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Abstract We discuss the recently measured event-by-event
multiplicity fluctuations in relativistic heavy-ion collisions.
It is shown that the observed non-monotonic behavior of the
scaled variance of the multiplicity distribution as a function
of collision centrality can be fully explained by the correla-
tions between produced particles promoting cluster forma-
tion (such an effect is not observed in a widely used string-
hadronic models of nuclear collisions). We define a cluster
as a quasi-neutral gas of charged and neutral particles which
exhibits collective behavior. The characteristic space scale of
this shielding is the Debye length. The multiplicity distribu-
tion in a cluster is given by a negative binomial distribution
while the rest (reservoir), treated as a superposition of ele-
mentary collisions, is described by a binomial distribution.
The ability to generate spatial structures (cluster phase) with
self-similar fluctuations of multiplicity sign the propensity
to self-organize of hadronic matter.

1 Introduction

The studies of multiplicity fluctuations of particles produced
in relativistic ion reactions have been performed extensively
since many years, because they may serve as a probe of
dynamics present in the particle production mechanism and
the possible creation of a quark–gluon plasma.

Collision of relativistic ions leads to the production of
a hot quark–gluon plasma, which cools and at T = 155 ±
10 MeV [1–3] transits to a hadron gas of that temperature. The
hot quark–gluon system during the transition is effectively
quenched by the cold physical vacuum. The so-called self-
organized criticality is the appropriate mechanism leading to
a universal scale-free behavior [4].

Self-organized criticality (SOC) [5] is a property of
nonequilibrium dynamical systems that have a critical point
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as an attractor (for review, see [6–8]). The macroscopic
properties of such systems are characterized by the spatial
and/or temporal scale-invariance of the phase transition crit-
ical point. Unlike equilibrium systems which require the tun-
ing of parameters to enter a critical behavior, nonequilibrium
SOC systems tune themselves during evolution in the direc-
tion of criticality.1 A remarkable feature of active matter
is the propensity to self-organize. One striking instance of
this ability to generate spatial structures is the cluster phase,
where clusters broadly distributed in size constantly move
and evolve through particle exchange [4].

In the following sections we discuss imprints of multiplic-
ity clustering on charged particles multiplicity fluctuations
observed recently by the NA49 and NA61/SHINE experi-
ments located at CERN SPS.

2 Data on multiplicity fluctuations

In this work the multiplicity distribution P (N ) and its scaled
variance ω are used to characterize the multiplicity fluctua-
tions. Let P (N ) denotes the probability to observe a particle
multiplicity N in a high-energy nuclear collision. By defi-
nition P (N ) is normalized to unity,

∑
N P (N ) = 1. The

scaled variance of the multiplicity distribution (the so-called
Fano factor), ω (N ) is defined as

ω (N ) = Var (N )

〈N 〉 = 〈N 2〉 − 〈N 〉2

〈N 〉 , (1)

1 In a standard critical point there is only one set of values for the
parameters of the system which make it critical. In a SOC system at
least one of the parameters is dynamic, that is, it evolves as driving
events succeed (the evolution of SOC systems could be sketched as a
hopping series from one metastable state to another, and the detonators
of these jumps are the perturbation events). Thus, for a predefined choice
of the rest of parameters, the dynamic parameter is driven towards its
critical value without any apparent external tuning of it.
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where Var (N ) = ∑
N (N − 〈N 〉)2 · P (N ) is the variance

of the distribution and 〈N 〉 = ∑
N N · P (N ) is the average

multiplicity.
In many models the scaled variance of the multiplicity

distribution is independent of the number of particle pro-
duction sources. Widely used models of nuclear collisions,
the so-called superposition models, are based on the con-
cept of particle emission from independent sources. The sim-
plest example is the wounded nucleon model (WNM) [9], in
which the sources are wounded nucleons, i.e. the nucleons
that have interacted at least once (usually calculated using
Glauber model approach). In WNM, the scaled variance in
nucleus–nucleus collisions is the same as in nucleon–nucleon
interactions provided that the number of wounded nucleons
is fixed. Also string-hadronic models predict similar values
of ω for hadronic and nuclear collisions [10]. In a hadron-gas
model [11] the scaled variance of the multiplicity distribu-
tion converges to a constant value with increasing volume of
the system. In the special case of a hadron-gas model, the
so-called grand-canonical statistical formulation neglecting
quantum effects and resonance decays multiplicity distribu-
tion is a Poisson (PD) one, namely

PPD (N ) = 〈N 〉N
N ! · exp (−〈N 〉) . (2)

The variance of a PD is equal to its mean, and thus the scaled
variance is ω = 1, independently of average multiplicity. It
is then easy to find a possible discrepancy of the measured
multiplicity distribution from the PD. 2 For a review, see Ref.
[12].

The NA49 and NA61/SHINE experiments located at
CERN SPS analyzed multiplicity fluctuations of the charged
particles produced in p+p, Be+Be, Ar+Sc and Pb+Pb colli-
sions [13–15]. Both experiments used scaled variance of the
multiplicity distribution, defined in Eq. (1), as a measure of
multiplicity fluctuations. The NA49 Collaboration published
data on multiplicity fluctuations in Pb+Pb reactions as a func-
tion of collision centrality [13]. Unexpectedly, the measured
scaled variance show a very non-trivial centrality depen-
dence. It is close to unity at completely central collisions but
it manifests a prominent discrepancy from unity at periph-
eral interactions. The measurement has been performed at the
collision center of mass energy

√
sNN = 17.3 GeV for parti-

cles produced in forward hemisphere in the restricted rapidity
inverval 1.1 < yπ < 2.63 in the center of mass frame. The
azimuthal acceptance has also been limited, and about 17%
of all produced charged particles have been used in the analy-
sis [13]. Later on NA49 and NA61/SHINE experiments reg-
istered multiplicity distributions of negatively charged par-

2 Notice that for the binomial distribution ω < 1 and for the negative
binomial distribution ω > 1.
3 yπ denotes rapidity calculated assuming mass of π meson.

ticles produced in p+p and the most central (1%) Be+Be,
Ar+Sc and Pb+Pb collisions at the same center of mass
energy, but emitted to the full forward hemisphere, yπ > 0
[14,15].

In this paper we focus on a description of the centrality
dependence of the average multiplicity and scaled variance
of the multiplicity distribution of the charged particles pro-
duced in Pb+Pb collisions in 1.1 < yπ < 2.6 as measured by
the NA49 Collaboration. We also try to describe data on mul-
tiplicity fluctuations in the full forward hemisphere obtained
in p+p interactions and the most central (1%) Be+Be, Ar+Sc
and Pb+Pb collisions.

3 Model description

Let us specify a cluster as a quasi-neutral gas of electri-
cally charged and neutral particles which displays collective
behavior. The characteristic space scale of this shielding is
the Debye length (or radius):

λ2
D = kT

4πe2n
(3)

where n is the density of the charged particles (mostly pions).
Taking the pion radius rπ = 0.8 fm [16] and kT = 0.15 GeV,
we have n = 0.46 fm−3. Consequently, the Debye length is
equal to λD = 4.2 fm. In the Debye sphere of the volume

V = 4

3
πλ3

D (4)

we have N � 143 charged particles, which corresponds at√
sNN = 17 GeV to the number of projectile participants

Np � 18. The number of particles in the Debye sphere deter-
mines the size of the cluster.

The statistical hadronization model is a very efficient tool
for the description of average particle multiplicities in high-
energy heavy-ion reactions [1,17–21] as well as in elemen-
tary particle reactions [22–24]. Within this model there is
also the possibility to obtain multiplicity fluctuations since
the status of the hadronizing sources is known. The multi-
plicity and electric charge fluctuations have been proposed as
a good selective tool between hadron gas and quark–gluon
plasma [25,26] provided they survive the phase transition
and the hadronic system freezes out in a nonequilibrium sit-
uation. To properly assess the selective power of such observ-
ables, one should first calculate fluctuations in a hadron gas
by including the effects of quantum statistics, conservation
constraints, etc. The effects of conservation constraints on
fluctuations in thermal ensembles were first addressed from
the perspective of heavy-ion collisions in Ref. [27]. More
recently, it has been pointed out [28,29] that in the canon-
ical ensemble (CE) with exact conservation of charge, the
scaled variance of the multiplicity distribution of any parti-
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Fig. 1 Scaled variance of the charged particles multiplicity distribution
as a function of average charged multiplicity. By squares and circles we
indicate data on particle production in p+p collisions: squares (inelastic
data) are from the compilation for beam energy 3.7–303 GeV presented
in [33], full circles (non-single diffractive data) are from the compilation
in [34]. Open symbols are from data on particle production in jets: open
circles are from [35] and open squares from [36,37]. A line shows our
fit to the data
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Fig. 2 Distribution of the number of nucleons which emit particles to
the cluster, Nmax

p . See text for details

cle does not converge to the corresponding grand-canonical
(GCE) value even in the thermodynamic limit, unlike the
mean [30,31].

If we split a CE, or micro-canonical ensemble (MCE) into
N subsystems, the variance of any particle multiplicity dis-
tribution is not additive, as conservation constraints involve
nonvanishing correlations between different subsystems even
for large N. Thus, their GCE and CE thermodynamic limits
differ. We split a CE with a large volume into a cluster, which
is a grand canonical ensemble with the rest of the system
being a reservoir [32]. The multiplicity distribution in a clus-
ter is given by a negative binomial distribution (NBD)4 while
the rest (reservoir), treated as a superposition of elementary

4 A negative binomial distribution arises if in the Poisson distribution
one fluctuates the average multiplicity 〈NPD〉 using a gamma distribu-
tion with variance Var (〈NPD〉) = 〈NPD〉2/k.

collisions, is described by a binomial distribution (BD).5 The
variance of a multiplicity distribution, Var (N ), depends on
the mean multiplicity 〈N 〉 of the system. If 〈N 〉 increases
with energy, Var (N ) also changes.

Figure 1 presents a compilation of values of scaled vari-
ances of the charged particle multiplicity distributions as a
function of the average charged multiplicity. Such a depen-
dence may be well fitted by a simple formula6:

ω (N ) = 0.058 · 〈N 〉1.5. (5)

Comparing multiplicity fluctuations in jets and in mini-
mum bias proton–proton interactions one observes a kind of
self-similarity of the multiparticle production processes [39].
Regardless of the amount of the available energy, the vari-
ance is described by the same power function of the average
multiplicity.

A negative binomial distribution is a statistical tool com-
monly used for the description of the multiplicity distribu-
tions of particles produced in high-energy nuclear collisions:

PNBD (N , 〈N 〉, k)
=

(
N + k − 1

N

) ( 〈N 〉
k

)N (

1 + 〈N 〉
k

)−N−k

. (6)

NBD has two free parameters: 〈N 〉 describing mean multi-
plicity and the, not necessarily integer, parameter k (k ≥ 1)
affecting the shape of the distribution. The variance of NBD
is given by

Var (N ) = 〈N 〉 + 〈N 〉2

k
. (7)

Both 〈N 〉 and k depend on the collision energy. The energy
dependence of the average multiplicity of the charged par-
ticles produced in proton–proton interactions may be well
parameterized by [34]

〈Nch〉 = A + B ln s + C ln2 s, (8)

where
√
s is the center of mass energy of two colliding

protons, and A = 2.7 ± 0.7, B = −0.03 ± 0.21, and
C = 0.167 ± 0.016. The parameterization (8) is valid for√
s ranging between 10 and 900 GeV. In proton–proton col-

lisions the energy dependence of the NBD shape parameter
k is given by [34]

k−1 = a + b ln
√
s, (9)

5 In the full phase space, for single charged particles Var (N ) < 〈N 〉
due to electric charge conservation (and Var (N ) = 〈N 〉 for all charged
particles). In the limited phase space, because the correlation is not
complete we have Var (N ) < 〈N 〉 also for all charged particles, and an
effective multiplicity distribution can be described by BD.
6 The rough formula (5) asserts Taylor’s law, Var (N ) = a · 〈N 〉b with
exponent b > 2. Such a behavior corresponds to a geometrical random
walk (as opposed to the ordinary additive random walk) if the mul-
tiplicity density at each step grows on average (super-critical model)
[38].
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Fig. 3 Average number of all charged particles (panel a)) and scaled variance of all charged multiplicity distribution (panel b)) of particles produced
in Pb+Pb collisions at

√
sNN = 17.3 GeV and recorded in the 1.1 < yπ < 2.6 pion rapidity interval in the center of mass frame, plotted as a

function of the number of nucleons from the projectile nucleus which participate in the collision. Circles are for NA49 data [13]
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Fig. 4 The same as in Fig. 3 but for negatively charged particles

with a = −0.104 ± 0.004, b = 0.058 ± 0.001, and s in
GeV2. Using Eqs. (8) and (9) one can obtain a NBD shape
parameter k as a function of the average charged multiplicity,
〈Nch〉:
k−1 (〈Nch〉)
= −0.104 + 0.0868

(
0.03 + √−1.8 + 0.668 · 〈Nch〉

)
.

(10)

Using Eq. (8) one may also find that at the center of mass
energy of interest,

√
s = 17.3 GeV,

〈Nch〉
(√

s = 17.3GeV
) = 7.95. (11)

To describe the NA49 data the following particle clusteriza-
tion method was used. Each projectile nucleon participating
in a collision “produces” particles independently,

〈N 〉 = Np · 〈Nch〉, (12)

where 〈N 〉 is the average multiplicity produced in Pb+Pb col-
lisions at a particular centrality, Np , is the number of nucleons
from a projectile nucleus participating in collision and 〈Nch〉
is the average multiplicity produced in proton–proton inter-
actions. Clusters of the secondary particles may be formed
up to a certain value of Np = Nmax

p . The value of Nmax
p is

sampled from a gamma distribution with 〈Nmax
p 〉 = 18 and

Var
(
Nmax

p

)
= 9·〈Nmax

p 〉; see Fig. 2. The cluster size is equal

to NC
p = min{Np, Nmax

p }. Having 〈N 〉 = NC
p 〈Nch〉, the mul-

tiplicity in a given cluster is calculated according to NBD 7

with the shape parameter k dependent on 〈N 〉, according to
Eq. (10).

The rest of the colliding projectile nucleons, m = Np −
Nmax

p do not contribute their produced particles to the cluster.
The particles produced by them are emitted according to a
binomial distribution:

PBD (N , n, p) =
(
n

N

)

pN (1 − p)n−N , (13)

with 〈N 〉 = 〈Nch〉, and probability p = pBD = 0.4.
Clusters of particles are formed with a certain probability,

pC = 0.25. If a cluster of particles is not formed then all
colliding nucleons emit their produced particles according
to a binomial distribution.

7 NBD can be immediately connected with the fluctuations of volume
V [40] (and equivalently with the fluctuations of temperature T [41]) of
statistical ensembles. Fluctuations of N = 〈N 〉·x (where x = 〈T 〉/T =
(V/〈V 〉)1/4) in the Poisson distribution, taken in the form of the gamma
distribution, lead to the NBD.
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Fig. 5 Scaled variance of negatively charged multiplicity distribution
of particles produced in p+p and the most central (1%) Be+Be, Ar+Sc
and Pb+Pb collisions, and emitted to the forward hemisphere, yπ > 0
plotted as a function of the number of nucleons from the projectile
nucleus which participate in the collision. Symbols present data of the
NA49 and NA61/SHINE experiments [14,15]. With the line we show
values obtained using our model

4 Results

For the simulation of nucleus–nucleus collisions in the frame-
work of the Glauber Monte Carlo picture, we have used a suit-
ably modified GLISSANDO package [42,43]. The parame-
ters of the particle production were adjusted by fitting of the
experimental data.

The resultant centrality dependencies of average all
charged multiplicities and corresponding scaled variances
of the multiplicity distributions are presented in Fig. 3. To
include the experimental acceptance we accepted a fraction
of 17% of generated particles; see the appendix for a detailed
discussion of the acceptance.

Figure 4 shows similar results to Fig. 3 but for negatively
charged particles. To obtain the corresponding fits we had to
adjust only one parameter: the average multiplicity in proton–
proton collisions. For the case of negatively charged particles
〈Nch〉 = 3.6. The only difference between the scaled vari-
ances for negatively and all charged particles comes from
the number of accepted particles. The two-particle correla-
tion function [44]

〈ν2〉 = ω (N ) − 1

〈N 〉 , (14)

which is not dependent on the experimental acceptance, is
roughly the same in both cases.

Using similar considerations we have obtained the val-
ues for the scaled variance of negatively charged multiplic-
ity distribution produced in p+p and the most central (1%)
Be+Be, Ar+Sc and Pb+Pb collisions, and emitted to the for-
ward hemisphere, yπ > 0 [14,15]; see Fig. 5. Nevertheless
the NA61/SHINE Collaboration experimental data are still
preliminary, and our model describes most of them (except
Ar+Sc collisions) quite reasonably. The observed difference
for the colliding system as regards size being comparable to

the cluster’s size can be caused by a too rough approximation
of the cluster size distribution adopted in the model.

5 Concluding remarks

In this paper we used the concept of clusterization in the
mechanism of multiparticle production for the description of
multiplicity fluctuations observed in relativistic ion collisions
at CERN SPS. Our results are as follows:

– It is shown that the observed non-monotonic behavior
of the scaled variance of the multiplicity distribution as
a function of collision centrality can be fully explained
by the correlations between produced particles promot-
ing cluster formation (such an effect is not observed in
the widely used string-hadronic models of nuclear colli-
sions).

– We defined a cluster as a quasi-neutral gas of charged and
neutral particles which exhibits collective behavior. The
characteristic space scale of this shielding is the Debye
length.

– We split a canonical ensemble or a micro canonical
ensemble with a very large volume into a cluster, which
is by definition, a grand canonical ensemble, with the
rest of the system acting as a reservoir. The multiplic-
ity distribution in a cluster is given by a negative bino-
mial distribution, while the rest (reservoir), treated as a
superposition of elementary collisions, is described by a
binomial distribution.

– Multiplicity clustering (being some kind of implemen-
tation of the core–corona model [45,46]) with self-
similar fluctuations (power-law dependence given by
Eq. (5) obeys the scaling relationship Var (N ; λ〈N 〉) =
λ2.5Var (N ; 〈N 〉)) provides new insights on the non-
monotonic behavior of multiplicity fluctuations.
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Appendix A: Imprints of acceptance

Let us assume that g (M) presents a real distribution which
describe s the multiplicity distribution in the full phase space.
The scaled variance ω is given by the parameters of such a
distribution. For example

ω =

⎧
⎪⎨

⎪⎩

1 + 〈M〉/k for NBD,

1 for PD

1 − 〈M〉/k for BD.

(A.1)

However, in the experiment we measure the multiplicity only
within some window in rapidity, �y. Roughly, for a fixed
acceptance α < 1, we have

ω = α · ωα=1, (A.2)

and the scaled variance decreases monotonically with decreas-
ing acceptance. Of course, such a procedure is not correct. Let
us assume that the detection process is a Bernoulli process
described by the BD with the generating function

F (z) = 1 − α + α · z, (A.3)

where α denotes the probability of the detection of a particle
in the rapidity window. The number of registered particles is

N =
M∑

i=1

ni , (A.4)

where ni follows the BD with the generating function F (z)
and M comes from g (M) with the generating function G (z).
The measured multiplicity distribution P (N ) is therefore
given by the generating function

H (z) = G [F (z)] (A.5)

and finally we have

P (N ) = 1

N !
dN H (z)

dzN

∣
∣
∣
∣
z=0

. (A.6)

Note that such a procedure applied to NBD, PD or BD with
generating functions

G (z) =

⎧
⎪⎨

⎪⎩

[(1 − p) / (1 − pz)]k for NBD,

exp [λ (z − 1)] for PD,

[1 + p (z − 1)]k for BD,

(A.7)

gives again the same distributions but with modified param-
eters. The scaled variance is given by

ω =

⎧
⎪⎨

⎪⎩

1 + α〈M〉/k = 1 + 〈N 〉/k for NBD,

1 for PD

1 − α〈M〉/k = 1 − 〈N 〉/k for BD.

(A.8)

For all distributions occurring in Eq. (A.8) ω → 1 when
α → 0. In the case of a small acceptance, the observed
P (N ) tends to PD.

The procedure discussed above is also very rough, because
it neglects conservation constraints, e.g., energy conserva-
tion. To investigate this effect we adopt an induced parti-
tion scenario for the particle distribution in phase space [47].
Namely, if the available energy, which may be distributed
among secondary particles U = const is limited, then we
have the following conditional probability for the single-
particle energy distribution [47]:

f (E |U ) = f1 (E) · fN−1 (U − E)

fN (U )

= N − 1

U

(

1 − E

U

)N−2

. (A.9)

In the induced partition mechanism N − 1 randomly cho-
sen independent points {U1, . . . , UN−1} split a segment
(0,U ) into N parts, whose length is distributed according
to Eq. (A.9). The length of the kth part corresponds to the
value of energy Ek = Uk+1 − Uk (for ordered Uk). In our
example it could correspond to the case of random breaks of
a string in N − 1 points in the energy space [47].

To check the above considerations numerically let us take
as an example a constant energy U = 100 GeV and share
it between a constant number, N = 50 massless particles
using the induced partition mechanism. Then we split the
generated particles into two different multiplicity distribu-
tions, P1 (N ) and P2 (N ). If the energy of the secondary
particle is smaller than the energy Et = 0.38 GeV then
we put this particle into the distribution P1 (N ). Otherwise
the particles will populate the distribution P2 (N ). In such a
way we put into the multiplicity distribution P1 (N ) about
17% of thr particles. In Fig. 6 we show both distributions,
P1 (N ) and P2 (N ). Please note that the two P1 (N ) and
P2 (N ) multiplicity distributions have exactly the same vari-
ances. Moreover, Pearson’s correlation coefficient calculated
for distributions P1 (N ) and P2 (N ),

ρ (NP1, NP2) = 〈NP1 · NP2〉 − 〈NP1〉 · 〈NP2〉√
Var (NP1) · Var (NP2)

, (A.10)

equals ρ (NP1, NP2) = −1. The multiplicity distribution
P1 (N ) may be easily fitted by a BD, Eq. (13) with parame-
ters n = 27.4 and p = 0.31; see Fig. 6.
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and 〈M〉 = 50. See text for details

The “measured” multiplicity distribution is given by

P (N ) =
∞∑

M=N

P (M) · P (N |M) . (A.11)

From the induced particle scenario we have the acceptance
function:

P (N |M)

= 	 (M/z + 1)

	 (N + 1) · 	 (M/z − N + 1)
(zα)N (1 − zα)M/z−N ,

(A.12)

where z is a parameter and α is the acceptance.
Contrary to the previous results given in Eq. (A.8), the

consideration of energy conservation leads to the apparent
changes in the “measured” multiplicity distribution. As an
example in Fig. 7 we plot ωα as a function of ω = ωα=1 for
P (M) given by BD, PD and NBD, with α = 0.15 and z = 2.
The scaled variance ωα = 1−α for PD and reaches the value
ωα = 1 for NBD with ω = 2. For NBD we have ωα < ωα=1

and for BD 1 − zα ≤ ωα < 1 −α. Such a behavior is almost
insensitive to 〈M〉; see Fig. 7.
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