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Abstract. The validity of SU(4)-flavor symmetry relations of couplings of charmed D-mesons to light
mesons and baryons is examined with the use of 3P0 quark-pair creation model and nonrelativistic quark-
model wave functions. We focus on the three-meson couplings ππρ, KKρ and DDρ and baryon-baryon-
meson couplings NNπ, NΛK and NΛcD. It is found that SU(4)-flavor symmetry is broken at the level
of 30% in the DDρ tree-meson couplings and 20% in the baryon-baryon-meson couplings. Consequences
of these findings for DN cross sections and existence of bound states D-mesons in nuclei are discussed.

Introduction

Currently there is considerable interest in exploring the
interactions of charmed hadrons with light hadrons and
atomic nuclei [1]. Particular attention is paid to D-mesons,
much discussed over the last few years in connection with
D-mesic nuclei [2–4] and J/ψ binding to nuclei [5, 6].
Presently, there is no experimental information about the
DN interaction, a situation that the PANDA@FAIR expe-
riment [7] could remedy in the future. Most of the knowl-
edge on the DN interaction comes from calculations us-
ing hadronic Lagrangians motivated by SU(4) extensions
of light-flavor chiral Lagrangians [8–14] and heavy quark
symmetry [15, 16]. These require as input coupling con-
stants and, in some cases, form factors. For the particular
case of D̄N reactions (where D̄ ≡ {D̄0,D−}), ref. [11]
found that among all the couplings in the effective La-
grangian, gDDρ and gDDω provide the largest contribu-
tions to cross sections and phase shifts for kinetic center
of mass (c.m.) energies up to 150MeV —they also play an
important role for the DN interaction [13]. Flavor SU(4)
symmetry relates those couplings to couplings in the light-
flavor sector,

gDDρ = gKKρ =
1
2
gππρ, (1)

gNΛcD = gNΛK =
3
√

3
5

gNNπ. (2)
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The studies in refs. [11–13] utilized the SU(4) relations
above, based on gππρ = 6.0 and gNNπ = 13.6, which are
the values used in a large body of work conducted within
the Jülich model [17,18] for light-flavor hadrons.

Given the prominent role played by meson-baryon La-
grangians in the study of the DN interaction and as-
sociated phenomena, it is of utmost importance to as-
sess the validity of (1) and (2). SU(4) breaking effects
on three-hadron couplings were examined recently us-
ing a variety of approaches, that include vector meson
dominance (VMS) [19, 20], Dyson-Schwinger and Bethe-
Salpeter equations (DS-BS) of QCD [21], QCD sum rules
(QCDSR) [22–24], lattice QCD [25], and holographic
QCD [26]. In this work we use the quark model with a
3P0 quark-pair creation operator [27–29]. In this setting,
the three-hadron couplings are given by matrix elements of
the 3P0 operator evaluated with quark-model wave func-
tions. The literature on the 3P0 model is too vast to be
properly reviewed here, we simply mention that it is be-
ing used extensively since the early 1970s to study strong
decays and that our calculation of vertices shares simi-
larities with those of nucleon-meson couplings and form
factors in [27–30].

Three-hadron couplings

To evaluate the matrix element of the 3P0 quark-pair cre-
ation operator, Ôpc, it is convenient to employ the “de-
cay frame” of an initial hadron at rest [27–30], i.e. the
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transition of a hadron state |h1〉 into a final two-hadron
state |h2h3〉 is written as

〈h2h3|Ôpc|h1〉 ≡ δ(P1 − P2 − P3)Mh1h2h3(q), (3)

with q = P2 = −P3, and

Ôpc = γ
∑

cfss′

∫
d3pσc

s′s · p qcf†
s′ (p)q̄cf†

s (−p), (4)

where γ gives the strength of the quark-pair creation,
qcf†
s′ (p) and q̄cf†

s (p) are creation operators with color c, fla-
vor f , spin projection s, and momentum p, σc

s′s = χ†
s′σχc

s,
with σ = (σ1, σ2, σ3) being the Pauli matrices, χs Pauli
spinors, and χc

s = −i σ2χ∗
s.

We employ the standard quark-model Hamiltonian
[31],

H =
∑

i

(
mi +

p2
i

2mi

)
−

∑

i<j

Fi · Fj

[(
3
4
b rij −

αc

rij

)

+
8π αs

3mi mj

(
σ3

π
3
2

e−σ2r2
ij

)
Si · Sj

]
, (5)

where mi are the quark masses and F = λ/2, with λ
the color SU(3) Gell-Mann matrices and S the spin 1/2
vector. Notwithstanding the inability of the model to de-
scribe all features associated with the Goldstone-boson
nature of the pion, nonetheless it mimics some of the ef-
fects of dynamical chiral symmetry breaking, notably the
π-ρ mass splitting [32]. As in QCD itself, the only source
of SU(4) breaking in (5) is the quark-mass matrix and
hence the breaking in the couplings comes solely from
the hadron wave functions. The Schrödinger equation is
solved as a generalized matrix problem using a finite basis
of Gaussian functions with the eigenvalues determined by
the Rayleigh-Ritz variational principle. Reasonable values
for the masses of the ground states of the hadrons of inter-
est can be obtained by expanding the meson Φ and baryon
Ψ intrinsic wave functions as [31,33]

Φ(r) =
N∑

n=1

cn ϕn(r), Ψ(ρ,λ) =
N∑

n=1

cn ϕn(ρ)ϕn(λ),

(6)
where the cn are dimensionless expansion parameters and

ϕn(x) =
(

nα2

π

)3/4

e−nα2x2/2. (7)

Here, α is the variational, r = r1 − r2, ρ = (r1 − r2)/
√

2,
and λ =

√
2/3[(r1+r2)/2−r3]. The matrix element M(q)

can be evaluated analytically; it is given by

Mh1h2h3(q) = κh1h2h3 Ah1h2h3(q) |q|Y1m(q̂), (8)

where Y1m(q̂) are spherical harmonics with m = 1(0) for
three-meson (nucleon-baryon-meson) couplings, κ comes
from summing over color, spin, and flavor and is given by

κDDρ = κKKρ =
1
2
κππρ = 1, (9)

κNΛcD = κNΛK =
3
√

3
5

κNNπ = 1. (10)

The amplitude Ah1h2h3(q) in (8) is given by

Ah1h2h3(q) = γ
∑

n1n2n3

c∗n3
c∗n2

cn1(n1n2n3)3/4

×fh1h2h3(n1, n2, n3) e−q2/Λ2
h1h2h3

(n1,n2,n3),

(11)

where fh1h2h3 are given by (P in PPρ stands for π, K, D
and B in NBP for N , Λ, Λc)

fPPρ(n1, n2, n3) =
(

64
9π

)1/4
α

3/2
ρ

α3
P

×
n1n2 + (m1 n1n3 + 2n2n3)α2

ρ/α2
P

[n1n2 + (n1 + n2)n3α2
ρ/α2

P ]5/2
, (12)

fNBP (n1, n2, n3) =
72

π3/4

α3
B

α3
Nα

3/2
P

1
(n1 + n2 α2

B/α2
N )3/2

× m2n1n2α
2
B/α2

P + m̃2n1n3 + 3n2n3α
2
B/α2

N

(2n1n2α2
B/α2

P + 3n1n3 + 3n2n3α2
B/α2

N )5/2
, (13)

and the “cut-off” parameters Λh1h2h3 are given by

Λ2
PPρ(n1, n2, n3) =

8α2
P [n1n2 + (n1 + n2)n3α

2
ρ/α2

P ]
(Δm)2 n1 + n2 + n3m

2
2α

2
ρ/α2

P

,

(14)

Λ2
NBP (n1, n2, n3) =

24α2
P

m2
1

× 2n1n2α
2
B/α2

P + 3n1n3 + 3n2n3α
2
B/α2

N

n1m̃2
2 + 9n2 α2

B/α2
N + 6(m̃1 + m̃2)2 n3α2

P /α2
N

, (15)

where

m1,2 =
2m1,2

m2+m1
, m̃1,2 =

3m1,2

2m1+m2
, Δm=

m2 − m1

m2+m1
,

(16)
with m1 = mu = md, m2 = ms,mc.

In the limit of SU(4) symmetry, m1 = m2, αD = αK =
απ and αΛc

= αΛ = αN , and the ratios

RP/P ′(q2)=
APPρ(q2)
AP ′P ′ρ(q2)

, RBP/B′P ′(q2)=
ANBP (q2)
ANB′P ′(q2)

(17)
are all equal to 1, expressing the same symmetry as in (1)
and (2). In this limit, γ must be the same for all couplings,
which seems a reasonable assumption, as they involve the
same light-quark pair creation. Symmetry-breaking effects
are contained in the factors f , cn and Λ.

Let us now connect to meson-exchange models. A typ-
ical three-meson vertex function, as it appears in that ap-
proach in the PN potentials (with P = K, K̄, D̄, D) [11–
13], is given by (in the decay frame)

APPV (q2) = φKF gPPV

(
Λ2

PPV − m2
V

Λ2
PPV − q2

)n

|q|Y11(q̂).

(18)
Here φKF is a kinematical factor involving the energies
of the hadrons, gPPV is the coupling constant in the La-
grangian, and there is also a form factor with a cutoff
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Table 1. Calculated hadron masses (mcalc) and sizes (α). Ex-
perimental values for the masses (mexp) are from the PDG [34].
All values are in MeV.

π K D ρ N Λ Λc

mcalc 138 495 1866 770 958 1115 2195

mexp 138 495 1866 770 940 1115 2286

α 359 377 499 275 234 241 253

mass ΛPPV , where n = 1 or n = 2 [17, 18]. Here, the
value of gPPV refers to the case when the vector meson
V is on its mass shell. Then q2 = (q0)2 − q2 = m2

V and
the form factor is 1. For low-energy elastic PN scatter-
ing, the exchanged ρ (and ω) meson is far from its mass
shell; the momentum transfer q2 is small and negative, i.e.
q2 = (q0)2 − q2 ≡ −q2 with q2 � 0. Therefore, it is com-
mon practice to use the static approximation q2 = −q2

in the form factors. We note that for the DN (D̄N) pro-
cesses studied in refs. [11–14] up to kinetic c.m. energy of
150MeV, the highest c.m. momentum is 400MeV/c. The
cutoff mass in the form factors is another source of symme-
try breaking in the meson-exchange potentials. However,
in the DN (D̄N) interactions in [11–13] those masses were
simply taken over from the corresponding K̄N (KN) in-
teractions, for ρ as well as for ω exchange. Thus, they drop
out in the ratio (17).

The situation with baryon exchange is much more com-
plicated, as different baryons are exchanged in the D̄N
and DN reactions. The separation of kinematical effects
and the coupling strength, as in (18), cannot be easily
done. Indeed in D̄N (KN) elastic scattering only B = Λc

(Λ) exchange contributes while for DN (K̄N) there is
only N exchange, and only in the transitions DN ↔ πΛc

(K̄N ↔ πΛ). Furthermore, for heavy baryons like Λc

an extrapolation to the pole is rather questionable as
the quark-model is not expected to work at such high
momenta. Despite these drawbacks, we include here our
baryon results for illustration purposes.

Results

We use the quark-model parameters of [31]: ml =
375MeV, ms = 650MeV, αc = 0.857, αs = 0.84, b =
0.154GeV2, σ = 70MeV. We take mc = 1657MeV to fit
the D-meson mass. Table 1 shows the results; convergence
is achieved with N = 11 Gaussian functions. Clearly, the
model fits well the experimental values of the masses, the
largest discrepancy is 4% in the mass of Λc. In particular,
the ρ-π and N -Λ mass splittings are well described. In ad-
dition, mΣ − mΛ = 82MeV and mΣc

− mΛc
= 135MeV,

also in fair agreement with data [34]. Since the correspond-
ing effects on the Σ and Σc wave functions have a very
small effect on the coupling constants, we consider only
those couplings involving Λ and Λc. We take mu = md so
that mρ = mω.

The ratios R(q2) are shown in fig. 1; we recall, PPρ
couplings enter graphs with ρ exchange and NBP cou-
plings in graphs with baryon B exchanges. Figure 1 reveals

Fig. 1. Ratios RP/P ′ and RBP/B′P ′ ; the vertical lines corre-
spond to q2 = −m2

ρ (top) and q2 = −m2
N (bottom).

that SU(4) breaking, at q2 = 0 and q2 = −m2
ρ, is rela-

tively modest. At q2 = 0, the largest SU(4) breaking, not
unexpectedly, is in DDρ, of the order of 30% compared to
ππρ coupling, and 20% compared to KKρ. Moreover, in
agreement with phenomenology, there is almost no SU(3)
breaking in KKρ. At the ρ pole (q2 = −m2

ρ) the breaking
is also small, at most 10% in DDρ coupling. The ratios of
NBP couplings are presented in the bottom panel of the
figure. As can be seen, the SU(4) breaking at q2 = 0 is at
most 20% in the NΛcD vertex compared to the NNπ cou-
pling and 10% compared to the NΛK. The SU(3) sym-
metry breaking in the NΛK coupling is of the order of
10%, i.e. also compatible with phenomenology. Interest-
ingly, for q2 ≈ −0.9GeV/c, i.e. close to the nucleon pole
(for orientation, shown by the vertical line in the bottom
panel of fig. 1), the NΛcD coupling is 3 times smaller than
the NNπ coupling, while the ratio of the NΛK to NΛcD
couplings is around 1.8. This is to be compared with the
value 0.68 in [23]. However, such possible SU(4) break-
ing far into the time-like region might not be relevant for
low-energy D̄N scattering because, according to [11], the
contribution of Λc exchange to the D̄N cross section is
very small anyway.

Physically, the SU(4) breaking originates from the dif-
ferent extensions of the hadron wave functions. In fig. 2,
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Fig. 2. Normalized light-quark radial distributions in mesons
and baryons.

Table 2. Ratios of three-hadron couplings. In case of exact
SU(4) symmetry all ratios would be equal to 1 (see text).

P/P ′ π/K π/D K/D
3P0 R(0) 1.05 1.26 1.19

3P0 R(−m2
ρ) 0.99 1.07 1.08

Ref. [21] 1.09 0.21 0.19

Ref. [26] 1.11 2.23 2.00

BP/B′P ′ Nπ/ΛK Nπ/ΛcD ΛK/ΛcD
3P0 R(0) 0.89 0.83 0.92

Ref. [23] – – 0.68

we plotted the normalized light-quark radial distribution
functions in the hadrons of interest —the Fourier trans-
form of 〈h|q†(q)q(q)|h〉. The distributions get more com-
pact (shorter-ranged) for heavier hadrons as the bind-
ing increases due to smaller kinetic energies of the heavy
quarks. This implies a smaller P -ρ overlap and thereby
a smaller coupling. For NBP fig. 2 shows that the B-
P overlap increases because the large-r part of the light
quark distribution in B is cut off by the one from P , which
explains the increased values of the couplings for heavier
baryons. Figure 2 makes the physics transparent and ex-
plains the modest effects on the couplings.

We have also computed the coupling constants gPPρ

and gNBP of the Lagrangians in [11] by matching the
3P0 transition amplitude Mh1h2h3 in (3) to the one cal-
culated with those Lagrangians. The matching is done
at tree level at q2 = 0 [27–30]. Taking the typical val-
ues for γ of the literature, γ = 0.4–0.5 [30], the match-
ing leads to gππρ = 5.85–7.32 and gNNπ = 10.83–13.54,
that are in very good agreement with phenomenology,
and gKKρ = 2.79–3.49, gDDiρ = 2.34–2.90, gNΛK =
12.65–15.81, gNΛcD = 13.56–16.95. In table 2 we col-
lected the ratios of these couplings and quoted results
from the literature. The ratios include isospin factors, as
in (1) and (2) —for exact SU(4) symmetry, the ratios
are 1. The value for gDDiρ agrees well with VMD [19,20],
QCDSR [22], and lattice QCD [25], and agrees within a
factor of 2 with DS-BS [21] and holographic QCD [26].

Summary

We used a 3P0 quark-pair creation model with nonrel-
ativistic quark-model wave functions to investigate the
effects of SU(4) symmetry breaking in the DDρ and
NΛcD couplings, the most relevant ones for the D̄N
and DN interactions [11, 13]. The quark masses in the
Hamiltonian (5) are the only source of SU(4) break-
ing. The predictions of the model are reliable for low-
momentum transfers in the vertices. The pattern found
for SU(4) breaking for momenta q2 ≈ 0 in the PPρ am-
plitudes is ADDρ < AKKρ < Aππρ, while for NBP it is
ANΛcD > ANΛK > ANNπ. Since the DDρ (and DDω)
coupling is more important for the D̄N cross section than
the NΛcD (and NΣcD) coupling, at least in the calcula-
tions in [11–14], our results indicate that the use of SU(4)
symmetry for the coupling constants could be a reason-
able first approximation, in line with other studies in the
literature [19,20,23,25,26]. Clearly, for estimating the im-
pact of our findings for the SU(4) breaking on DN cross
sections, and also binding energies of D-mesic nuclei, fur-
ther detailed studies are required. Finally, we note that
the symmetry breaking pattern we found for PPρ cou-
plings is opposite to that in ref. [21], but it agrees with
the one in the holographic QCD calculation in [26]. We
found also an opposite ratio for NΛK/NΛcD to the one
in [23]. Further studies are needed for full clarification.
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