction of the available Y N data is possible, as
shown in Ref. [1]. Indeed, for the commonly considered set
of 36 low-energy ΛN and ΣN data points a χ2 of around 16
could be achieved. This value is comparable or even better
than the results obtained with elaborate phenomenological
models derived in the traditional meson-exchange picture
[8,16]. Interestingly, it turned out that the fit to the Y N data
allowed one to fix the majority of the S-wave LECs. Nonethe-
less, some correlations between the values of the S-wave
LECs at LO and NLO persisted, as already pointed out in that
work. Those were attributed to the fact that the fitted Σ− p
and Σ+ p cross sections lie all within a rather narrow energy
interval near threshold so that there is only a fairly weak
sensitivity to the momentum-dependent terms that involve
the NLO LECs, see the appendix for explicit expressions of
the contact interaction. The correlations found for the S-wave
LECs suggest that alternative realizations of the ΛN and ΣN
contact interaction should be possible. However, in view of
the excellent χ2 obtained in the initial study [1], at that stage,
it seemed unnecessary to explore these correlations further.

In the present work, we want to catch up on this issue
and consider variations of the Y N potential due to the afore-
mentioned ambiguities in the LECs. The questions that can
be addressed in this way are: (1) is it possible to achieve a
description of ΛN and ΣN scattering for an alternative set
of LECs that is comparable or even better than the one in
Ref. [1], i.e. with comparable or even lower χ2? (2) Do the
resulting ΛN and ΣN potentials have different properties?
In particular, do they lead to qualitatively different results
when employed in studies of few- and many-body systems
involving hyperons?

One possibility to reduce the aforementioned correlations
between the LECs consists in implementing additional con-
straints to simply reduce the number of contact terms that
need to be fitted to the Y N data. A sensible choice is to
impose SU(3) symmetry more strictly than in Ref. [1] and to

take into account the symmetry relations between Y N and
NN also for the S-waves, and not only for the P-waves. How
this can be done in practice was demonstrated in Ref. [17]
for a specific case, namely the 1S0 partial wave in the NN ,
ΣN , and ΣΣ systems. This work exploited the fact that
at NLO in the perturbative expansion of the baryon-baryon
potentials genuine SU(3) symmetry-breaking contact terms
arise [18]. Accordingly, the LO LECs for NN and Y N S-
waves are no longer completely constrained by SU(3) sym-
metry, only those at NLO. This allows one to remedy the
friction between the pp and Σ+ p results mentioned above
and, at the same time, stay in line with the underlying power
counting of SU(3) chiral EFT. In the present work, we now
apply this scheme to all S-waves of the NN , ΛN , and ΣN
systems.

Anticipating our results, it turns out that an equally con-
vincing description of ΛN and ΣN scattering data can be
achieved based on such an alternative choice of the LECs.
Indeed, the cross sections (actually all considered two-body
observables) are practically indistinguishable from those in
Ref. [1]. Small variations are observed for the predicted bind-
ing energies for the hypertriton 3

ΛH and the 4
ΛH and 4

ΛHe
hypernuclei. However, in case of the properties of the hyper-
ons in nuclear matter, the differences are much more sizable.
Specifically, the in-medium interaction of the Λ predicted
by the new potential is now considerably more attractive and
becomes repulsive at much higher nuclear densities as com-
pared to the EFT interaction published in [1].

The paper is structured in the following way: In the next
section, a summary of the formalism is provided. Since a
thorough description of the approach for treating Y N scat-
tering within SU(3) chiral EFT is available in Ref. [1], we
will be brief here. Details that are needed to understand in
how far the EFT interaction proposed in the present work
differs from that in [1] are summarized in an appendix. The
coverage of the Brueckner reaction-matrix formalism that is
employed for evaluating the in-medium properties of the Λ

and Σ is likewise kept short. Here, we refer the reader to
Refs. [19] and [20] for details. In Sect. 3, the results for the
alternative potential are presented and compared to the ones
published in 2013 (for ΛN , ΣN scattering) and 2015 (for
nuclear matter). Implications of our results are discussed in
Sect. 4. The paper ends with concluding remarks.

2 Formalism

2.1 ΛN and ΣN scattering

The derivation of the chiral baryon-baryon potentials for
the strangeness sector using the Weinberg power counting
is outlined in Refs. [1,15,18]. The LO potential consists of
four-baryon contact terms without derivatives and of one-

123



Eur. Phys. J. A (2020) 56 :91 Page 3 of 22 91

pseudoscalar-meson exchanges while at NLO contact terms
with two derivatives arise, together with contributions from
(irreducible) two-pseudoscalar-meson exchanges. The con-
tributions from pseudoscalar-meson exchanges (the Gold-
stone bosons π , η, K of the spontaneously broken chiral sym-
metry of QCD) are completely fixed by the assumed SU(3)
flavor symmetry. On the other hand, the strength parameters
associated with the contact terms, the low-energy constants
(LECs), need to be determined in a fit to data. How this is
done is described in detail in Ref. [1]. With regard to the
alternative version considered in the present work, the strat-
egy followed is described in the beginning of Sect. 3. Note
that, in general, SU(3) symmetry is also imposed for the con-
tact terms which reduces the number of independent LECs
that can contribute.

After a partial-wave projection [15], the potential V is
inserted into a regularized coupled-channels Lippmann–
Schwinger (LS) equation for the Y N T -matrix T ,

T κ ′′κ ′,J
ν′′ν′ (p′′, p′;√

s) = V κ ′′κ ′,J
ν′′ν′ (p′′, p′)

+
∑

κ,ν

∫ ∞

0

dp p2

(2π)3 V κ ′′κ,J
ν′′ν (p′′, p)

× 2μν

q2
ν − p2+iη

T κκ ′,J
νν′ (p, p′;√

s) .

(1)

and its solution provides us the reaction amplitudes. The
labels ν, ν′, and ν′′ in Eq. (1) indicate the particle channels
and the label κ , κ ′, and κ ′′ the partial wave ones where J is
the total angular momentum [15]. μν is the pertinent reduced
mass. The on-shell momentum in the intermediate state, qν ,
is defined by

√
s = (m2

B1,ν
+ q2

ν )1/2 + (m2
B2,ν

+ q2
ν )1/2. Rel-

ativistic kinematics is used for relating the laboratory energy
Tlab of the hyperons to the c.m. momentum. Otherwise, we
use non-relativistic kinematics for the solution of the two-
and more-baryon equations.

We solve the LS equation in the particle basis in order to
incorporate the correct physical thresholds. The Coulomb
interaction is taken into account appropriately via the
Vincent–Phatak method [21]. Regularization is done in the
same way as in our initial work [1], see also Ref. [2].
This means that the potentials in the LS equation are
cut off with an exponential regulator function, fR(Λ) =
exp

[− (
p′4 + p4

)
/Λ4

]
, so that high-momentum compo-

nents are removed [2]. We consider cutoff values in the range
Λ = 500 – 650 MeV where the best χ2 values were achieved
in the 2013 study [1]. As before, we present our results as
bands which reflect the variation with the cutoff and, thus,
indicate a lower bound for the uncertainty due to truncation
of the chiral expansion. A more sensible way for estimating
this uncertainty, that does not rely on cutoff variation, has
been proposed in Refs. [22,23] and we will show selected

results based on that method, too. However, one should keep
in mind that the present Y N interactions are still only on the
level of NLO which possibily leads to an underestimation of
the uncertainty (as explained in more detail below).

Finally, let us note that the question how regularization
should be performed and how ultimately cutoff independence
can be achieved is still controversially discussed in the lit-
erature, see, e.g. [24–28]. In the context of Y N scattering at
LO this issue was touched in Ref. [29] where one can also
find further references.

2.2 Λ and Σ in nuclear matter

The nuclear matter properties of the Λ and Σ hyperons are
evaluated within the conventional Brueckner theory. We sum-
marize below only the essential elements. A detailed descrip-
tion of the formalism can be found in Refs. [19,20], see also
Ref. [30]. We consider a Λ or Σ hyperon with momentum
pY in nuclear matter at density ρ. In order to determine the
in-medium properties of the hyperon, we employ the Brueck-
ner reaction-matrix formalism and calculate the Y N reaction
matrix GYN , defined by the Bethe–Goldstone equation

〈Y N |G(ζ )|Y N 〉 = 〈Y N |V |Y N 〉
+

∑

Y ′N
〈Y N |V |Y ′N 〉

×
〈
Y ′N | Q

ζ − H0
|Y ′N 〉 〈Y ′N |G(ζ )|Y N

〉
,

(2)

with Y,Y ′ = Λ, Σ . Here, Q denotes the Pauli projection
operator which excludes intermediate Y N -states with the
nucleon inside the Fermi sea. H0 is the kinetic energy of
the Y N system. The starting energy ζ for an initial Y N -state
with momenta pY and pN is given by

ζ = EY (pY ) + EN (pN ), (3)

where the single-particle energy Eα(pα) (α = Λ,Σ, N )
includes not only the (non-relativistic) kinetic energy and the
baryon mass but in addition the single-particle (s.p.) potential
Uα(pα, ρ):

Eα(pα) = mα + p 2
α

2mα

+Uα(pα, ρ) . (4)

The so-called gap-choice [19] for the intermediate-state spec-
trum is adopted. The Y single-particle potential UY (pY , ρ)

is given by the following integral and sum over diagonal Y N
G-matrix elements:

UY (pY , ρ) =
∫

|pN |<kF

d3 pN
(2π)3 Tr〈pY , pN |GYN (ζ )|pY , pN 〉,

(5)

123



91 Page 4 of 22 Eur. Phys. J. A (2020) 56 :91

where Tr denotes the trace in spin- and isospin-space. Note
that ρ = 2k3

F/3π2 for symmetric nuclear matter and ρ =
k3
F/3π2 for neutron matter, where kF denotes the Fermi

momentum.
Equations (2) and (5) are solved self-consistently in a

standard way, with UY (pY , ρ) appearing also in the starting
energy ζ . Like in Ref. [10], the nucleon single-particle poten-
tial UN (pN , ρ) is taken from a calculation of nuclear matter
employing a phenomenological NN potential. Specifically,
we resort to results for the Argonne v18 potential published
in Ref. [31]. As pointed out in Ref. [19], calculations of
hyperon potentials in nuclear matter using the gap-choice are
not too sensitive to the details ofUN (pN , ρ). Indeed, the dif-
ference for, e.g.,UΛ(0, ρ)usingUN (pN , ρ) from Ref. [31] or
the parameterization utilized in Ref. [20] amounts to around
1 MeV at nuclear matter saturation density ρ = 0.17 fm−3

(kF = 1.35 fm−1).
Since, at this stage, we are primarily interested in compar-

ing the results for the two Y N interactions, we refrain from a
much more time-consuming calculation necessitated by the
so-called continuous choice [32].

2.3 Faddeev and Yakubovsky equations

Binding energies of light A = 3 and 4 hypernuclei can be
obtained by solving Faddeev or Yakubovsky equations in
momentum space [33–36]. The method is well suited for
chiral Y N interactions since it allows one to employ non-
local interactions including particle and partial wave channel
couplings. Indeed, the works by Miyagawa et al. [33,34]
constitute the first successful attempt to use realistic meson-
exchange potentials (including tensor forces and the ΛN -
ΣN coupling) directly in a hypertriton calculation within
the Faddeev framework. In Ref. [33], an overview of earlier
calculations of the hypertriton is provided.

The few-body results given in this work have been
obtained solving the three- and four-body non-relativistic
Schrödinger equation in momentum space by rewriting them
into Faddeev or Yakubovsky equations, respectively. For a
bound state of one hyperon and two nucleons, one finds two
coupled Faddeev equations

ψ1 = G0TNN (1 − P12)ψ2

ψ2 = G0TY N (ψ1 − P12ψ2) , (6)

for the two independent Faddeev components ψ1 and ψ2

[33,35]. P12 is the operator permuting the coordinates of
nucleon 1 and 2. The NN and Y N interactions enter via the
corresponding T -matrices TNN and TY N . They are obtained
by solving LS equations embedded in the three- or four-body
Hilbert space and which are therefore fully off-shell. The free
propagator is denoted by G0. We are only considering bound
states. Therefore, directly using the Schrödinger equation is

in principle possible. However, using two different kinds of
Jacobi coordinates for ψ1 and ψ2 that single out either an NN
or a Y N subsystem leads to an improved convergence with
respect to partial waves. Therefore, the rewriting in Faddeev
equations is advisable also for a bound state calculation. The
two basis sets used for the calculation are then denoted by

|p12 p3α1〉
=

∣∣∣∣p12 p3((l12s12) j12

(
l3

1

2

)
I3)J ; (t12tY )T

〉

|p23 p1α2〉
=

∣∣∣∣p23 p1((l23s23) j23

(
l1

1

2

)
I1)J ; (t23

1

2
)T

〉
, (7)

where pi j are the magnitudes of the pair momenta and pk
is the magnitude of the spectator momentum. Their angular
dependence is expanded in orbital angular momenta li j and
lk , respectively. The orbital angular momenta are coupled
with the spin of the pair si j and the spin of the spectator
baryon to the intermediate angular momentum ji j and Ik .
These are then coupled to the total angular momentum of the
hypertriton J = 1

2 . Since we work in the isospin basis, the
pair isospin ti j is either coupled with the isospin tY of the
spectator hyperon or the isospin 1

2 of the spectator nucleon
to total isospin T = 0. For a more complete description of
the basis states see Ref. [35]. The number of partial waves is
finite, if one restricts ji j ≤ jmax. For the calculations shown
here, we chose jmax = 6. The binding energies are then
converged to better than 1 keV. The momenta are typically
discretized using a grid of 44 or 58 points for pi j and pk ,
respectively.

In the four-body case, we find a set of five Yakubovsky
equations for five independent Yakubovsky components ψ1A

ψ1B , ψ1C , ψ2A, and ψ2B

ψ1A = G0TNN P(ψ1A + ψ1B + ψ2A)

ψ1B = G0TNN ((1 − P12)(1 − P23)ψ1C + Pψ2B)

ψ1C = G0TY N (ψ1A + ψ1B + ψ2A

−P12ψ1C + P12P23ψ1C + P13P23ψ2B)

ψ2A = G0TNN ((P12 − 1)P13)ψ1C + ψ2B)

ψ2B = G0TY N (ψ1A + ψ1B + ψ2A) . (8)

P = P12P23 + P13P23 is the sum of a cyclic and anti-cyclic
permutation of the three nucleons. Again, all five components
are expanded in a different set of Jacobi basis states. The first
three components use so-called 3+1 coordinates, which sin-
gle out one pair momentum pi j , one baryon moving relative
to the pair with momentum pk and the spectator moving
relative to the other three baryons with momentum ql . The
other two components use 2+2 coordinates which single out
two pair momenta pi j and pkl and a momentum q describ-
ing the relative motion of the two pairs. The angular depen-
dence is expanded in terms of corresponding orbital angular
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momenta. These are coupled with spins to a total angular
momentum J . Similarly, the isospins are finally coupled to
total isospin T . More details are given in [35]. In the case
of the four-body system, restricting pair angular momenta
ji j ≤ jmax is not sufficient to get a finite set of equations.
We therefore impose two more constraints: all orbital angu-
lar momenta l ≤ 4 and the sum of all three orbital angu-
lar momentum quantum numbers is less than lsum = 8. We
carefully checked that the energies are converged to better
than 10 keV for the chiral NN and Y N interactions. For the
three different momenta, a discretization using 52, 56 and
48 grid points is typically sufficient to get an accuracy bet-
ter than a few keV. Since phenomenological interactions are
less soft, we use more partial waves in this case in order
to get a similar accuracy. We note that the number of par-
tial wave and isospin channels are especially larger for the
excited Jπ = 1+ state. With the restrictions defined above,
we had to take more than 13,000 partial wave combinations
into account. The discretized set of linear equations is then
more than 109 dimensional. However, the accuracy of 10 keV
that we obtain for the four-body system is sufficient to discuss
the NN and Y N interaction dependence of our results.

3 Results

In the following subsections, we present results for ΛN and
ΣN scattering, for binding energies of light hypernuclei,
and for the Λ and Σ s.p. potentials in nuclear matter for
our NLO chiral EFT interactions. Thereby, we will show
results for two different fits. We refer to the original NLO
fit [1] by NLO13. Additionally, we devised a new version
in the way described below which we will label NLO19 in
the following. Occasionally, also results for Y N potentials
based on the traditional meson-exchange approach [8,9] will
be shown for illustration.

Let us first describe in more detail how the contact terms
for the new Y N interaction NLO19 were fixed. The total
number of independent LECs up to NLO amounts to 13 for
the 1S0 and 3S1-3D1 Y N partial waves, with 4 (6) for the
singlet (triplet) S-states and 3 for the 3S1 ↔3 D1 transition,
see the appendix. In Ref. [1], their values have been fixed by
a fit to the usually considered [1,8,9,15] set of low-energy
Λp, Σ− p, and Σ+ p data [37–41]. Based on SU(3) symme-
try, three of those can be inferred from the NN interaction,
namely C27

1S0
, C10∗

3S1
, and C10∗

3S1−3D1
, so that there are only 10

LECs left to be fitted. For the refit NLO19 of the present work,
we utilize the NN LECs of Ref. [32]. There, an NN poten-
tial has been established within the same framework and the
same regularization scheme. The pertinent LECs were deter-
mined by a fit to np phase shifts. pp phase shifts could be
used instead for 1S0 partial wave. The difference in the cor-

responding LEC C27 is, however, tiny, see Ref. [17], so that
we ignore this for the time being.

We use the NLO potential from 2013 [1] as starting point
for our new fit, of course, with substituting the LECs that are
fixed from the NN sector. Remarkably, in case of the 1S0,
there is only a small difference in the actual values for the
C27’s found in the fit to the Y N data (cf. Table 3 in Ref. [1])
and the ones from the NN results (cf. the appendix). These
coincide within 5–10%, despite of being fitted independently.
One could interpret this as a sign that, beyond corrections at
leading order, SU(3) symmetry is fairly well realized.

In case of the 3S1, the situation is different. Here the values
for C10∗

from the fit to the np phase shifts are more than
a factor 5 smaller than those determined in the Y N study.
Indeed, the LECs for the new fits are now well in line with
being of “natural size” [3]. Note that the LECs for the 10 and
10∗ representations have been erroneously interchanged in
Table 3 of Ref. [1]! We view these large variations primarily
as a sign of the correlations between the LO and NLO LECs
discussed already in the introduction.

The best description of Y N data was obtained for the
range 500–650 MeV for the cutoff Λ in the regulator func-
tion in Ref. [1]. Therefore, we consider again this range in
the present work. For smaller values, there is a rapid deterio-
ration in the χ2, cf. Table 5 in [1], and likewise (though less
dramatic) for larger values.

All LECs in the P-waves are taken over from Ref. [1]. No
readjustment is done in this case. Thus, all differences in the
results for the two interactions reported below stem from the
differences in the S-waves.

3.1 ΛN and ΣN scattering

In this section, we present results for ΛN and ΣN scat-
tering. In particular, we compare the results obtained with
the new procedure to those from 2013. A summary of the
Λp effective range parameters is given in Table 1 together
with information about the achieved overall χ2. The latter,
listed at the bottom, provides clear evidence that the qual-
ity of description of the Y N data by the two interactions is
identical. The differences in the χ2 are marginal considering
the inherent residual regulator dependence in both cases. We
observe though that the dependence of the χ2 on the cutoff
is slightly different for the two interactions. The effective
range parameters in the singlet state are practically identi-
cal. Noticeable variations occur only in the effective range
at the lower end of the considered cutoff range. In the triplet
S-wave, the scattering lengths differ in average by 7%.

Results for the Λp cross section are displayed in Fig. 1,
where the region around the ΣN thresholds is shown sep-
arately so that one can see the details. As usual, the results
are presented as bands that reflect the variation with the cut-
off Λ. The results for NLO13 are shown as red (dark) bands
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Table 1 Scattering lengths (a) and effective ranges (r ) for singlet (s)
and triplet (t) S waves, for Λp, ΣN with isospin I = 1/2, and Σ+ p
(I = 3/2). In addition, the achieved χ2 for the 36 data points is listed.

∗In case of the Jülich ’04 potential, the capture ratio was not included
in the fit and the evaluation of the χ2

Λ [MeV] NLO13 NLO19 Jülich ’04 NSC97f

500 550 600 650 500 550 600 650

aΛp
s − 2.91 − 2.91 − 2.91 − 2.90 − 2.91 − 2.90 − 2.91 − 2.90 −2.56 −2.60

rΛp
s 2.86 2.84 2.78 2.65 3.10 2.93 2.78 2.65 2.74 3.05

aΛp
t − 1.61 − 1.52 − 1.54 − 1.51 − 1.52 − 1.46 − 1.41 − 1.40 −1.67 −1.72

rΛp
t 3.05 2.83 2.72 2.64 2.62 2.61 2.53 2.59 2.93 3.32

ReaΣN
s 1.00 0.98 0.90 0.87 0.99 0.98 0.90 0.87 0.90 1.16

ImaΣN
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.13 0.00

ReaΣN
t 2.61 2.44 2.27 2.06 0.95 0.98 2.29 1.95 −3.83 1.68

ImaΣN
t − 2.89 − 3.11 − 3.29 − 3.59 − 4.77 − 4.59 − 3.39 − 3.85 −3.01 −2.35

aΣ+ p
s − 3.59 − 3.60 − 3.56 − 3.46 − 3.90 − 3.79 − 3.62 − 3.43 −3.60 −4.35

rΣ+ p
s 3.59 3.56 3.54 3.53 3.55 3.50 3.50 3.52 3.24 3.16

aΣ+ p
t 0.49 0.49 0.49 0.48 0.42 0.43 0.47 0.48 0.31 −0.25

rΣ+ p
t − 5.18 − 5.03 − 5.08 − 5.41 − 6.45 − 6.49 − 5.77 − 5.69 −12.2 −28.9
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Fig. 1 Cross section for Λp scattering as a function of plab. The red
(dark) band represents the result for NLO13 [1] including cutoff varia-
tions, the cyan (light) band that for the alternative version NLO19. The
dashed curve is the result of the Jülich ’04 meson-exchange model [9],
the dotted curve that of the Nijmegen NSC97f potential [8]. The exper-

imental cross sections are taken from Refs. [37] (filled circles), [38]
(filled squares), [42,43] (open triangles), [44] (open squares), and [45]
(open circles). The dotted vertical lines labeled with Σ+n and Σ0p
indicate the thresholds of the pertinent ΣN channels
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while the new results are shown as cyan (light) bands. In this
figure and the following ones, Y N data included in the fitting
procedure [37–40] are displayed by filled symbols, while for
additional data at higher energies [42–48] open symbols are
used.

Obviously, the Λp cross sections produced by the two
interactions are practically identical over the whole consid-
ered momentum range and hard to distinguish in the plot.
Visible differences occur only at higher momenta near to
the ΣN thresholds where the NLO19 interaction predicts
somewhat larger cross sections. There is also a more notice-
able dependence of the results on the cutoff in the region
below and above the thresholds. The latter is not too surpris-
ing because some LECs are fixed from NN in the NLO19
interaction so that there is less flexibility to absorb the regu-
lator dependence than in NLO13. Consequently, in general,
a somewhat stronger variation of the cross sections with the
cutoff has to be expected.

Results for the various ΣN channels are summarized in
Fig. 2. Also here, there is practically no difference between
the results of the NLO13 and NLO19 interactions, except
maybe for the already mentioned slightly increased depen-
dence on the cutoff in case of the latter. Even at higher ener-
gies, the cross sections for the two interactions are difficult
to distinguish, see Fig. 3. Note that these results have to
be considered as genuine predictions because none of the
ΣN data at momenta above 170 MeV/c have been included
in the fitting procedure. The similarity of the predictions is
particularly surprising in view of the mentioned correlations
between the LO and NLO LECs. One would have expected
variations at higher momenta because the different values
for the LO and NLO LECs in the interactions NLO13 and
NLO19 should yield a different energy dependence, at least
when a larger energy region is considered.

The predictions for differential cross sections, forΣ− p →
Σ− p, Σ− p → Λn, and Σ+ p → Σ+ p, at the few momenta
were data are available [1], remain basically unchanged and,
therefore, we refrain from showing them. Instead, for illus-
trative purposes, we present results for the Λp differential
cross section at two selected laboratory momenta, see Fig. 4.
The momenta correspond to Tlab = 107 and 167.3 MeV,
respectively, where the latter is just below the Σ+n thresh-
old. Again, the variations with the cutoff aside, there is hardly
any difference between the predictions of the NLO13 and
NLO19 interactions. One can see that for both potentials, at
the lower energy, the cross section is dominated by the S-
waves whereas, at the Σ+n threshold, there is a pronounced
angular dependence that is actually induced by an interfer-
ence of the 3S1-3D1 with the 3P2 partial wave. More striking
are the differences to the predictions by the phenomenologi-
cal potentials. In case of the Jülich ’04 potential [9], there is
already a stronger angular dependence at the lower energy,
indicating a sizable contribution from P-waves. On the other

hand, in the NSC97f potential [8], there is a large contribution
from the 3D1 which is most obvious from the result at the
Σ+n threshold. Evidently, experimental information would
be very valuable here, but is, of course, rather difficult to
obtain.

Finally, the low-energy parameters for the ΣN channels
can be found in Table 1, too. Besides the Σ+ p effective range
parameters which include the distortion from the Coulomb
interaction, we list also the ΣN scattering length for the
isospin I = 1/2 channel calculated with an isospin-averaged
Σ mass. Obviously, the variations in the predictions by the
NLO13 and NLO19 potentials are small, especially in case
of the 1S0 partial wave. Only in the 3S1 partial wave with
I = 1/2, there is a more sizable difference, at least for the
lower cutoff values. Here, the magnitude of the real and imag-
inary parts are noticeably different. There are also differences
to the predictions of the phenomenological potentials. Note
that for some effective-range parameters the dependence on
the cutoff is not completely smooth, for NLO13 but also for
NLO19. This is caused by the correlations between the LECs,
which obviously are still present in the NLO19 interaction, in
combination with the fact that we fit to cross sections at finite
energies and not to scattering lengths (i.e. at zero energy).

This brings us to the question, whether there is any signif-
icant difference between the ΛN and ΣN scattering results
of the NLO13 and NLO19 potentials. And the simple answer
is that there is none, at least not in terms of observable quan-
tities. That said, the just discussed I = 1/2 ΣN scattering
length gives us a clue that there is a subtle difference and
it concerns the strength of the ΛN -ΣN transition potential.
The simplest way to see that is to perform an “academic”
calculation. It consists in simply switching off the coupling
potential between the two channels [10]. The outcome of
such an exercise for the ΛN 3S1 phase shift is presented in
Fig. 5. The results on the left side are for the full (coupled-
channel) calculation and it is obvious that the phase shifts
for the NLO13 and NLO19 potentials lie basically on top of
each other, at least up to momenta of plab ≈ 400 MeV/c.
On the right hand side are the results without channel cou-
pling. Here, one can see that NLO13 (i.e. the ΛN potential
alone) leads to mostly negative phase shifts that are a sign
for a repulsive potential, the Jülich ’04 potential leads to a
positive (attractive) phase, and the NLO19 potential yields
results somewhat in between. While such differences are not
visible in two-body observables, once evaluated for the full
(coupled-channel) potential (cf. the results presented above),
they do have an influence in applications to few- and many-
body systems, to be discussed in the next subsections, even
when the full ΛN -ΣN potential is used.

For completeness, we show also the corresponding results
for the 1S0 partial wave, cf. Fig. 6. Here, NLO13 and NLO19
behave alike. In both cases, there is a moderate reduction of
the attraction when the coupling to ΣN is switched off. Dif-
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Fig. 2 Different ΣN and ΣN → ΛN cross sections. Same description of curves as in Fig. 1. The experimental cross sections are taken from
Refs. [39] (Σ− p → Λn, Σ− p → Σ0n) and [40] (Σ− p → Σ− p, Σ+ p → Σ+ p)
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Fig. 3 Different ΣN and ΣN → ΛN cross sections for higher energy.
Same description of curves as in Fig. 1. The experimental cross sections
are taken from Refs. [39,46] (Σ− p → Λn, Σ− p → Σ0n) and [40,47]

(Σ− p → Σ− p), and [40,48] (Σ+ p → Σ+ p). Note that the data at
higher energy are not included in the fit
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Fig. 4 Differential cross section for Λp scattering at 500 MeV/c and at 633 MeV/c. Same description of curves as in Fig. 1
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Fig. 5 3S1 ΛN phase shift with (left) and without (right) ΣN coupling. Same description of curves as in Fig. 1
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Fig. 6 1S0 ΛN phase shift with (left) and without (right) ΣN coupling. Same description of curves as in Fig. 1

ferences occur only for the two phenomenological potentials
where the result for the 1S0 phase shift remains practically
unchanged (NSC97f) or even increases (Jülich ’04) without
ΣN coupling.

Note that the cutoff dependence increases when the cou-
pling is switched off. This happens because we use the (diago-
nal) ΛN potential as established in the full coupled-channel
calculation. No re-adjustment of the contact terms is done
and, thus, there is no proper absorption of the regulator depen-
dence in this ”academic” calculation.

Finally, for illustration, we present an estimate for the
theoretical uncertainty following the method proposed in
Ref. [22]. In Fig. 7, selected results for the NLO19 poten-
tial for the cutoff Λ = 600 MeV are shown. This value is
also used as breakdown scale [22]. The difference of the LO
results [15] and the NLO13 result is used for the estimation.
Certainly, for addressing the question of convergence, orders
beyond NLO are needed. Higher orders are also required to
avoid that accidentally close results lead to an under estima-
tion of the uncertainty. For the Y N interaction, this uncer-
tainty estimate is especially difficult since the data is not suf-
ficient to unambiguously determine all LECs. For this reason,
it is also not useful to quantify the uncertainty of phase shifts
of individual partial waves in this manner. Nonetheless, we
want to emphasize that the estimated uncertainty appears sen-
sible and also plausible. In particular, it encases the variations

due to the regulator dependence and, thus, is consistent with
the expectation that cutoff variations provide a lower bound
for the theoretical uncertainty. For details of the method and
a thorough discussion of the underlying concept, we refer the
reader to [23].

3.2 Λ and Σ in nuclear matter

Let us now compare the in-medium properties of the Y N
interactions NLO13 and NLO19. Table 2 summarizes the
values for the Λ and Σ potential depths, UΛ(pΛ = 0) and
UΣ(pΣ = 0), evaluated at the saturation point of nuclear
matter, i.e. for kF = 1.35 fm−1. Note that the results for
NLO13 slightly differ from those given in [20] because
a different and more up to date nucleon s.p. potential is
used, see Sect. 2.2. Corresponding results obtained for the
Jülich’04 meson-exchange potential [9] and the Nijmegen
NSC97f potential [8] are also included. The dependence of
the hyperon potential depths on the Fermi momentum is dis-
played in Figs. 8 and 9.

It is quite obvious from Fig. 8 that the EFT potential
NLO19 is much more attractive in the medium than NLO13.
The difference is primarily due to the contribution of the 3S1-
3D1 partial wave which is enhanced by more or less a factor
2 for the new interaction, see Table 2. Actually, the density
dependence predicted by NLO19 is similar to the one of the
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Fig. 7 Uncertainty estimate for the Y N interaction in the Λp and Σ+ p channels employing the method suggested in Ref. [22]. As basis the
LO [15] and NLO13 interactions with cutoff Λ = 600 MeV are used. We only show the NLO result and its uncertainty

Table 2 Λ and Σ single-particle potentials UY (pY = 0) (in MeV) at nuclear matter saturation density (kF = 1.35 fm−1). The contributions from
the S waves and the total result including all partial waves up to J = 5 are given

Λ [MeV] NLO13 NLO19 Jülich ’04 NSC97f

500 550 600 650 500 550 600 650

UΛ(0)

1S0 − 15.3 − 13.7 − 12.3 − − 11.3 − 12.5 − 11.6 − 11.2 − 11.1 − 10.2 − 14.6
3S1-3D1 − 14.6 − 11.4 − 10.8 − 12.5 − 28.0 − 27.2 − 22.8 − 19.7 − 36.3 − 23.1

Total − 28.3 − 23.5 − 21.6 − 22.3 − 39.3 − 37.1 − 32.6 − 29.2 − 51.2 − 32.4

UΣ(0)

1S0 (1/2) 6.9 6.4 5.0 4.4 6.7 6.3 5.0 4.4 4.2 15.0
1S0 (3/2) − 11.4 − 10.7 − 10.1 − 9.5 − 10.8 − 10.4 − 9.9 − 9.5 − 12.0 − 12.6
3S1-3D1 (1/2) − 21.7 − 22.9 − 22.7 − 21.7 − 18.0 − 17.6 − 20.0 − 20.3 − 15.0 − 8.8
3S1-3D1 (3/2) 40.0 44.8 43.6 40.0 41.0 38.0 40.2 38.7 11.7 − 6.4

Total 16.7 19.4 17.1 14.1 21.6 18.4 16.6 14.1 − 22.2 − 16.1

NSC97f potential, cf. the dotted line in Fig. 8. It is instructive
to compare the figure for UΛ with the one for the 3S1 phase
shifts with the ΛN -ΣN coupling switched off (right-hand
side of Fig. 5). One can easily see that the strength of the
conversion is inversely correlated with the strength of the
single-particle potential. It is well-known that the outcome
for the single-particle potential of the Λ is strongly influenced
by the strength of the ΛN -ΣN coupling potential [50–52].
For the NLO13 interaction, the influence of the strength of

the transition potential on the in-medium properties of the Λ

was already discussed in detail by some of us in Ref. [10]
and subsequently by Kohno [53].

Figure 8 also reveals that there is a sizable and certainly
unsettling cutoff dependence of the predictions. However,
this is not too surprising given that a likewise strong regulator
dependence has already been detected in applications of the
approach that we follow here to studies of nuclear matter
properties in the NN sector [54–56]. Since the Pauli operator
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Fig. 8 The Λ single-particle potential UΛ(pΛ = 0) as a function of
the Fermi momentum kF in symmetric nuclear matter (a) and in neutron
matter (b). Same description of curves as in Fig. 1. The dotted curve is

the result of the Nijmegen NSC97f potential [8], taken from Ref. [49].
The vertical bar indicates the ”empirical” value [60]

in Eq. (2) suppresses the contributions from low momenta,
the G-matrix results are more sensitive to higher momenta
and, thus, to intermediate and short-distance physics [56]. In
the mentioned applications to the NN case, indications for a
convergence and a reduced regulator dependence were only
found after going to much higher order - N3LO in Refs. [54,
55] and N4LO in [56] - and after including three-body forces.
Indeed, as argued in Ref. [56], the cutoff dependence could
allow one to draw indirect conclusions on the size of such
many body forces.

For completeness, we also show results for a Λ in neutron
matter (right-hand side of Fig. 8). Also in this case the Λ

s.p. potential predicted by NLO19 is much more attractive
than the one by NLO13. Though there is a trend to repulsion
with increasing density, similar to NLO13 and the NSC97f
potential, it is clear that the actual change of sign will take
place at significantly higher densities.

Investigations of (finite) Λ hypernuclei utilizing the EFT
interactions can be found in Ref. [57], based on the formal-
ism described in Ref. [58]. For even lighter hypernuclei, the
interactions are also currently studied [59].

Results for the Σ s.p. potential in symmetric nuclear mat-
ter are presented in Fig. 9. It is predicted to be repulsive by
NLO13 as well as by NLO19, in agreement with evidence
from the analysis of level shifts and widths of Σ− atoms and
from measurements of (π−, K+) inclusive spectra related to
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Fig. 9 The Σ single-particle potential UΣ(pΣ = 0) as a function of
the Fermi momentum kF in symmetric nuclear matter. Same description
of curves as in Fig. 1. The vertical bar indicates the ”empirical” value
[60]
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Table 3 Dependence of the separation energies of 3
ΛH, 4

ΛHe(0+) and
4
ΛHe(1+) for NLO19(650) on the NN interaction. The Σ probabil-
ities are shown, too. Energies are given in MeV, probabilities in %.

The semilocal momentum-space (SMS) chiral NN interaction from
Ref. [63] is employed

NN interaction EΛ(3
ΛH) EΛ(4

ΛHe(0+)) EΛ(4
ΛHe(1+)) PΣ(3

ΛH) PΣ(4
ΛHe(0+)) PΣ(4

ΛHe(1+))

SMS N4LO(400) 0.099 1.556 0.921 0.223 1.533 1.527

SMS N4LO(450) 0.097 1.542 0.916 0.222 1.526 1.522

SMS N4LO(500) 0.093 1.509 0.894 0.218 1.509 1.506

SMS N4LO(550) 0.089 1.472 0.870 0.213 1.490 1.486

Σ−-formation in heavy nuclei [60]. As discussed in detail in
Ref. [20], a repulsive Σ s. p. potential is achieved because the
EFT interactions in the 3S1 partial wave of the Σ+ p channel
(which provides the dominant contribution, cf. Table 2) are
repulsive. Note that a repulsive 3S1 interaction is in accor-
dance with results from lattice QCD calculations [61,62].
The NLO19 interaction provides slightly more repulsion. But
overall, with regard to the Σ in-medium properties, there is
very little difference to NLO13. This is also true on the level
of the partial-wave contributions, as can be seen by compar-
ing the corresponding values in Table 2.

As exemplified by the predictions of the Jülich ’04 and
NSC97f potentials, typically phenomenological potentials
fail to produce a repulsive Σ-nuclear potential, cf. the corre-
sponding results in Table 2. Because of that we refrain from
showing the pertinent curves in Fig. 9.

3.3 Three- and four-body systems

In this section, we present results for the 3
ΛH and 4

ΛHe bind-
ing energies based on the NLO13 and NLO19 Y N poten-
tials and for the phenomenological Nijmegen (NSC97f) [8]
and Jülich ’04 [9] Y N interactions. We want to emphasize
that the binding energies of the hypernuclei also depend
on the employed NN interaction and are affected by three-
nucleon forces (3NFs). However, detailed calculations show
that this dependence enters through the binding of the 3N
core nucleus. It is therefore useful to present the results in
terms of the difference of the core nucleus binding energy
and the hypernuclear binding energy, the Λ separation ener-
gies, which are denoted by EΛ in the following. This fact is
exemplified in Table 3 for the Y N interaction NLO19 with
cutoff Λ = 650 MeV in combination with the high-order
semilocal momentum-space regularized chiral NN potential
(SMS) [63] with different cutoffs. One can see that the Λ sep-
aration energy for 3

ΛH varies only by 10 keV. In case of 4
ΛHe

the variations are in the order of 80 and 40 keV for the 0+ and
1+ states, respectively. Similarly, small variations have been
found in calculations where phenomenological NN poten-
tials were employed [6]. The addition of a 3NF changes the
binding energy by approximately 800 keV (depending on the
chosen NN interaction) but the separation energy only by 20–

50 keV [36]. In the following, we can therefore discuss the
predictions for the separation energies independently from
the NN and 3N interactions.

In former studies of hyperonic few-body systems, the role
of the spin-dependence of the ΛN potential for the binding
energies of s-shell hypernuclei has been discussed in terms of
the appropriately averaged effective ΛN interaction [64–66].
We will do the same here. It is rather instructive and allows for
a good qualitative understanding of the corresponding bound-
state properties, though one should certainly not forget that
this is a simplification. The relations in question are [64,66]

3
ΛH : ṼΛN ≈ 3

4
V s

ΛN + 1

4
V t

ΛN (9)

4
ΛHe (0+) : ṼΛN ≈ 1

2
V s

ΛN + 1

2
V t

ΛN (10)

4
ΛHe (1+) : ṼΛN ≈ 1

6
V s

ΛN + 5

6
V t

ΛN (11)

5
ΛHe : ṼΛN ≈ 1

4
V s

ΛN + 3

4
V t

ΛN (12)

From these the well-known fact follows that the hypertriton is
dominated by the ΛN singlet interaction while the 4

ΛHe (1+)

and 5
ΛHe states are dominated by the triplet interaction.

Our results for the binding (separation) energies for the
hypertriton and the 4

ΛHe hypernucleus are listed in Table 4.
(Preliminary results for the NLO19 interaction were reported
in [70,71] based on a different NN interaction.) The hypertri-
ton binding energies for the two NLO interactions are iden-
tical within the uncertainty caused by the regulator depen-
dence. The overall variations are of the order of 50 keV. As
noted just above, in this case, the binding energy is domi-
nated by the ΛN interaction in the 1S0 (singlet) interaction,
see Eq. (9). That partial wave is less influenced by the Λ−Σ

conversion as can be read off from the fact that the imagi-
nary part of the ΣN (I = 1/2) 1S0 scattering length is zero
for basically all considered potentials, cf. Table 1, see also
Fig. 6.

There is somewhat stronger variation in the predictions
for the 4

ΛHe binding energies, cf. Table 4. However, at least
for the 0+ state, we are reluctant to see a clear tendency in
the results. Recall that this state should receive contributions
from the 1S0 and 3S1 ΛN interactions with equal weight,
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Table 4 Dependence of the separation energies EΛ of 3
ΛH, 4

ΛHe(0+)

and 4
ΛHe(1+) on the Y N interaction.The Σ probabilities PΣ are also

shown. For the chiral YN forces, the SMS NN interaction [63] at
order N4LO+ with cutoff of 450 MeV has been used. For Jülich’04

and NSC97f, the CD-Bonn NN interaction [67] has been employed.
Energies are given in MeV, probabilities in %. Experimental values are
taken from Refs. [68] (3

ΛH, 4
ΛHe(0+)) and [69] (4

ΛHe(1+))

YN interaction EΛ(3
ΛH) EΛ(4

ΛHe(0+)) EΛ(4
ΛHe(1+)) PΣ(3

ΛH) PΣ(4
ΛHe(0+)) PΣ(4

ΛHe(1+))

NLO13(500) 0.135 1.705 0.790 0.291 2.014 1.640

NLO13(550) 0.097 1.503 0.586 0.273 2.108 1.556

NLO13(600) 0.090 1.477 0.580 0.251 2.024 1.505

NLO13(650) 0.087 1.490 0.615 0.232 1.870 1.397

NLO19(500) 0.100 1.643 1.226 0.168 1.120 1.261

NLO19(550) 0.094 1.542 1.239 0.189 1.156 1.434

NLO19(600) 0.091 1.462 1.055 0.208 1.368 1.676

NLO19(650) 0.095 1.530 0.916 0.219 1.520 1.523

Jülich’04 0.046 1.704 2.312 0.181 0.782 0.895

NSC97f 0.099 1.832 0.575 0.190 1.798 1.078

Expt. 0.13 (5) 2.39 (3) 0.98 (3) – – –

according to the simple estimate Eq. (10). Here, the regu-
lator dependence of the binding energy is of the order of
210 and 180 keV for NLO13 and NLO19, respectively, and,
thus, larger than the average difference between the two EFT
interactions. Interestingly, the predictions of the two consid-
ered phenomenological Y N models for the 0+ bound state
are almost the same, despite of the large differences in the
ΛN -ΣN transition potentials. Note that all considered inter-
actions under-predict the experimental separation energy of
the 0+ state.

For the 1+ state of 4
ΛHe, the 3S1 partial wave of the ΛN

interaction should dominate, according to Eq. (11). This par-
tial wave is strongly affected by the Λ − Σ conversion and
the effects are different for NLO13 and NLO19 as discussed
in Sect. 3.1. Here, we observe a more pronounced regula-
tor dependence of the binding energy. Specifically, for the
NLO19 interaction, it is in the order of 300 keV and around
200 keV for the NLO13 potential. Despite those variations,
there is clearly a trend towards larger binding energies for
NLO19, i.e. for the interaction with a weaker ΛN -ΣN tran-
sition potential. This conjecture is also supported by the result
for the Jülich ’04 potential. Here the transition potential in the
3S1−3 D1 partial wave is extremely weak and, corresponding
to that, the 1+ binding energy is very large. The prediction
for the NSC97f interaction, on the other hand, with its mod-
erately strong transition potential, matches well with those
of the chiral EFT potentials. Comparing with the empirical
information, one can say that the NLO19 prediction is com-
patible with the experiment within the uncertainty, whereas
the NLO13 and NSC97f interactions underestimate the sep-
aration energy for the 1+ state. On the other hand, the Jülich
’04 potential leads to over-binding and, as a matter of fact,
to a wrong level ordering of the 0+ and 1+ states.

Similar to the 4
ΛHe 1+ state, the 5

ΛHe bound state is like-
wise dominated by the ΛN triplet component, cf. Eq. (12).
Thus, it will be interesting to see corresponding results based
on the NLO13 and NLO19 interactions [59]. The anoma-
lously small binding energy of this state has been notori-
ously difficult to describe in past calculations [72]. Among
other things, a strong suppression of the ΛN -ΣN coupling
is seen as one possible explanation [66,73]. Thus, one would
expect noticeable differences between the predictions of the
two EFT interactions.

We refrain from addressing the long-standing and still
unsettled issue of the large charge symmetry breaking (CSB)
[60,74–76] observed in the binding energies of the 4

ΛHe
and 4

ΛH systems [69,77] here in detail. Indeed, there is
no explicit CSB in the ΛN EFT potentials employed in the
present study. Corresponding contributions that would arise,
e.g., from π0 exchange in conjunction with Λ − Σ0 mix-
ing [78] are ignored. Additional CSB effects that enter into
the four-body calculations like the Coulomb interaction and
the mass difference of the Σ+ and Σ− hyperons are small [6].
In Refs. [75,76], the CSB part of the ΛN interaction was
constructed from the ΛN → ΣN transition potential via
an appropriate scaling with the Λ − Σ0 mixing matrix ele-
ment. However, one has to be cautious in doing so. Specifi-
cally, one cannot turn that around and use CSB effects to fix
the ΛN → ΣN transition potential in a quantitative way.
Besides the aforementioned Λ − Σ0 mixing, there should
be CSB contributions from, say, η − π0 mixing or ω − ρ0

mixing [74] that are definitely not proportional to the transi-
tion potential and, thus, demand the explicit introduction of
pertinent CSB contact interactions in the 1S0 and 3S1 ΛN
partial waves in the framework of EFT.

That said, on a qualitative level there is definitely a relation
between the CSB, the strength of the Λ-Σ conversion, and
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the Σ component of the four-body bound-state wave function
[6,36]. Therefore, we include in Table 4 the probability PΣ

to find a Σ in the hypernuclear wave function. However,
one should always keep in mind that this quantity is not an
observable and, thus, provides an instructive but not a real
measure for the strength of the Λ-Σ conversion. As expected,
PΣ is smaller for the NLO19 interactions. There is, however,
a visible cutoff dependence of this quantity. For NLO13 and
NSC97f, PΣ is smaller for the 1+ state. This is somewhat
surprising since Eq. (11) indicates that the triplet interaction
should dominate and since Λ-Σ conversion is stronger for
the triplet in most interactions. For NLO19 and Jülich ’04,
the 1+ state has a larger Σ-probability which is more in line
with naive expectations. As stated above, the 0+ separation
energies are rather independent from the version of the chiral
interaction but the 1+ state is more dependent on this choice.
For the Σ probability, the dependence is exactly opposite.
Therefore, it is clear that both properties of the interactions
are not directly linked to each other.

Finally, let us mention that a new measurement by the
STAR collaboration suggests that the 3

ΛH binding energy
could be significantly larger [79]. We ignore this in the
present work where the focus is on a comparison of our EFT
interactions from 2013 and 2019. Nonetheless, we performed
some exploratory calculations which indicate that a larger
binding energy can indeed be achieved. Moreover, the excel-
lent description of the ΛN and ΣN data can be maintained,
by an appropriate re-adjustment of the potential strengths in
the ΛN 1S0 and 3S1 partial waves – though at the expense of
giving up the strict SU(3) constraints on the (S-wave) LECs
between the ΛN and ΣN channels. Details are reported else-
where [80].

4 Discussion

The Λ-Σ conversion and its impact on hyperonic few- and
many-body systems has been discussed in numerous works in
the past [50–52,65,66,73,81–84]. However, in basically all
studies so far simplified potential models for the Y N inter-
actions have been employed and usually only the extreme
scenarios of “coupled or not-coupled” were compared. The
present study is on a much more subtle level. First, the full
complexity of the Y N interaction is taken into account. Sec-
ond, the coupling of the ΛN and ΣN is always considered
and a simultaneous description of the available low-energy
Λp and ΣN data is achieved by both Y N potentials com-
pared in this work.

Nevertheless, the effects due to the Λ-Σ conversion
revealed by the present study are qualitatively rather similar
to those reported in earlier calculations. This is true for three-
and four-body systems [66,81,82] but also for the in-medium
properties of the Λ hyperon [50–52]. Perhaps surprising at

first sight, it is an indication that most interactions used in the
former works captured reasonably well the bulk properties
of the Y N interaction.

There is one aspect, however, that has not been really in
the focus of past discussions and, thus, we want to elaborate
on it in more detail. It concerns the situation embodied by
the two EFT interactions: These yield practically identical
results for Λp as well as ΣN observables in the low-energy
region, as demonstrated in Sect. 3.1, but are characterized
by a noticeably different strength of the ΛN → ΣN transi-
tion potential. One might think that additional and/or more
accurate scattering data could facilitate a discrimination. But
this is unlikely, because one has to realize that the transition
potential itself is not an observable quantity. The situation is
analogous to that of the deuteron. It is well-known that its
D-state probability is not a measurable quantity [85]. Yet it
cannot be zero (because of the quadrupole moment of the
deuteron) and not too large either. Similarly, the measured
Σ− p → Λn (and Λp → Σ0 p) cross section requires a
non-zero transition potential, but it fixes its actual strength
only within certain limits.

In few- and many-body calculations involving hyperons,
differences in the elementary ΛN → ΣN transition poten-
tial are to be balanced by corresponding three-body forces
(3BFs). In chiral EFT, the latter appear naturally and auto-
matically in a consistent implementation of the framework
[3,4,86]. In the power counting followed in Ref. [1] and in
the present work, such 3BFs arise first at next-to-next-to-
leading order (N2LO) in the chiral expansion [3,87]. For the
specific case of the Λ-Σ conversion, the necessity for 3BFs
is illustrated in a pedagogical way by the similarity renor-
malization group (SRG) transformation, a tool that is nowa-
days commonly applied in studies of few-nucleon systems
but also of hypernuclei [59,88–92]. It amounts to a prediago-
nalization of the Hamiltonian in momentum space in order to
improve the convergence of calculations using various many-
body methods. One specific feature of this diagonalization is
the occurrence of so-called induced three- and higher many-
body forces of moderate size. In applications to hypernuclei,
such a prediagonalization also involves a decoupling of the
ΛN and ΣN systems, i.e. leads to a strong reduction of the
ΛN → ΣN transition potential in the Hamiltonian. In this
case, induced Y NN 3BFs appear, however, they have a more
sizable effect as discussed in detail in Ref. [90]. This clearly
demonstrates that, in few- and many-body applications, the
actual strength of the ΛN → ΣN transition potential is cor-
related with and has to be supplemented by corresponding
(ΛNN , ΣNN ) 3BFs.

Let us further expand on the role of 3BFs in few-body sys-
tems. To begin with, we want to remind the reader that 3BFs
are strongly scheme dependent, as discussed extensively in,
e.g., Ref. [86]. Specifically, the actual physics represented
by a 3BF depends crucially on the degrees of freedom taken
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(a) (b)

(c) (d)

Fig. 10 Illustration of three-body dynamics: a standard contribution
in the ΛNN three-body equations. b effective three-body force arising
from the ΛN -ΣN coupling. c ΛN -ΣN transition in the presence of a
spectator, leading to a dispersive effect. d three-body force due to the
excitation of the Σ∗(1385) baryon

into account in the EFT and/or in the specific calculation. For
example, in the SU(3) chiral EFT applied by us, the Λ and
Σ hyperons are treated on equal footing. This is also done in
the three- and four-body calculations within the conventional
Faddeev–Yakubovsky approach presented in Sect. 3.3. Then
contributions represented schematically by the diagrams (a)–
(c) in Fig. 10 are all automatically included by solving the
corresponding Eqs. (6) and (8). As discussed thoroughly in
Ref. [33], the inclusion of the Σ leads to two types of effects
in the three-body dynamics. One is the so-called dispersive
effect. It arises when the ΛN interaction takes place in the
presence of one or two spectator nucleons, cf. Fig. 10c. Then
the contribution of, say, the transition ΛN → ΣN → ΛN to
the effective two-body potential is reduced as compared to the
situation in free space because the propagator includes now
the kinetic energy of the spectator nucleons and, as a conse-
quence, the effective interaction is less attractive [33,66]. At
the same time, the equal treatment of the Λ and Σ hyperons
in the two- and few-body equations generates contributions
of the form shown in Fig. 10b. In SU(3) chiral EFT, this con-
tribution is not a 3BF [87] but a result of two-body dynamics.
The corresponding contributions can be attractive and then
they can compensate or even exceed the dispersive effects.
Note that a smaller (larger) ΛN → ΣN transition potential
leads to smaller (larger) dispersive effects but at the same time
also to smaller (larger) “3BFs”, so that the net result might

be not too sensitive to the actual strength of the transition
potential, provided that a consistent and complete calcula-
tion has been performed as in the present study. Of course,
in general, the properties of the 3BF-type contributions gen-
erated in this way depend crucially on the considered state
and hypernucleus so that there will be a delicate and distinct
interplay between the two three-body effects. The diagram
in Fig. 10d is not generated by the dynamical equations since
decuplet baryons are not explicitly included. Thus, it consti-
tutes a proper contribution to the 3BF in SU(3) chiral EFT
[87,93].

The situation is different for pionless EFT which has been
likewise employed in studies of the properties of the hypertri-
ton and of other light hypernuclei [72,94–96]. In that frame-
work, only the Λ and the nucleons are kept as active degrees
of freedom while pions but also the Σ are “frozen out”. As
a consequence, proper 3BFs appear already at LO in this
approach. And these 3BFs represent effectively the dynam-
ics illustrated in Fig. 10b–d, among other things. Recall that
the virtual elimination of the Σ degrees of freedom is also
one of the reasons for the induced 3BFs in the discussed SRG
transformation [90].

Studies of the nuclear matter properties are usually based
on the G-matrix calculated from the Bethe–Goldstone equa-
tion, as it is done here. Then only the dispersive effect is
taken into account and, thus, a stronger ΛN → ΣN poten-
tial leads unavoidably to a less attractive Λ nuclear potential.
It is the prime reason why we see a sizable difference in the
nuclear matter results for the NLO13 and NLO19 potentials,
cf. Sect. 3.2. But it is also the main reason for the differences
in nuclear matter calculations observed for phenomenologi-
cal Y N potentials. A proper way to deal with this would be to
solve the corresponding Bethe–Faddeev equation [97] where
three-body correlations are taken into account consistently.
It is, however, technically rather challenging and therefore
generally avoided.

Should one give preference to either the NLO13 or the
NLO19 interaction? In our opinion there are no stringent
reasons that would make one superior over the other. That
said, a Y N potential where SU(3) symmetry is fulfilled by
the NLO LECs in combination with the NN interaction and
which is, therefore, more in line with the underlying power
counting, is certainly more favorable from a fundamental
point of view. Note, however, that the symmetry is anyway
broken by the corresponding NLO contributions from two-
meson exchange [1]. Certainly a positive aspect in favor of
the new fit is that the corresponding LECs are somewhat
smaller and, therefore, more in line with the requirement of
natural size [3].

Another aspect is, whether it would be sensible to “opti-
mize” the Y N potential so that the 3BFs become small. As
argued in Ref. [86], such a strategy is doomed to fail on the
level of accuracy of the last order of the EFT where 3BFs do
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not contribute. For a 3BF that only depends on one adjustable
parameter, it is obviously advantageous to choose the Y N
interaction such that this parameter is minimal. This will
simultaneously minimize the effect of the 3BF in all observ-
ables. Once several parameters are involved, as is certainly
the case for the chiral Y NN interaction at N2LO, the opti-
mal set of parameters will depend on the observable chosen
and will not be universal. A good example of this aspect
shown in this work is the observation that we can improve
the description of the 1+ state for specific choices of the cut-
off or by choosing NLO19. This, however, will not improve
the description of the 0+ state. State-of-the-art calculations
of few-nucleon systems based on chiral NN potentials com-
monly include 3BFs. The arising additional LECs in the 3BF
are fixed by considering few- or many body observables,
for example the triton binding energy or the minimum of
the differential pd cross section [98]. Their actual values
depend on the specific features of the employed EFT and, in
particular, on the adopted regularization scheme [86]. With
regard to few-body systems involving hyperons, the LECs
corresponding to ΛNN (or ΣNN ) forces will be necessar-
ily interrelated with the strength of the ΛN → ΣN transition
potential. Since such 3BFs arise only at N2LO in the power
counting, as mentioned above, we do not consider them in
the present work which is at the NLO level. Anyway, given
the present experimental situation it remains unclear in how
far the various LECs that arise in the lowest-order ΛNN
3BF [87] could be fixed by considering few-body observ-
ables such as the 3

ΛH and/or 4
ΛH ( 4

ΛHe) binding energies. One
possible solution would be the explicit inclusion of decuplet
baryons in the EFT as discussed in Ref. [93]. Assuming that
the Y NN 3BF can be saturated by the excitation of decuplet
baryons reduces the number of pertinent LECs considerably.
As a byproduct, this framework would also promote the cor-
responding contributions to NLO [4] which is consistent with
the assumption that these contributiuons are the dominant
3BFs to be expected in chiral EFT.

Either way, including 3BFs into our codes for solving the
Faddeev-Yakubovsky equations for the Y NN and Y NNN
systems is technically rather demanding. It requires consider-
able additional work which we postpone to the future. Thus,
at present, we cannot give reliable estimates for the size of
3BFs. However, since the effect of the Λ-Σ conversion is
explicitly included in our few-body calculation, we expect
only moderate contributions from such 3BFs for light hyper-
nuclei and, specifically for the hypertriton. This is in contrast
with the aforementioned studies within pionless EFT [72,94]
or with phenomenological approaches [99] where an effec-
tive ΛN interaction is employed and the coupling to ΣN is
not taken into account. Here the effect of 3BFs is significant
and without including them explicitly, no realistic results can
be achieved, as testified by past calculations. It is argued in
Refs. [6,86] that the dependence of the predictions on the

Table 5 Comparison of the separation energies EΛ of 3
ΛH, 4

ΛHe(0+)

and 4
ΛHe(1+) including and excluding explicit Σs for different Y N

interactions. See text for more details. For the chiral Y N forces, the
SMS NN interaction [63] at order N4LO+ with cutoff of 450 MeV has
been used. For Jülich’04 and NSC97f, the CD-Bonn interaction [67]
has been employed. Energies are given in MeV

YN interaction 3
ΛH 4

ΛHe(0+) 4
ΛHe(1+)

NLO13(650) w/ Σ 0.087 1.490 0.615

NLO13(650) w/o Σ 0.095 1.155 0.568

NLO19(650) w/ Σ 0.095 1.530 0.916

NLO19(650) w/o Σ 0.100 1.300 0.735

Jülich’04 w/ Σ 0.046 1.704 2.312

Jülich’04 w/o Σ 0.162 2.397 2.319

NSC97f w/ Σ 0.099 1.832 0.575

NSC97f w/o Σ 0.062 1.303 0.679

regulator should provide a lower bound for the magnitude of
the contributions from three- and higher-body forces. Based
on that measure, one expects a rather small influence in case
of the hypertriton. This is in line with other arguments that
consider the fact that the bound state is very shallow and,
accordingly, the Λ is on average far from the two nucleons
[34]. Then the likelihood that all three particles are close to
each other and feel a 3BF is very small. For the 4

ΛHe system,
the cutoff dependence of the separation energies is larger
and, thus, one would expect larger effects from 3BFs here,
specifically for the 1+ state.

A rough indication for the magnitude of possible effects of
3BFs can be obtained by switching off the Σ in the three- and
four-body systems as discussed in Refs. [6,36]. Correspond-
ing results are summarized in Table 5. Clearly, this procedure
provides primarily a measure for the effective 3BFs coming
from the Σ excitation, cf. Fig. 10b. But one might specu-
late that the magnitude of an actual 3BF represented, e.g.,
by the excitation of the Σ∗(1385) [93] see Fig. 10c, should
be smaller given that the Σ∗ mass is significantly larger and
that the power counting suggests first contributions at a higher
order. The actual change in the 3

ΛH separation energy for the
hypertriton amounts to less than 10 keV for the NLO inter-
actions when the Σ component is switched off. There is an
increase in the binding which means that the effective 3BFs
coming from the Σ excitation are overall repulsive. Interest-
ingly, the opposite is the case for the NSC97f potential, and
also for other Nijmegen Y N interactions considered in the
past [6,36]. Obviously, there is a delicate interplay reflect-
ing the actual strength of the Λ-Σ conversion as well as its
realization in the 1S0 and 3S1 partial waves. In the four-body
system, there is a reduction of the binding energy by around
340 (230) keV for the 0+ state and by 150 (180) keV for 1+,
for NLO13 (NLO19), when the ΣN component is switched
off in the few-body calculations. For results with the NLO13
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interaction with other cutoffs, see Ref. [6]. Also for 4
ΛHe, the

trend exhibited by the phenomenological potentials differs in
part. Nonetheless, at least for the chiral interactions, the vari-
ations in the separation energies when the Σ component is
removed is even slightly smaller than the cutoff dependence,
discussed above. Since these variations provide a measure
for the diagram of Fig. 10b, the results support that 3BFs in
our approach [87] are likely smaller than the uncertainty at
order NLO.

Finally, note that, for nuclear matter calculations, one pos-
sibility to circumvent the computational challenges of many-
body equations consists in the use of density-dependent
effective ΛN (and ΣN ) interactions that can be derived from
chiral three-body forces [87]. Assuming furthermore that the
3BFs are dominated by the excitation of decuplet baryons
(decuplet saturation), the number of independent LECs in
the three-baryon interactions can be considerably reduced. A
first application of that formalism in studies of the in-medium
properties of the Λ has been reported in Ref. [10]. In this con-
text, let us mention that adding a density-dependent effec-
tive ΛN force to the NLO19 interaction, with the strength
considered in the aforementioned reference, would bring the
single-particle potential UΛ for NLO13 and NLO19 roughly
in agreement with each other, up to the highest considered
Fermi momentum of kF = 1.7 fm−1, corresponding to a
density of twice the nuclear matter saturation density.

5 Conclusions

In the present work, we have investigated the ΛN and ΣN
interactions at next-to-leading order in SU(3) chiral effective
field theory. In particular, we have explored different options
for the low-energy constants that determine the strength of
the contact interactions. One Y N interaction considered is
the initial NLO potential published in 2013 [1]. The other
potential has been established in the present paper. It is guided
by the objective to reduce the number of LECs that need
to be fixed in a fit to the ΛN and ΣN data by inferring
some of them from the NN sector via the underlying SU(3)
symmetry. Correlations between the LO and NLO LECs of
the S-waves had been observed already in our initial Y N
study [1] and indicated that a unique determination of them
by considering the existing ΛN and ΣN data alone is not
possible.

As demonstrated in the present work, the two variants
considered yield equivalent results for ΛN and ΣN scatter-
ing observables. However, they differ in the strength of the
ΛN → ΣN transition potential and that becomes manifest
in applications to few- and many-body systems. The influ-
ence of this difference on predictions for light hypernuclei
and for the properties of the Λ and Σ hyperons in nuclear
matter has been shown and discussed in detail. It turned out

that the effect of the variation in the strength of the ΛN -ΣN
coupling (Λ−Σ conversion) is moderate for the considered
hypernuclei but sizable in case of the matter properties.

Since the Y N scattering data alone cannot fully constrain
the ΛN -ΣN transition potential, arguably as a matter of prin-
ciple, consistent three-body forces are needed to compensate
for the differences in few- and many-body systems. Such
3BFs arise only at N2LO in the power counting that we fol-
low, and therefore, we did not consider them in the present
work which is at the NLO level. However, we speculate that
the effect of such 3BFs should be fairly small, at least for light
hypernuclei, once the Λ−Σ conversion is taken into account
consistently in the corresponding calculations. In such a case,
important aspects of three-body dynamics such as dispersive
effects but also effective three-body forces that arise from the
coupling of ΛN to ΣN are taken into account rigorously.

In this work, the influence of the Λ − Σ conversion
strength on light hypernuclei and nuclear matter has been
investigated. For further insight, but also for addressing
other aspects, more and/or more accurate data are essen-
tial. A new measurement of the hypertriton bound state
has been presented which points to a noticeably larger
binding energy [79]. Measurements of 4

ΛH and 4
ΛHe with

improved accuracy in order to determine the amount of
charge-symmetry breaking more precisely have been per-
formed [69,77] or are on the way [100]. There are also
attempts to shed more light on the elementary Y N interaction
directly via studies of the Λp correlation function measured
in heavy-ion collisions or high-energy pp collisions [101–
103]. Moreover, there are plans for a future measurement of
Σ− p scattering at J-PARC [104]. Depending on the outcome
of those experiments, one might have to readjust the Y N
interaction. In particular, this concerns the relative strength
of the Λp interaction in the 1S0 and 3S1 channels. Efforts at
the COSY accelerator in Jülich to determine the strength of
the spin-triplet Λp interaction from the final-state interaction
in the reaction pp → K+Λp [105] suffered from low statis-
tics and, unfortunately, could not provide the desired and
urgently needed stringent constraint. Given the lack of appro-
priate spin-dependent observables, it is fixed in our studies
by considering the hypertriton separation energy [1,9,15]. A
larger hypertriton separation energy would certainly require
a more attractive 1S0 Λp interaction. That, in turn, would
influence the predictions of an appropriately modified chiral
Y N interaction for the 4

ΛH and 4
ΛHe states [80].
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Appendix: Contribution of contact terms

A detailed description of the derivation of the hyperon–
nucleon interaction within SU(3) chiral EFT up to NLO,
based on the modified Weinberg counting [2], has been
given in Ref. [1]. Specifically, in this work, explicit ready-
to-use expressions for the potentials in the ΛN → ΛN and
ΣN → ΣN channels, and the ΛN → ΣN transition can
be found. Since the contributions from one- and two-meson
exchanges of the Goldstone bosons π , η, and K , included
in the present work, are identical to those in [1], we refrain
from reproducing the pertinent formulae and tables here. We
do, however, provide the expressions for the contact terms
and the low-energy constants (LECs) associated with them
because the latter are the quantities that have been re-adjusted
for the potential presented in this work. In addition the rela-
tions between the LECs for the various Y N → Y ′N transi-
tion potentials, that follow from the assumed SU(3) symme-
try, are given.

The spin dependence of the potentials due to leading order
contact terms is given by [1]

V (0)

Y N→Y ′N = CS + CT σ 1 · σ 2 , (13)

where the parameters CS and CT are the aforementioned
LECs, which depend on the considered Y N baryon-baryon
channel and which need to be determined in a fit to data. At
next-to-leading order, the spin- and momentum-dependence
of the contact terms reads

V (2)

Y N→Y ′N = C1q 2 + C2k 2 + (C3q 2 + C4k 2) σ 1 · σ 2

+ i

2
C5(σ 1 + σ 2) · (q × k)

+C6(q · σ 1)(q · σ 2) + C7(k · σ 1)(k · σ 2)

+ i

2
C8(σ 1 − σ 2) · (q × k) , (14)

Table 6 SU(3) relations for the various contact potentials in the isospin
basis. C27

ξ etc. refers to the corresponding irreducible SU(3) represen-
tation for a particular partial wave ξ . The actual potential still needs to
be multiplied by pertinent powers of the momenta p and p′. The same
relations hold for C̃27

ξ etc

Channel I V (ξ)

ξ = 1S0 ξ = 3S1,
3S1-3D1

S = 0 NN → NN 0 – C10∗
ξ

NN → NN 1 C27
ξ –

S = −1 ΛN → ΛN 1
2

1
10

(
9C27

ξ + C8s
ξ

)
1
2

(
C8a

ξ + C10∗
ξ

)

ΛN → ΣN 1
2

3
10

(
−C27

ξ + C8s
ξ

)
1
2

(
−C8a

ξ + C10∗
ξ

)

ΣN → ΣN 1
2

1
10

(
C27

ξ + 9C8s
ξ

)
1
2

(
C8a

ξ + C10∗
ξ

)

ΣN → ΣN 3
2 C27

ξ C10
ξ

whereCi (i = 1, . . . , 8) are additional LECs. The transferred
and average momenta, q and k, are defined in terms of the
final and initial center-of-mass momenta of the baryons, p′
and p, as q = p′ − p and k = (p′ + p)/2. When performing
a partial-wave projection, these terms contribute to the two
S–wave (1S0, 3S1) potentials, the four P–wave (1P1, 3P0,
3P1, 3P2) potentials, and the 3S1-3D1 and 1P1-3P1 transition
potentials in the way described in Sec. 2.1 of Ref. [1]. For
the 1S0 and 3S1-3D1 partial waves relevant here, these can
be cast in the form

V (1S0) = C̃1S0
+ C1S0

(p2 + p′2) , (15)

V (3S1) = C̃3S1
+ C3S1

(p2 + p′2) , (16)

V (3D1 − 3S1) = C3S1− 3D1
p′2 , (17)

V (3S1 − 3D1) = C3S1− 3D1
p2 , (18)

with p = |p | and p′ = |p ′|.
The SU(3) structure is summarized in Table 6. Here the

LECs are expressed in terms of the irreducible representa-
tions resulting from the decomposition of the tensor product
relevant for the scattering of two octet baryons: 8 ⊗ 8 = 1 ⊕
8a ⊕ 8s ⊕ 10∗ ⊕ 10 ⊕ 27 (for details see Refs. [106,107]).
From that table, one can immediately read off the potential
for a specific Y N → Y ′N transition and a specific partial
wave. It is simply a combination of the SU(3) structure and
the spin-momentum structure and reads, for example, for the
1S0 partial wave of the ΛN → ΛN channel:

VΛN→ΛN (1S0)

= 1

10

[
9C̃27

1S0
+ C̃8s

1S0
+ (9C27

1S0
+ C8s

1S0
)(p2 + p′2)

]
.

(19)

In the fitting procedure, the “standard” set of 36 Y N
data points [15] has been included, which consists of low-
energy total cross sections for the reactions: Λp → Λp
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Table 7 Contact terms for the 1S0 and 3S1-3D1 Y N partial waves for
various cutoffs Λ. The values of the C̃’s are in 104 GeV−2 the ones of
the C’s in 104 GeV−4. The values of Λ are in MeV

Λ 500 550 600 650

1S0 C̃27
1S0

− 0.0062 0.0922 0.2564 0.5375

C27
1S0

2.313 2.326 2.326 2.328

C̃8s
1S0

0.1970 0.1930 0.1742 0.1670

C8s
1S0

− 0.2000 − 0.2060 − 0.0816 − 0.0500

3S1-3D1 C̃10∗
3S1

− 0.0987 − 0.0476 0.2198 0.6688

C10∗
3S1

0.2977 0.3139 0.5109 0.4899

C̃10
3S1

0.3322 0.4390 0.6672 0.8961

C10
3S1

0.6799 0.6910 0.4681 0.4200

C̃8a
3S1

0.0236 0.0393 0.0279 − 0.0021

C8a
3S1

0.3955 0.3745 0.4496 0.6589

C10∗
3S1− 3D1

− 0.2406 − 0.2595 − 0.2422 − 0.1913

C10
3S1− 3D1

− 0.3000 − 0.1115 − 0.3800 − 0.3638

C8a
3S1− 3D1

0.1728 − 0.0136 − 0.0348 − 0.0437

from Ref. [37] (6 data points) and Ref. [38] (6 data points),
Σ− p → Λn [39] (6 data points), Σ− p → Σ0n [39] (6
data points), Σ− p → Σ− p [40] (7 data points), Σ+ p →
Σ+ p [40] (4 data points), and the inelastic capture ratio at
rest [41,46]. Besides these Y N data, the empirical Λ sep-
aration energy of the hypertriton 3

ΛH of 130 keV [68] has
been used as a further constraint. Without the latter it would
not be possible to fix the relative strength of the spin-singlet
and spin-triplet S-wave contributions to the Λp interaction.
The actual values of the employed LECs are summarized in
Table 7. The LECs for the P-waves are all taken over from
Ref. [1]. Their values can be found in Table 4 of that work.
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