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Abstract. We discuss the properties of the hyperon-hyperon interactions in the recent Nijmegen ESC08
potential, in particular the importance of the coupled-channel structure and related existence of bound
states. Brueckner-Hartree-Fock calculations of hypernuclear matter employing these interactions are pre-
sented and the structure of hyperon (neutron) stars within this approach is computed. Low maximum
masses are found.

1 Introduction

This article is a follow up of our paper on the maximum
mass of hyperon stars with the Nijmegen ESC08 model [1].
In the present work we supplement the ESC08b nucleon-
hyperon (NY) S = −1 potentials [2–5] with the recently
developed ESC08c hyperon-hyperon (YY) S = −2 inter-
actions [6]. This implies to study also the Ξ hyperon apart
from the Λ and Σ hyperons.

The recent discovery of two-solar-mass neutron stars
(NS) [7,8] is a very important issue, which makes theoret-
ical investigations of the inner structure of such compact
stellar objects timely. Hyperons are expected to appear
in beta-stable matter already at relatively low densities
of about twice the nuclear saturation density. It is well
known that the appearance of “exotic” components (such
as hyperons, mesons, quarks) in beta-stable NS matter
might lead to a substantial softening of the equation of
state (EOS) and reduce the theoretical maximum mass of
the star below the observed masses [9–13].

It was pointed out in previous works that there ex-
ists an important self-regulating compensation mechanism
that always leads to rather low neutron star masses by the
appearance of hyperons. Namely, without the introduc-
tion of some universal repulsive N -baryon force (N > 2),
a stiffer nucleonic EOS will cause an earlier onset of hy-
perons and thus a stronger softening effect, and vice versa.
The same is true for individual components of the hyper-
onic EOS, e.g., a more repulsive NΣ interaction is ex-
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pected to lead to an earlier onset of the Λ, etc. This was
reaffirmed in [1], and it is of particular interest to see this
mechanism at work in the more complete new study pre-
sented here.

To carry out high-quality calculations of hypernuclear
matter and the corresponding hyperon star structure, it is
necessary to use baryon-baryon (BB) interactions strongly
constrained by independent experimental information on
the hyperon-nucleon interactions. Then, confronting such
accurate and realistic theoretical calculations with obser-
vational data, one might be able to draw conclusions with
regard to the presence of hyperons in stellar matter, and
thus on the features of the underlying fundamental inter-
actions.

This requires advanced microscopic many-body ap-
proaches to the EOS of (hyper)nuclear matter. The, by
now classic, Brueckner theory has in recent years seen
solid progress regarding the convergence of the Brueckner-
Bethe-Goldstone (BBG) expansion. Namely, the two-
hole-line truncation, the so-called Brueckner-Hartree-Fock
(BHF) approximation, gives a EOS which is insensitive to
the choice of the auxiliary potential, provided one makes
the continuous choice of the single-particle (s.p.) poten-
tial [14–16].

Like in [1], also this paper uses the non-relativistic
BBG expansion, and studies the possible appearance
of hyperons in NS matter within the BHF theoretical
many-body approach, continuing several earlier publica-
tions [17–25]. The fundamental input of these parameter-
free calculations are realistic potentials in the nucleon-
nucleon (NN), NY, and YY sectors, supplemented by
three-body forces (TBF), which at least in the NN case
are required in order to ensure a correct saturation point
of nuclear matter.
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At present, several high-quality NN potentials are
available for theoretical calculation, together with nuclear
TBF which have been either determined empirically by
fitting the saturation point of nuclear matter [26–28], or
constructed in a microscopic way, compatible with the
two-body potential that is used [29–32]. There exist also
several NY potentials fitted to scattering data, while the
potentials in the YY sector and the TBF involving hyper-
ons have presently to be considered rather uncertain or
unknown, which is basically due to the lack of appropri-
ate experimental data and/or the great difficulties of their
theoretical analysis.

In this paper the BHF calculations of hypernuclear
matter are performed with the Argonne V18 NN poten-
tial [33], together with the microscopic nuclear TBF [32],
which is more repulsive than the UIX TBF [34,35] used
before. Previous papers used the Nijmegen NSC89 [36], or
NSC97 [37], or ESC08b [1] NY potentials. Very low maxi-
mum masses of hyperon stars, below 1.4M�, were always
found [1,21,22].

The purpose of this work is to extend those calcula-
tions by employing the recently developed ESC08c YY
potentials [6]. The chief difference with [1] is thus the in-
clusion of the (S = −2) ΛΛ,NΞ,ΣΛ,ΣΣ channels. The
interaction in the ΛΛ channels is weak, and the NΞ in-
teraction is repulsive in the 1S0 and attractive in the 3S1

states, leading to a moderate well depth UΞ ≈ −8MeV.
The attraction in the 3S1 state is due to the tensor force,
leading to a weakly bound strangeness S = −2 deuteron
with binding energy B = 1.56MeV.

The content of this paper is as follows: In sect. 2 we
introduce the features of the newest Nijmegen ESC08 po-
tential and the role of the constituent quark model and
multi-pomeron exchange, with particular attention to the
YY channels. In sect. 3 the BHF approach to neutron star
matter is briefly reviewed. Section 4 presents numerical
results, including parametrizations of the energy density
function, and the results on the NS structure. In sect. 5
conclusions and future prospects are given.

2 The Nijmegen ESC08 potential

The extended soft-core ESC08 models [4–6] for BB inter-
actions of the SU(3) flavor octet of baryons (N,Λ,Σ, and
Ξ) provide a presentation of the forces in terms of i) meson
exchange, using generalized soft-core Yukawa functions; ii)
multiple gluon exchange (pomeron and odderon); and iii)
structural effects due to the quark core of the baryons, the
so-called Pauli blocking. Relativistic effects are included
via expansion in inverse baryon masses 1/mB . The ESC
meson-exchange interactions contain local and non-local
potentials due to a) one-boson exchanges (OBE), which
are members of nonets of pseudoscalar, vector, scalar, and
axial mesons; b) pomeron and odderon exchanges; c) two
pseudoscalar exchanges (TME); and d) meson pair ex-
changes (MPE). The OBE and MPE vertices are regulated
by gaussian form factors, where the assignment of the
cut-off masses for the baryon-baryon-meson (BBM) ver-

tices depends on the SU(3) classification of the exchanged
mesons for OBE, and a similar scheme for MPE.

The ESC models describe the NN, NY, and YY in-
teractions in a unified way using broken SU(3) symmetry.
This serves to connect the NN, NY, and YY channels and
is utilized to make a simultaneous fit to the NN and NY
data with a restricted set (� 20) of free coupling constants,
etc., see [4–6] for details. In particular, the BBM coupling
constants are calculated via SU(3), using, together with
the meson mixing angles, the fitted constants in the NN
⊕ NY analysis as input. In ESC08 no breaking of SU(3)
is assumed for the couplings, with the exception of the
following cases: i) NN, the isospin breaking for the ρ me-
son is exploited phenomenologically in order to account
for the difference between 1S0(pp), 1S0(np), and 1S0(nn);
ii) charge symmetry breaking in the pΛ and nΛ channels.
In the latter case the SU(2) isospin breaking is included
in the OBE, TME, and MPE potentials.

In ref. [1] the results with the ESC08b NY model [4,
5] are described. In this paper the improved ESC08c
model [6] is used as a basis for the YY interactions. With
this model excellent results are achieved for the NN and
NY data: i) For the selected 4233 NN data of the Nijmegen
phase shift analysis [38] with energies 0 ≤ Tlab ≤ 350MeV
a χ2/data=1.08 is realized, which is remarkably close to
that of the multi-energy phase shift analysis. ii) For the
set of 52 NY S = −1 data, also used in previous Nijme-
gen studies, in ESC08b a χ2/data ≈ 1.07 was reached,
with no bound states in these NY channels. As regards
to the well depth UΛ, there is some overbinding, making
room for, e.g., three-body repulsion. iii) For YY there is
a weak ΛΛ attraction, e.g., in ESC08 |aΛΛ(1S0)| < 1.0,
which matches experimental indication from the Nagara
event [39]. Among the predictions for the S = −2 sector
(ΛΛ,NΞ,ΛΣ,ΣΣ) are the existence of bound states in
the NΞ(3SD1, T = 1) channels.

2.1 Constituent quark model and multi-gluon exchange

In the ESC models the coupling constants, and the F/(F+
D) ratios as well, can be understood in the framework of
the constituent quark model (CQM), as generated by fold-
ing the quark-antiquark pair creation processes with the
ground-state 3-quark baryon wave functions, see, e.g., [6].
Furthermore, it turns out that in the CQM the meson-
exchange BB potentials can be reproduced by folding me-
son exchange between the constituent quarks. Thereby
the corresponding meson-quark-quark vertices are deter-
mined, which defines in principle (part of) the quark-
quark interactions [40].

In some G-matrix applications of the ESC model [41–
43] an important role is played by multi-gluon interac-
tions in the form of a (phenomenological) repulsive multi-
pomeron TBF. Since the gluons are flavor blind, the same
holds for the pomeron and therefore this repulsion is uni-
versal. The multi-pomeron exchange has a clear QCD ori-
gin and must be operative between quarks as well. This
enables the ESC models to produce a satisfactory nuclear
saturation curve, and good well depths UΛ, UΣ , and UΞ .
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Thus, the ESC08 model parameters are compatible
with the CQM, and give at the same time an excellent
description of the NN, NY, and YY data. Moreover, the
nuclear saturation curve is reproduced. Therefore, this BB
potential model, combined with the BHF techniques us-
ing the continuous choice, provides a good basis for the
calculation of both symmetric and neutron star matter.

The free parameters in the ESC models are in principle
fitted to the NN and NY scattering data for the S = 0
and S = −1 sectors. Constraints used from the S = −2
channels is the information from the Nagara event [39],
and the attractive well depth UΞ ≈ −(8–10)MeV [6,44,
45]. This information is a rather minimal one, and the S =
−2 results are almost parameter-free predictions. Below
we review briefly some properties of the ESC08c model in
the S = −2 channels.

2.2 Properties of the YY interaction

The S = −2; I = 0, 1, 2 potentials V I
ij (i, j = ΛΛ, NΞ,

ΛΣ, ΣΣ) are constructed in the isospin basis for the seven
independent channels

I = 0 : (ΛΛ,NΞ,ΣΣ) ≡ (a, b, d), (1a)
I = 1 : (NΞ,ΛΣ,ΣΣ) ≡ (b, c, d), (1b)
I = 2 : (ΣΣ) ≡ (d), (1c)

defining [a, b, c, d] = [ΛΛ,NΞ,ΛΣ,ΣΣ]. However, for the
calculation of isospin-asymmetric hypernuclear matter,
the particle basis

Q = 0 : (ΛΛ, nΞ0, pΞ−, ΛΣ0, Σ0Σ0, Σ−Σ+), (2a)
Q = 1 : (pΞ0, ΛΣ+, Σ0Σ+), (2b)
Q = 2 : (Σ+Σ+). (2c)

has to be used with the following transformations

V Q=1 =
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V 1
bb V 1

bc −V 1
bd

V 1
cb V 1
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cd
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db −V 1
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see eq. (4) above

with the abbreviation si ≡
√

1/i.

Table 1. Inverse scattering length and effective-range matrices
at the NΞ threshold for I = 0, and the ΛΣ threshold for
I = 1. The order of the states (1, 2) reads ΛΛ(1S0), NΞ(1S0)
and NΞ(1S0), ΛΣ(1S0) for I = 0 and I = 1, respectively, and
NΞ(3S1), NΞ(3D1), ΛΣ(3S1) for (1, 2, 3). The dimensions of the

matrix elements are fm−1−l−l′(A−1) and fm1−l−l′(R).

NΞ(I = 0) threshold ΛΣ(I = 1) threshold

A−1 R A−1 R

11 0.472 13.001 0.062 11.774

12 1.591 2.088 −1.436 9.744

22 0.870 3.276 −0.736 9.659

ΛΣ(I = 1) threshold

A−1 R

11 1.302 1.454

12 −9.122 18.305

13 0.504 1.709

22 239.128 −590.173

23 4.252 −16.637

33 1.030 1.540

2.3 Effective-range parameters

The ESC08c low-energy parameters (in units of fm) are
for I = 0,

aΛΛ(1S0) = −0.853, rΛΛ(1S0) = 5.126, (5a)
aNΞ(3S1) = −5.357, rNΞ(3S1) = 1.434, (5b)

for I = 1,

aNΞ(1S0) = 0.579, rNΞ(1S0) = −2.521, (5c)
aNΞ(3S1) = 4.911, rNΞ(3S1) = 0.527, (5d)

and for I = 2

aΣ±Σ±(1S0) = 8.10 (−0.65), (5e)
rΣ±Σ±(1S0) = −65.36 (19.97). (5f)

The values given in parentheses are without Coulomb in-
teraction. The results at the NΞ and ΛΣ thresholds are
given in table 1.

The old experimental information seemed to indicate
a separation energy ΔBΛΛ ≈ 5MeV of double-Λ hypernu-
clei, corresponding to a rather strong attractive ΛΛ inter-
action. As a matter of fact the ΛΛ 1S0 scattering length
based on such a value for ΔBΛΛ gives aΛΛ(1S0) ≈ −2.0 fm.
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Table 2. SU(3) content of the different interaction channels
with total strangeness S and isospin I. The upper half refers to
the space-spin symmetric states 3S1,

1P1,
3D, . . . , and the lower

half to the space-spin antisymmetric states 1S0,
3P , 1D2, . . . .

S I Channels SU(3)-irreps

Space-spin symmetric

0 0 NN {10∗}
−1 1/2 ΛN , ΣN {10∗}, {8}a

3/2 ΣN {10}
−2 0 NΞ {8}a

1 NΞ, ΣΣ {10}, {10∗}, {8}a

ΣΛ {10}, {10∗}
Space-spin antisymmetric

0 1 NN {27}
−1 1/2 ΛN , ΣN {27}, {8}s

3/2 ΣN {27}
−2 0 ΛΛ, NΞ, ΣΣ {27}, {8}s, {1}

1 NΞ, ΣΛ {27}, {8}s

2 ΣΣ {27}

However, the experimental information and interpretation
of the ground state levels of 6

ΛΛHe, 10
ΛΛBe, and 13

ΛΛB [46]
has been changed drastically. This because of the Na-
gara event [39], identified uniquely as 6

ΛΛHe, which estab-
lished that the ΛΛ interaction is much weaker (ΔBΛΛ ≈
0.7MeV).

In the ESC models it is only possible to increase the
attraction in the ΛΛ channel by modifying the scalar-
exchange potential. If the scalar mesons are viewed as
being mainly qq̄ states, one finds that the (attractive)
scalar-exchange part of the interaction in the various chan-
nels satisfies |VΛΛ| < |VNΛ| < |VNN |, suggesting indeed a
rather weak ΛΛ potential. The ESC fits to the NY scat-
tering data [47] give values for the scalar-meson mixing
angle, which seem to point to almost ideal mixing for the
scalars as qq̄ states. This is also true for the Nijmegen OBE
models NSC89/NSC97. In these models an increased at-
traction in the ΛΛ channel gives rise to (experimentally
unobserved) deeply bound states in the NΛ channel. As
one sees from the values of aΛΛ(1S0) in the ESC08c model,
we can produce the apparently required attraction in the
ΛΛ interaction without giving rise to NΛ bound states.

For the NΞ channels one sees from (5c) and (5d) that
the 1S0(I = 1) is rather repulsive and that the 3S1 waves
are attractive for I = 0, 1. The latter is needed in order to
have a reasonable attractive Ξ-nucleus well depth.

2.4 Deuteron state in NΞ(3SD1, I = 1)

A discussion of the possible bound states, using the SU(3)
content of the different S = 0,−1,−2 channels is given
in [37]. For a general orientation, we list in table 2 all
the irreps to which the various BB channels belong. In
ESC08c we find a D∗ deuteron with isospin I = 1 and
strangeness S = −2, belonging to the {10∗} SU(3) irrep,
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Fig. 1. NΞ(3S1, I = 1) tensor potentials.

which is a NΞ bound state in the 3SD1 coupled partial
wave. The occurrence of this deuteron-like bound state is
rather natural, since it is caused by the presence of strong
NΞ → NΞ,ΣΛ tensor forces, shown in fig. 1, similarly to
the np deuteron. (In the NΛ,NΣ system the tensor force
leads to a virtual bound state below the NΣ threshold,
where a large cusp occurs.)

The calculated binding energy is B(D∗) = 1.56MeV.
So far, except for the np deuteron, no other BB bound
states have been found experimentally. The search of the
Rome-Saclay-Vanderbilt collaboration [48] was negative,
but since D∗ is a narrow state just below the NΞ thresh-
old, the detection requires a very good experimental res-
olution.

2.5 Flavor-SU(3) irrep potentials

In fig. 2 the SU(3) irreps are displayed. The solid lines
show averages of the SU(3)-irrep potentials in the particle
basis. The dashed lines are the irrep potentials in an SU(3)
limit, where MN = MΛ = MΣ = MΞ = 1115.6MeV,
mπ = mK = mη = mη′ = 410MeV, mρ = mK∗ = mω =
mφ = 880MeV, and ma0 = mκ = mσ = mf ′

0
= 880MeV.
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Fig. 2. Solid curves: average SU(3)-irrep potentials (in GeV) in
the particle basis. Dashed curves: potentials with exact flavor
SU(3) symmetry.

The Lattice QCD calculations of refs. [49,50] show qual-
itatively very similar results, with the exception of the
SU(3)-singlet {1} irrep. Here the lattice potential is al-
ways attractive for 0 < r < ∞, whereas in ESC08c there
is an attractive pocket for r � 0.5 fm and repulsion for
r � 0.5 fm. This is due to strong spin-spin potentials from
pseudoscalar and vector exchange, which have zero vol-
ume integrals and consequently have a sign change. In the
{1} irrep for the SU(3)-broken potential (solid line) there
is no bound state, i.e., no H particle [51]. This is in agree-
ment with the experimental results up to now, see, e.g.,
the recent Υ (1S, 2S)-decay studies [52].

3 BHF approach to neutron star structure

In this section we give a short review of the BHF ap-
proach including hyperons, while detailed descriptions can
be found in refs. [17–20].

The basic input quantities in the Bethe-Goldstone
equation are the NN, NY, and YY potentials. In this work
we use the Argonne V18 NN potential [33] supplemented

by the microscopic TBF of refs. [29–32], and the ESC08
NY+YY potentials [6], that are well adapted to the exist-
ing experimental NY data.

With these potentials, the various G-matrices are eval-
uated by solving numerically the Bethe-Goldstone equa-
tion, which can be written in operator form as

Gab[W ] = Vab +
∑

c

∑
p,p′

Vac|pp′〉 Qc

W − Ec + iε
〈pp′|Gcb[W ],

(6)
where the indices a, b, c indicate pairs of baryons, and the
Pauli operator Qc and energy Ec characterize the propa-
gation of intermediate baryon pairs. The pair energy in a
given channel c = (B1B2) is

E(B1B2) = TB1(kB1) + TB2(kB2) + UB1(kB1) + UB2(kB2),
(7)

with TB(k) = mB + k2/2mB , where the various s.p. po-
tentials are given by

UB(k) =
∑

B′=n,p,Λ,Σ−

U
(B′)
B (k) (8)

and are determined self-consistently from the G-matrices,

U
(B′)
B (k) =

∑

k′<k
(B′)
F

Re〈kk′|G(BB′)(BB′)[E(BB′)(k, k′)]|kk′〉A.

(9)
The coupled eqs. (6)–(9) define the BHF scheme with the
continuous choice of the s.p. energies. It has been shown
that with this choice the nuclear EOS can be calculated
with good accuracy in the Brueckner two-hole-line approx-
imation, because the results are quite close to the cal-
culations which also include the three-hole-line contribu-
tion [14–16]. In contrast to the standard purely nucleonic
case, the additional coupled-channel structure due to the
hyperons renders the calculation quite time-consuming.

Once the different s.p. potentials are known, the total
non-relativistic baryonic energy density ε can be evalu-
ated:

ε =
∑

B=n,p,Λ,Σ−

∑

k<k
(B)
F

[
TB(k) +

1
2
UB(k)

]
= εN + εY ,

(10)
where

εN =
∑

N,N ′=n,p

∑

k<k
(N)
F

[
TN +

1
2
U

(N ′)
N

]
(k), (11a)

εY =
∑

Y,Y ′=Λ,Σ−
N=n,p

∑

k<k
(Y )
F

[
TY + U

(N)
Y +

1
2
U

(Y ′)
Y

]
(k). (11b)

Using the baryonic energy density eq. (10), and adding
the contributions of the non-interacting leptons, the var-
ious chemical potentials μi = ∂ε/∂ρi (of the species
i = n, p, Λ,Σ−, e, μ) can be computed straightforwardly
and the equations for beta equilibrium, μi = biμn−qiμe (bi

and qi denoting baryon number and charge of species i),
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and charge neutrality,
∑

i ρiqi = 0, allow one to deter-
mine the equilibrium composition {ρi(ρ)} at given baryon
density ρ = ρn + ρp + ρΛ + ρΣ , and finally the EOS:

p(ρ) = ρ2 d
dρ

ε({ρi(ρ)})
ρ

= ρ
dε

dρ
− ε. (12)

Knowing the EOS, the equilibrium configurations of static
NS are obtained by solving the Tolman-Oppenheimer-Vol-
kov equations [9–13] for the pressure p(r) and the enclosed
mass m(r),

dp

dr
= −Gmε

r2

(1 + p/ε)(1 + 4πr3p/m)
1 − 2Gm/r

, (13a)

dm

dr
= 4πr2ε , (13b)

being G the gravitational constant. Starting with a central
mass density ε(r = 0) ≡ εc, one integrates out until the
surface density equals that of iron. This gives the stellar
radius R and its gravitational mass M = m(R). For the
description of the NS crust, we join the hadronic EOS with
those of Negele and Vautherin [53] in the medium-density
regime, and those by Feynman-Metropolis-Teller [54] and
Baym-Pethick-Sutherland [55] for the outer crust.

4 Results

We now present the numerical results obtained within the
BHF formalism for hypernuclear matter and NS structure,
as detailed before.

4.1 Parametrization of the energy density function

The large number of degrees of freedom (4 partial densities
for n, p, Λ,Σ ≡ Σ−) renders inconvenient the use of the
resulting hypernuclear EOS in tabular form. We therefore
approximate the numerical results by a sufficiently accu-
rate analytical parametrization. We find that the following
functional form provides an excellent fit of the numeri-
cal data for the energy density, eq. (10), in the required
ranges of nucleon density (0.1 fm−3 � ρN � 0.8 fm−3),
proton fraction (0.0 ≤ ρp/ρN ≤ 0.5), and hyperon frac-
tions (0 ≤ ρΛ/ρN ≤ 0.8, 0 ≤ ρΣ/ρN ≤ 0.5):

ε(ρn, ρp, ρΛ, ρΣ) = ENρN

+ (EΛ + EΛΛ + EΛΣ) ρΛ +
C

2mΛMΛ
ρ
5/3
Λ

+ (EΣ + EΣΣ + EΣΛ) ρΣ +
C

2mΣMΣ
ρ
5/3
Σ , (14)

with

EN = (1 − β) (a0ρN + b0ρ
c0
N ) + β (a1ρN + b1ρ

c1
N ) ,

(15a)
EY = (a0

Y + a1
Y x + a2

Y x2)ρN + (b0
Y + b1

Y x + b2
Y x2)ρcY

N ,

(15b)

EY Y ′ = aY Y ′ρ
cY Y ′
N ρ

dY Y ′
Y ′ , (15c)

MY = 1 +
(
c0
Y + c1

Y x
)
ρN , (15d)

where ρN = ρn + ρp; x = ρp/ρN ; β = (1 − 2x)2; Y, Y ′ =
Λ,Σ, and C = (3/5)(3π2)2/3 ≈ 5.742. Here ε and ρi are
given in units of MeV fm−3 and fm−3, respectively (and
mΛ,Σ in MeV−1 fm−2).

Technically, these parametrizations were ob-
tained by performing about 103 BHF calculations
in the (ρn, ρp, ρΛ, ρΣ)-space, yielding “data” points
ε(ρn, ρp, ρΛ, ρΣ). The optimal values of the fit parameters
were then determined hierarchically, first for nuclear
matter, and then for hypernuclear matter, so that the fits
are optimized also for pure nuclear matter. The optimal
parameters are listed in table 3 for the V18+TBF+ESC08
model with (NY+YY) and without (NY) the effect of
YY interactions that we compare in this article. The final
overall r.m.s. deviation of fit and BHF data points for
E/A = ε/ρ is less than 1.8MeV, which we consider fully
satisfactory for our current purposes.

4.2 Effect of YY interactions

In order to analyze the effect of the YY interactions, it
is useful to visualize the different contributions to the
s.p. potentials in hypernuclear matter U

(B′)
B (k), eq. (9).

Figure 3 displays this information for hypernuclear mat-
ter of nuclear density ρN = 0.4 fm−3, proton fraction
ρp/ρN = 0.2 (typical for a NS environment), and vary-
ing Λ (upper panel) or Σ− (lower panel) fractions.

It is worth to note that at this density the Λ well depth
is still very attractive, U0

Λ ≡ UΛ(k = 0) ≈ −40MeV,
whereas U0

Σ− ≈ +150MeV is strongly repulsive and also
U0

Ξ− ≈ +40MeV is repulsive. At normal nuclear density
ρN = 0.17 fm−3 and ρp/ρN = 0.5, ρY /ρN = 0, the values
U0

Λ = −39MeV, U0
Σ− = +16MeV, U0

Ξ− = −8MeV are
compatible with current hypernuclear phenomenology [6]
and have been used as constraints to fit the parameters of
the ESC08 model.

The hatched areas in the upper panel show the contri-
butions U

(Λ)
B (k); B = n, p, Λ,Σ and thus predominantly

the effect of the Λ(n, p, Λ,Σ) interactions in the hypernu-
clear environment. One notes attractive Λ(n, p) and over-
all repulsive ΛΛ, but strongly attractive ΛΣ interactions.
In the same way the lower panel demonstrates repulsive
Σ−Σ− and Σ−(n, p) interactions. Obviously these global
effects are the outcome of the interplay between the dif-
ferent coupled interaction channels, eq. (2).

The overall effect of YY interactions on the hypernu-
clear EOS therefore results from a competition between
the ΛΛ, ΣΣ, and ΛΣ channels, depending on the compo-
sition of the matter. In the presence of only one hyperon
species the overall effect would be repulsive, whereas the
coexistence of Λ and Σ− implies a delicate balance of the
attractive and repulsive effects, depending on the details
of the interaction. If the beta-stable matter is dominated
by the Λ, as is the case with the ESC08 model, one would
expect an overall stiffening effect due to the repulsive in-
medium ΛΛ interaction.

This is indeed the case, as demonstrated in fig. 4, that
shows in the upper panel the particle fractions xi ≡ ρi/ρ,
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Table 3. Fit parameters for the energy density of hypernuclear matter, eqs. (14) and (15), obtained with the V18+TBF+ESC08
potentials.

V18+TBF+ESC08(NY) V18+TBF+ESC08(NY+YY)

a0 b0 c0 a1 b1 c1 −140.7 390.1 2.08 88.3 634.3 3.11 −140.7 390.1 2.08 88.3 634.3 3.11

a0
Λ a1

Λ a2
Λ b0

Λ b1
Λ b2

Λ cΛ −625 67 0 656 −17 0 1.28 −1047 122 0 1179 −85 0 1.19

a0
Σ a1

Σ a2
Σ b0

Σ b1
Σ b2

Σ cΣ −1285 −395 0 1856 −93 0 1.07 −198 −969 0 725 610 0 1.22

aΛΛ cΛΛ dΛΛ 218 0.95 0.84 372 0.26 1.37

aΛΣ cΛΣ dΛΣ 0 0 0 1302 1.14 4.00

aΣΣ cΣΣ dΣΣ 0 0 0 424 0.50 0.97

aΣΛ cΣΛ dΣΛ 157 0.95 0.80 1047 1.49 1.52

c0
Λ c1

Λ c0
Σ c1

Σ −0.13 1.76 −0.75 −0.44 0.18 2.78 −0.60 −0.54

-100

-50

0

50

100

150

200

0 1 2 3

ρΛ/ρN=0.0

n

p

Λ

Σ−

Ξ−

UB
  (N)

UB

V18 NN & ESC08 NY+YY  ,  ρN=0.40 fm-3  ,  ρp/ρN=0.2  ,  ρΣ/ρN=0.0

k [fm-1]

R
e 

U
 [M

eV
]

0 1 2 3

ρΛ/ρN=0.1

0 1 2 3

ρΛ/ρN=0.2

0 1 2 3

ρΛ/ρN=0.3

-100

-50

0

50

100

150

200

0 1 2 3

ρΣ/ρN=0.0

n

p

Λ

Σ−

Ξ−

UB
  (N)

UB

V18 NN & ESC08 NY+YY  ,  ρN=0.40 fm-3  ,  ρp/ρN=0.2  ,  ρΛ/ρN=0.0

k [fm-1]

R
e 

U
 [M

eV
]

0 1 2 3

ρΣ/ρN=0.1

0 1 2 3

ρΣ/ρN=0.2

0 1 2 3

ρΣ/ρN=0.3

Fig. 3. Single-particle potentials of the different species
n, p, Λ, Σ−, Ξ− in nuclear matter of nuclear density ρN =
0.4 fm−3, proton fraction ρp/ρN = 0.2, and varying Λ fraction
(upper panel) or Σ− fraction (lower panel). The dots indicate
the positions of the Fermi momenta. Thin curves show results
without effect of the YY interactions, whereas thick curves are
the full results.

i = n, p, Λ,Σ−, e−, μ−; and in the lower panel the EOS
p(ρ), ε(ρ) of beta-stable NS matter. Comparing the re-
sults obtained including or not YY interactions (thick vs.
thin curves), one notes clearly the dominant effect of the
repulsive ΛΛ interaction that reduces strongly the Λ con-
centration at high density. The attractive ΛΣ− interaction
causes an earlier onset of the Σ−, but the Σ− concen-
tration remains small, also because the repulsive Σ−Σ−

V18 + TBF + ESC08

0

0.1

0.2

0.3

0.4

0.5

x i =
 ρ

i/ρ
B

n/2

p

Σ−Λ

e−

μ−

NY
NY+YY

0

100

200

300

0 0.2 0.4 0.6 0.8 1 1.2

ε 
, p

  [
M

eV
 fm

-3
]

ε/5

p

ρB  [fm-3]

Fig. 4. Particle fractions (upper panel) and EOS (lower panel)
of beta-stable NS matter obtained including (thick curves) or
not (thin curves) YY interactions.

interaction becomes operative. The overall result is a stiff-
ening of the EOS p(ρ), as clearly seen in the lower panel
of the figure. This obviously affects the predictions for the
NS mass-radius relations that we discuss next.
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Fig. 5. Mass-radius and mass-central density relations for dif-
ferent equations of state. Details are given in the text.

4.3 Neutron star structure

Figure 5 compares the mass-radius and mass-central den-
sity relations obtained with the V18+TBF NN interac-
tion and different choices for the NY and YY interactions.
While excluding hyperons (thin solid curves) large masses
(2.3M�) can be reached, including them with only the NY
interaction (black dashed curves) leads to a very strong
reduction of the maximum mass to below 1.4M�. For
comparison also the result without any NY interaction,
counting only the Λ and Σ kinetic energies, are shown
(thin dotted curves), featuring an extremely low maxi-
mum mass below 1.1M�. The NY interactions act thus
overall repulsive at high density. In this case a large frac-
tion of the NS core is composed of hyperons, which do
not interact with each other, and therefore their fraction
increases unimpeded with increasing baryon density. For
this reason the maximum mass is nearly independent of
the NY interaction, as demonstrated by the results ob-
tained with the NSC89 NY interaction [1,21] shown for
comparison (red dashed curves).

Activating the YY interactions has an overall repulsive
effect, stiffening the EOS, as discussed in the previous sec-
tion. Consequently the maximum mass increases to above
1.6M� (black solid curves). Obviously this result depends
on the details of the YY interactions, as demonstrated
by comparing with an older result employing the NSC97
NY+YY forces [21] (magenta dotted curves), which yield
a slightly smaller increase of the maximum mass to about
1.5M�. This is mainly because the NSC97 model pre-
dicts unrealistically attractive Σ− s.p. potentials [20], and
therefore this result cannot be considered realistic.

Clearly thus the features of the YY interactions affect
the prediction of the NS maximum mass, even though

-100

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6

ρN (fm-3)

e F
 (

M
eV

)

n
p
Λ
Σ−

Ξ−

Fig. 6. Fermi energies, eq. (16), of the species n, p, Λ, Σ−, Ξ−

in asymmetric nuclear matter of density ρN = ρn +ρp and pro-
ton fractions xp = ρp/ρN = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 (increasing
xp indicated by the arrows).

a dramatic effect cannot be expected, also because we
did not consider the remaining hyperons Σ0, Σ+, Ξ−, Ξ0,
which could compensate for lower concentrations of Λ and
Σ− in the beta-stable matter. It is therefore clearly neces-
sary to provide YY potentials as realistic as possible and
well constrained by all possible experimental results.

4.4 Properties of Ξ− in nuclear matter

In order to analyze somewhat more quantitatively the last
aspect, namely the possible onset of the Ξ− in NS matter,
we display in fig. 6 the Fermi energies

eF ≡ m − mN + k2
F /2m + U(kF ), (16)

of the various species in asymmetric nuclear matter of
different proton fractions.

Assuming that the rearrangement corrections in the
relation μ = eF + δμrearr. are small [18,19], the plot can
thus be used to estimate roughly the onset of the various
hyperons in nuclear matter. For example, the Λ onset ac-
cording to the condition μΛ = μn occurs approximately
at ρN ≈ 0.4 fm−3 (for xp ≈ 0.1), which is indeed the case
in fig. 4.
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More importantly, the onset of Ξ− and Σ− is deter-
mined by the common condition μΞ− = μΣ− = 2μn − μp.
From the figure one notes that for small proton fractions
already at ρN ≈ 0.4 fm−3 the Ξ− chemical potential be-
comes lower than the Σ− one, overcoming their mass dif-
ference. Therefore from this point on the Ξ− would be
the preferred particle in NS matter and decrease the max-
imum mass even more than is the case in the previous
study comprising only the Σ−. The reason is the much
more attractive NΞ− interaction compared to NΣ−.

However, the effects of the S = −3 ΛΞ− and S = −4
Ξ−Ξ− interactions are not included in this analysis. An
accurate treatment of the phenomenon therefore requires
yet more complex calculations including even the S =
−3,−4 interaction channels. For the moment this is be-
yond our capabilities, both regarding possible experimen-
tal constraints for the relevant potentials, and performing
the extended BHF calculations including the three hy-
perons Λ,Σ−, Ξ− simultaneously. In any case a further
reduction of the maximum mass is expected.

5 Conclusions and prospects

In this article the finding of very low maximum masses
of hyperon stars within the BHF approach is reconfirmed,
using the recent realistic ESC08 NY and YY interactions
for the strangeness S = −1,−2 baryon-baryon channels.

We have elucidated the intricate effects of the coupled
YY interaction channels in hypernuclear matter, which at
high density turn out repulsive in the ΛΛ and ΣΣ and
attractive in the ΛΣ channels. Their overall effect is re-
pulsive with the ESC08 model and increases the maximum
mass by 0.3M� to about 1.65M�, still far from the cur-
rent observational limit > 2M�. Also, the expected onset
of the Ξ− will reduce the maximum mass again.

Thus, for those massive NS, either some strong TBF
repulsion from, e.g., a QCD origin could be operative [41–
43], and/or they have to be hybrid stars containing a core
of non-baryonic (“quark”) matter [56–63].

As we have discussed above, the ESC approach is a
model which can provide consistent baryon-baryon and
quark-quark interactions. Such a model could be applied
to the required global treatment of the combined baryon
and quark phase. For example, the multi-pomeron ex-
change has the form of a contact interaction. Assuming
that short-range interactions will be the dominant ones
for high density, also the ESC meson-exchange potential
could be reduced to contact interactions in the form of
some generalized Nambu–Jona-Lasinio model [64–66]. It
will be an important task for the future to verify this as-
sertion by following the experimental and theoretical de-
velopments in this field.
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