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Abstract. We extend our study (Phys. Rev. D 89, 094503 (2014)) of the pion scalar radius in two-flavour
lattice QCD to include two additional lattice spacings as well as lighter pion masses, enabling us to perform
a combined chiral and continuum extrapolation. We find discretisation artefacts to be small for the radius,
and confirm the importance of the disconnected diagrams in reproducing the correct chiral behaviour. Our
final result for the scalar radius of the pion at the physical point is

˙

r2
¸π

s
= 0.600±0.052 fm2, corresponding

to a value of �4 = 4.54 ± 0.30 for the low-energy constant �4 of NLO chiral perturbation theory.

1 Introduction

Hadronic form factors carry crucial information about the
internal structure of hadrons as bound states of quarks
and gluons in Quantum Chromodynamics (QCD). Since
the dynamics underlying this structure is deeply non-
perturbative, the only known first-principles approach
that allows for the extraction of form factors from QCD
with full control of systematic errors is the use of lattice
simulations.

The scalar form factor of the pion, defined as
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with the four-momentum transfer

Q2 = −q2 = −(pf − pi)2, (2)

is not directly accessible to experiment for lack of a suit-
able low-energy probe. However, the associated scalar ra-
dius,

〈
r2

〉π

S
= − 6

Fπ
S

(0)
∂Fπ

S
(Q2)

∂Q2

∣
∣
∣
Q2=0

, (3)

can be related to the experimentally measurable cross sec-
tion for ππ scattering [1] using chiral perturbation theory
(χPT). A notable feature of the scalar radius is that in
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χPT at NLO it depends only on a single low-energy con-
stant, �4, through [2,3]
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(4)
where the pion decay constant is F = 92.2MeV [4].

The accurate knowledge of the low-energy constants
(see [5] for a recent compilation) is required to enhance the
predictive power of chiral effective theory for a number of
phenomenological applications.

In lattice QCD, the scalar form factor of the pion is de-
rived from a three-point function which receives contribu-
tions from both quark-connected and quark-disconnected
diagrams (cf. fig. 1). Due to the large numerical cost
disconnected diagrams have often been neglected in lat-
tice calculations. However, arguments based on partially
quenched χPT [6] indicate that quark-disconnected con-
tributions to the pion scalar radius could be sizeable. Our
earlier work [7], using lattice data at a single value of
the lattice spacing and relatively large pion masses, has
largely confirmed the prediction of χPT. In the present
work we extend our study significantly, by including two
additional lattice spacings, as well as lower pion masses.
This allows for a combined chiral and continuum extrap-
olation of our results. In this way we obtain improved
estimates for the pion scalar radius and the low-energy
constant �4, including a full assessment of systematic er-
rors.
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Fig. 1. Quark flow diagrams for the connected and disconnected contributions to the scalar form factor of the pion. The cross
represents the vacuum expectation value 〈ψψ〉, which for the Wilson fermion discretisation used here contains a power-law
divergent additive renormalisation.

Table 1. Overview of the CLS ensembles that have been used
for the calculation of the scalar form factor of the pion. The lat-
tice spacing given was determined using the Ω baryon mass [8].
Note that all ensembles fulfil mπL ≥ 4.

Label a [fm] Lattice mπ [MeV] mπL Ncfg

A3 0.079 64 × 323 473 6.1 133

A4 0.079 64 × 323 363 4.7 200

A5 0.079 64 × 323 312 4.0 250

B6 0.079 96 × 483 267 5.1 159

E3 0.063 64 × 323 650 6.6 156

E4 0.063 64 × 323 605 6.2 162

E5 0.063 64 × 323 456 4.7 1000

F6 0.063 96 × 483 325 5.0 300

F7 0.063 96 × 483 277 4.3 351

G8 0.063 128 × 643 193 4.0 348

N5 0.050 96 × 483 430 5.2 477

N6 0.050 96 × 483 332 4.1 946

O7 0.050 128 × 643 261 4.2 490

2 Methods and results

2.1 Ensembles used

In our calculation of the scalar radius we use Nf = 2
dynamical flavours of non-perturbatively O(a)-improved
Wilson fermions. The gauge ensembles have been gener-
ated by the CLS initiative and are listed in table 1.

Compared to our previous work [7] we have included
two more lattice spacings, a coarser one, a = 0.079 fm (la-
bels A and B), and a finer one, a = 0.050 fm (labels N and
O). For the intermediate lattice spacing, a = 0.063 fm,
the G8 ensemble with a pion mass of 193MeV has been
included in our calculation. The use of different lattice
spacings allows for performing a continuum extrapolation
of our results for the scalar radius besides the chiral ex-
trapolation. In general one also has to extrapolate to in-
finite volume, however, all our ensembles fulfil mπL ≥ 4
and thus we expect finite volume effects to be negligible.

2.2 Form factor calculation

We explicitly calculate the connected and the discon-
nected contribution to the matrix element 〈π| qq |π〉 for

three different momentum transfers and determine the
scalar pion form factor. The three momentum transfers
are chosen such that the pion has momentum |pi| = 0
at the source and momentum |pf | = 0, |pf | = 2π/L or
|pf | =

√
2 2π/L at the sink.

The quark loop required for the disconnected part is
estimated using three stochastic sources per timeslice t
and a generalised Hopping Parameter Expansion to 6th
order. Further details can be found in [7].

We use ratios [9] of three- and two-point functions to
extract the desired scalar matrix element from our data.
For the connected contribution we use

R1(t, ts,pi,pf ) =

√
C3(t, ts,pi,pf )C3(t, ts,pf ,pi)

C2(ts,pi)C2(ts,pf )
, (5)

where the pion sink is located on ts and the scalar op-
erator is inserted at time t. The pion source is placed at
t = 0 for simplicity. The required two-point and connected
three-point functions have been calculated with Gaussian
smearing [10–12] applied to the source.

For the disconnected contribution we use smeared-
smeared two-point correlation functions and the ratio

R3(t, ts,pi,pf ) =
C3(t, ts,pi,pf )

C2(ts,pf )

×
√

C2(ts,pf )C2(t,pf )C2((ts−t),pi)
C2(ts,pi)C2(t,pi)C2((ts−t),pf )

.

(6)

To increase the statistics for the disconnected contribution
we average over four different pion source positions.

In our previous work [7] we have discussed the re-
maining time-dependences of these ratios due to periodic
boundary conditions and the backward propagating pion
in the two-point function. We take these dependences into
account by dividing the ratios R1 and R3 by the appropri-
ate time-dependent factors. Furthermore, we have shown
significant excited state contributions for small source-sink
separations of ts < 1.5 fm. This has been confirmed on our
extended set of ensembles. Thus, for all ensembles we only
use data with ts > 1.5 fm. Further details on the extrac-
tion of the scalar form factor can be found in [7].

For all ensembles we observe a significant contribu-
tion of the disconnected diagram to the scalar form fac-
tor. However, we find the relative disconnected contribu-
tion to the form factor to be strongly dependent on the
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Fig. 2. The disconnected contribution F π
S (0)disc at Q2 = 0

divided by the corresponding connected contribution. Blue, red
and green points denote different values of the lattice spacing
a = 0.050 fm, 0.063 fm and 0.079 fm, respectively.

lattice spacing. Figure 2 shows the disconnected contri-
bution at vanishing momentum transfer divided by the
corresponding connected contribution Fπ

S
(0)disc/Fπ

S
(0)con

plotted against the pion mass. Different colours denote
different values of the lattice spacing. Except for the light-
est ensemble (G8), which might simply be an outlier, we
find no significant dependence on the pion mass. How-
ever, the relative contribution of the disconnected diagram
has a very pronounced dependence on the lattice spacing.
The smaller the lattice spacing, the smaller is the relative
disconnected contribution Fπ

S
(0)disc/Fπ

S
(0)con to the form

factor.

2.3 The scalar radius

The scalar radius of the pion is determined from the Q2

dependence of the form factor at vanishing momentum
transfer. To estimate the scalar radius we use a linear
parametrisation, i.e.

Fπ
S

(Q2) = Fπ
S

(0)
(

1 − 1
6

〈
r2

〉π

S
Q2 + O(Q4)

)
. (7)

To determine the scalar radius on a given ensemble we
fit a function of the form (7) to our form factor results
at the three different momentum transfers. Note, that the
absolute normalization of the form factor is not known,
since the multiplicative renormalisation Zs has not been
determined. However, in the calculation of the scalar ra-
dius Zs drops out. For the lightest ensemble G8, the ratios
for the third momentum transfer were too noisy to obtain
a useful signal. Thus, we have to resort to match a linear
function to two Q2 values only for this ensemble. For all
other ensembles where data for three different momentum
transfers is available we find that the differences between
using two or three momenta is not significant.

Fig. 3. The scalar radius at fixed pion mass plotted against
the squared lattice spacing a2. The upper panel shows results
for a pion mass of mπ ≈ 270 MeV, the lower panel for mπ ≈
325 MeV. Red and blue points denote results for the total and
connected radius, respectively.

To investigate a possible dependence of the scalar ra-
dius on the lattice spacing we compare the results from
ensembles with different lattice spacings at roughly the
same pion mass. Within the CLS ensembles we have two
sets of such ensembles (cf. table 1): mπ ≈ 270MeV (B6,
F7, O7) and mπ ≈ 325MeV (A5, F6, N6). In fig. 3 our re-
sults for the scalar radius on these ensembles are plotted
against the squared lattice spacing a2. The upper panel
shows results for a pion mass of mπ ≈ 270MeV the lower
panel for mπ ≈ 325MeV.

While no clear trend in the lattice spacing dependence
of the results is apparent over the full range of lattice
spacings studied, there seems to be a tendency for the
full and connected results to approach each other at the
smallest lattice spacings. In the following section we will
therefore study cut-off effects both when in- or excluding
the coarsest lattice spacing.

Although we do not find a significant dependence on
the lattice spacing, we will include a term linear in a2 for
performing a combined extrapolation of the scalar radius
to the physical point.

3 Chiral and continuum extrapolation

The use of gauge ensembles with different pion masses and
lattice spacings allows for an extrapolation to the physi-
cal point mπ → mπ,phys and a → 0. For the dependence
on the pion mass we use the expression (4) from NLO
χPT. Since we use an O(a)-improved action and because
no quark bilinears that could mix with qq at O(a) exist,
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Fig. 4. Our results for the scalar radius plotted against the
pion mass m2

π including the result from a combined chiral and
continuum extrapolation. Different colours denote different lat-
tice spacings. The black line is the pion mass dependence in the
continuum from our combined fit. The two right most points
(open symbols) at m2

π ≈ 0.37 GeV2 (E4) and m2
π ≈ 0.42 GeV2

(E3) are not included in the fit. The orange point at the phys-
ical pion mass shows the value from ππ-scattering [1].

we expect lattice artefacts to be of order a2 (up to con-
tributions from gluonic operators, which we expect to be
very small). Thus, we include a term ∝ a2 in a combined
fit of the scalar radius for all gauge ensembles (cf. table 1):
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(8)
The fit function (8) has two fit parameters, the low-energy
constant �4 and the coefficient b in the term which depends
on the lattice spacing. When fitting our data for the scalar
radius to the NLO expression (8) we apply a cut in the
pion mass by imposing mπ < 500MeV, which excludes
the ensembles E3 and E4.

Additionally, we have repeated the fit using all data
points (i.e. no mass cut) and a more aggressive mass cut
mπ < 335MeV. We find that the fit result is quite insen-
sitive to mass cuts, and the fits produce consistent results
with an acceptable χ2

/dof � 2. The spread among the
results when different mass cuts are applied is negligible
compared to the statistical error. Thus we use the fit with
mπ < 500MeV to quote a final result for the scalar radius.

The result of this combined fit to our data is shown
in fig. 4, where the scalar radius is plotted against the
squared pion mass. The green, red and blue curves de-
scribe the pion mass dependence at individual values of
the lattice spacing, i.e. a = 0.079 fm, a = 0.063 fm and
0.050 fm. Clearly, the lattice spacing dependence is very
small; we find b = 4.7 ± 12.5 in our fit, indicating that
a possible dependence on a2 cannot be resolved with the
current statistical accuracy of our data. To clarify whether
the larger scatter of the results at the coarsest lattice spac-
ing is responsible for this, we have also performed a fit to

the finest two lattice spacings only, obtaining a result that
is fully compatible with the fit to all three lattice spac-
ings within statistical uncertainties. The same applies if we
perform a fit without including cut-off effects by putting
b = 0 in eq. (8), indicating that cut-off effects are under
control in our study.

The black line in fig. 4 shows the pion mass dependence
in the continuum, a = 0. At the physical pion mass we find
for the scalar radius

〈
r2

〉π

S
= 0.600 ± 0.052 fm2. (9)

This is in excellent agreement with the value 0.61 ±
0.04 fm2 which was extracted from ππ-scattering in [1] (cf.
the orange point in fig. 4).

One has to note that the pion mass dependence of the
scalar radius is completely driven by χPT (cf. eq. (4)),
and the fit parameter �4 only changes the offset of the
black curve in fig. 4. We find that our results for the radius
show the expected pion mass dependence from NLO χPT,
confirming its applicability.

From the combined fit we can extract the low-energy
constant �4, which served as a fit parameter. We find

�4 = 4.54 ± 0.30, (10)

which is in very good agreement with the value �4 =
4.62 ± 0.22 quoted in the current FLAG report [13] for
the Nf = 2 flavour theory.

In our previous work we found that the disconnected
contribution to the scalar radius is important, which is
in qualitative agreement with what has been found in
partially quenched chiral perturbation theory [6]. We can
confirm this using our new data by repeating the same
combined fit for the scalar radius using the connected
contribution only: we indeed find a smaller value for
the scalar radius

〈
r2

〉π, conn

S
= 0.532 ± 0.042 fm2, corre-

sponding to a smaller value for the low-energy constant
�
conn

4 = 4.15 ± 0.24, which would disagree with the deter-
mination of �4 from other processes.

4 Summary

We have extended our previous study of the pion scalar
radius using additional lattice spacings and pion masses in
order to enable a fully controlled chiral and continuum ex-
trapolation. We find that discretisation artefacts are mild,
and that the pion mass dependence of the scalar radius
is well described by NLO χPT. From a combined extra-
polation to the physical point, we are able to extract the
low-energy constant �4 = 4.54 ± 0.30 in good agreement
with the FLAG [13] average.

The disconnected part of the pion three-point function
contributes significantly to the slope of the scalar form fac-
tor near Q2 = 0 and thus to the scalar radius of the pion.
The inclusion of the disconnected diagrams is therefore
essential in order to capture the correct physics.
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While our results do not include the contribution of the
strange quark, these are expected to be suppressed by the
mass of the strange quark and are unlikely to significantly
impact the overall result for the radius.
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