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Abstract. It is shown that the nuclear single-particle energy spectra obtained in the selfconsistent way
obey similar particle number dependence as the spectrum of a pure 3D harmonic oscillator potential.
This effect was used to improve the quality of evaluation of the shell correction energy in weakly bound
nuclei. The magnitude of the traditional Strutinsky shell correction energy obtained by the smearing of
the single-particle energy spectrum of light nuclei is compared with that obtained by the smoothing of the
single-particle energy sums in the particle number space.

1 Introduction

The fifty years old macroscopic-microscopic model [1–4] in
which one adds the shell and the pairing energy corrections
to the macroscopic binding energy, evaluated e.g. using the
liquid drop model, is still frequently used as an alternative
to the time-consuming HFB calculations.

The shell correction method developed in ref. [5] offers
an effective tool to extract the shell and pairing effects
from the microscopic energy obtained in a selfconsistent
way or by using a mean-field single-particle Hamiltonian,
e.g. of the Saxon-Woods or Yukawa-folded type. Contrary
to the traditional Strutinsky method [2–4], the shell en-
ergy is evaluated in ref. [5] by an averaging over the num-
ber of particles and not over the single-particle energies.
This new approach is more consistent with the definition
of the macroscopic energy. In addition, the smooth back-
ground was subtracted in [5] before averaging the sum of
single-particle energies, which significantly has improved
the plateau condition and has allowed to apply the method
also for nuclei close to the proton or neutron drip lines.

A significant difference between the shell correction en-
ergy obtained with the traditional and the new method
was found in particular for highly degenerated single-
particle spectra (i.e. in magic nuclei) while for deformed
nuclei, where the degeneracy is lifted to a large extent,
both estimates are close to each other, except the region
of super or hyper-deformed shape isomers. The difference
between the smoothed energies evaluated using the tra-
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ditional Strutinsky and the new method may be used as
an effective tool for searching the quasi-magic numbers
which may appear in deformed nuclei or in their shape
isomers [6]. Our method allows also to extract the average
smooth energy of a nucleus with pairing correlations [7] or
from hot nuclei [8].

In the present paper we compare the estimates of the
shell energy obtained in both methods using the single-
particle spectra obtained within the selfconsistent HFB
model with the Gogny D1S force.

2 Harmonic oscillator spectrum

Let us begin with a recollection of some properties of
the spherical harmonic oscillator (HO) Hamiltonian. Its
eigenenergies

eN =
(

N +
3
2

)
h̄ω0 (1)

are enumerated by the number of the oscillator quanta
N = 0, 1, 2, . . . and its eigenstates are strongly degener-
ated

degN =
1
2
(N + 1)(N + 2) × 2 , (2)

where factor two origins from the two orientations of spin.
ω0 is here the HO frequency. The total number of particles
n(N) which occupy all shells from 0 up to N is equal to

n(N) =
N∑

k=0

degk =
1
3
(N + 1)(N + 2)(N + 3) . (3)
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The last equation can be approximated in the following
way [9]:

n(N) ≈ 1
3

(
N +

3
2

)3

=
1
3

(
eN

h̄ω0

)3

. (4)

what leads to an approximative relation between the
single-particle energy e and the number of particles which
occupy all levels with energy smaller or equal to e

n(e) =
1
3

(
e

h̄ω0

)3

, or e(n) = (3n)1/3 h̄ω0 . (5)

This equation leads to the well-known approximative ex-
pression for the density of the HO single-particle levels:

ρapp =
∂n

∂e
≈ e2

(h̄ω0)3
=

(3n)2/3

h̄ω0
. (6)

The sum E of single-particle energies of all occupied levels
up to the shell N

E = h̄ω0

N∑
k=0

(
k +

3
2

)
(k + 1) (k + 2) (7)

can be approximated by the following expression [5]:

E =
1
4
(3n)4/3h̄ω0 . (8)

The difference δE = E − E between the exact sum of
the HO single-particle levels E and its approximation Ē
is plotted in fig. 1 as a function of the particle number
n1/3. The deep minima in this difference correspond to
the closed HO shells. Using the approximation (4) one
can show that asymptotically the distance in the n1/3

coordinate between the subsequent closed shells goes to
γ0 = 3−1/3. This result suggests that one can apply the
Strutinsky procedure [2–4] to evaluate the smoothed part
of the single-particle energy sum not only by smearing in
the s.p. energies but also in the particle number coordinate
n1/3 [5].

3 Strutinsky smoothing of the single-particle
energy spectrum

Strutinsky has proposed to wash out the shell effects by us-
ing the folding function in the form of the Gauss function
multiplied by the so-called correctional polynomial [10]:

ξ(x) =
1√
π

e−x2
2m∑

k=0,2

akHk(x) , (9)

where Hk(x) are the Hermite polynomials and 2m is the
order of the correction polynomial. The coefficients ak,
where k ≥ 2, are given by the following recurrence rela-
tion:

ak = − 1
2k

ak−2 with a0 = 1 . (10)
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Fig. 1. Sum of the spherical HO single-particle energies after
subtracting its average dependence as a function of n1/3, where
n is the particle number.
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Fig. 2. Deviation of the single-particle density smoothed with
different smearing parameters γ from its approximative be-
haviour (ρapp) as a function of the single-particle energy. The
plot is made for the anisotropic harmonic oscillator spectrum
at the deformation parameter ε = 0.35.

In the most applications of the Strutinsky method one
uses the correction polynomials of the 6th or 8th order.

In the Strutinsky shell correction method one evaluates
first the smooth single-particle level density g̃(e) by folding
the discrete spectrum of eigenstates of a single-particle
Hamiltonian ei

ρ(e) =
∑

i

δ(e − ei) , (11)

with a smoothing function (9)

ρ̃(e) =
∫ ∞

−∞
ξ

(
e − e′

γ

)
ρ(e′)de′ =

∑
i

ξ

(
e − ei

γ

)
. (12)

Here γ is the smearing width which should be comparable
with the major shell distance in the harmonic oscillator.
The influence of the smearing width on the smooth single-
particle level density can be seen in fig. 2. The HO level
density evaluated using four different values of γ is plot-
ted as a function of the energy. All single-particle levels
of the deformed HO (ε = 0.35) from the major shell up
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Fig. 3. Smoothed single-particle level density (ρ̃) of the de-
formed HO compared to its approximation (ρapp) and the
smooth density (ρ̃cut) obtained with the truncated energy spec-
trum at the cut-off energy ecut = 10 h̄ω0.

to Nmax = 16 were taken into account in the calculation.
The approximative value of the density (6) was subtracted
from the smoothed density ρ̃ in order to see its tiny os-
cillations which appear when γ < 1.4 h̄ω0. Note that at
e = 0 the smoothed density ρ̃(0) �= 0.

In practical applications of the Strutinsky smoothing
method one has to work with single-particle spectra which
are well defined up to a given energy, which one calls usu-
ally the cut-off energy ecut. The influence of the value
of the cut-off energy on the smooth single-particle level
density ρ̃ is presented in fig. 3, where the density evalu-
ated with the infinite spectrum of the deformed HO (ρ̃,
solid line) and the density (ρ̃cut, dashed line) obtained
with the artificially cut of the HO spectrum at the energy
ecut = 10 h̄ω0 are plotted as functions of the energy e. The
smoothing width γ = 1.6 h̄ω0 is taken here. We have sub-
tracted the average HO density ρapp from both densities in
order to observe better the cut-off effect. The effect of the
cut-off is visible already at energies higher than ecut − 3γ.
The large sensitivity of the smooth density on the cut-off
energy is one of the weak points of the traditional Struti-
nsky shell correction method and it makes problems when
one applies this method to weakly bounded nuclei near
the proton or neutron drip lines.

According to the Strutinsky prescription [2–4] the
smoothed energy sum of the occupied single-particle levels
(Eold

Str) is given by the integral

Eold
Str =

∫ λ

−∞
2 e g̃(e) de , (13)

where λ is the position of the Fermi energy given by the
particle number conservation condition

N =
∫ λ

−∞
2 g̃(e) de . (14)

Here the average number of particles N is equal to Z for
protons or N for neutrons. The factor two in the above
equations reflects the spin degeneracy of the single-particle
levels.
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Fig. 4. Sum of the Gogny neutron single-particle energies of
88Sr as a function of particle number N4/3 (upper panel). The
straight dashed line corresponds to the HO approximation (15).
The deviation of the single-particle energies sum from its HO
approximation is plotted in the bottom panel as a function of
the neutron number N .

4 Smoothing in the particle number space

An alternative way of obtaining of the smooth single-
particle energy sum is the folding in the particle number
space, namely in the n1/3 coordinate [5]. Let us take a dis-
crete sample of data Sn defined as the difference between
the sum of the n occupied single-particle energies and the
background energy E(n), obtained using a generalisation
of the HO average energy formula (8):

Sn ≡
n∑

i=1

ei − E(n) =
n∑

i=1

(ei − V0) − an4/3 . (15)

The parameters a and V0 are determined by the least
square fit

Nmax∑
n=1

S2
n = min , (16)

where Nmax can be chosen, e.g., as the double number
of occupied levels in the single-particle energy spectrum.
The quality of the approximation (15) can be visible in
fig. 4, where the sum of the Gogny single-particle energies
of 88Sr (solid line) is compared with the N4/3 function
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Fig. 5. Neutron and proton single-particle energy levels as a function of the proton number Z. The levels are obtained for the
neutron number N = 50 within the HFB calculation with the Gogny D1S force.

characteristic for the HO energy spectrum. The deviation
Sn (15) is plotted in the bottom panel as a function of the
neutron number N .

Using the Strutinsky folding function (9) one can eval-
uate the smooth value of Sn corresponding to N nucleons

S̃N =
1
γ

Nmax∑
n=1

1
3n2/3

Sn ξ

(
−N 1/3 − n1/3

γ

)
(17)

The folding is performed here in the cubic root of the
particle number n since the distance between the major
harmonic oscillator shells is constant in n1/3 and approx-
imately equal to 0.7 as has been shown above. The factor
3n2/3 in the denominator of eq. (17) is the direct conse-
quence of the transformation n → n1/3.

The smoothed energy obtained in this new way for
even or odd N systems reads

Enew
Str = S̃N + aN 4/3 + V0N , (18)

where we have restored the background energy E(N ),
which has been subtracted before the folding from the
single-particle energy sum in eq. (15).

One has to note that the subtracting of E(n) in (15)
increases significantly the accuracy of evaluating the
smoothed part (Enew

Str ) of the energy as the deviations Sn

are 2 to 3 orders of magnitude smaller than the value of
E(n). The smoothed energy obtained in this way is also
less sensitive to the energy cut-off of the single-particle
spectrum, which is important for evaluating the shell en-
ergy of nuclei close to the proton or neutron drip lines.

5 Comparison of the both methods

It was already shown in ref. [5] that the traditional Struti-
nsky method based on the smoothing energies of the
single-particle level density (old) and that alternative one
which applies the Strutinsky smearing directly to the sum
of the single-particle energies (new) lead to different es-
timates of the shell correction energies of spherical nu-
clei while both estimates are close to each other when
a nucleus is deformed. The difference between both shell
corrections is due to the large degeneracy of the single-
particle levels which appears in spherical nuclei or in the
shape isomers [5].
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Fig. 6. Old and new Strutinsky smoothed energies of neutrons
evaluated with the Gogny neutron single-particle energies of
88Sr using the correction polynomials of the 6th and 8th or-
der as functions of the smearing parameters γ. Here γ0 is the
distance between the HO shells.

Now, we would like to compare both shell correction
methods in the region of light nuclei. The calculation
was done using the single-particle energy spectra obtained
within the HFB theory with the Gogny D1S force for a
few spherical nuclei having the magic number N = 50 of
neutrons. The neutron and proton single-particle energy
spectra are shown in fig. 5 as functions of the proton num-
ber Z. The magic and semi-magic particle numbers corre-
sponding to the close orbitals are marked in the plots. The
first step, necessary in the Strutinsky method, is to check
the so-called plateau condition, i.e. the independence of
the smothed energy on the smearing width γ (see eqs. (12)
and (17)). In fig. 5 the smoothed sum of the neutron single-
particle energies EStr of 88Sr obtained using the traditional
prescription (old) and the new method (new) are plotted
as functions of γ/γ0. Here γ0 is the distance between the
major HO shells equal to h̄ω0 = 41/A1/3 MeV when the
smearing is performed in the single-particle energies or
γ0 = 3−1/3 ≈ 0.7 when one smoothes in the n1/3 coordi-
nate. The results are obtained using the correction polyno-
mials of the 6th and 8th order in the folding function (9).
A nice plateau in EStr around γ �= 1.15γ0 is visible in fig. 6
when the new method of smoothing is applied while the
plateau is not so well defined when the smoothed energy is
obtained in the traditional (old) way. A similar situation
occurs when the smoothed proton energy is discussed or
when one applies both smearing methods to nuclei from
other mass regions [5].

The proton and neutron shell energies obtained in
both methods as functions of the particle number are pre-
sented in figs. 7 and 8, respectively. The constant values
of the smearing width equal to γ = 1.2 h̄ω0 = 11MeV
(or γ = 0.8) were used when the old (or new) smoothing
procedure was applied. In both cases the 6th order cor-
rection polynomial was used in the folding function (9).
One can learn from both figures that the proton and neu-
tron shell energies corresponding to the magic numbers
obtained by the smoothing in the particle number space
(new) are shifted down by a few MeV with respect to those
evaluated in the traditional way (old).
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Fig. 7. Proton shell energy obtained using the old (solid line)
and new (dashed line) Strutinsky smoothing procedure as func-
tions of the proton number.
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Fig. 8. The same as in fig. 7 but for neutrons.

These results mean that the new shell correction
method predicts that the spherical magic nuclei, due
to the large degeneracy of the single-particle levels, are
more bound than it was estimated using the macroscopic-
microscopic model with the traditional Strutinsky shell
correction.

6 Summary and conclusions

The Strutinsky smearing method was applied to evaluate
the smoothed single-particle energy sum. Two smearing
methods: i) in the single-particle energies (e-folding) and
ii) in the particle number space (n1/3-folding), were used
to evaluate the shell corrections.

In addition the average dependence on the particle
number of the single-particle energy sum (seen in the HO
energy spectrum) was subtracted form the single-particle
energy sum before performing the n1/3-folding. This sub-
traction increases the accuracy of the estimates for weakly
bound nuclei in which the Fermi level is close to the posi-
tive part of the single-particle energy spectrum and leads
to a better smoothed energy plateau with respect to the
smearing width.
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One has also shown that the shell correction energy
evaluated using the n1/3-folding is deeper by a few MeV
than that obtained with the e-folding in the case of the
magic nuclei which are spherical. This effect can be impor-
tant in future calculations of the nuclear masses as both
shell corrections are comparable in the deformed nuclei [5].

This work was partially supported by the Polish National Sci-
ence Centre grant No. 2013/11/B/ST2/04087 and the Polish
- French COPIN IN2P3 collaboration agreement under the
project number 08-131.

Open Access This is an open access article distributed
under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which
permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

References
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