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1 Departamento de F́ısica - CFM - Universidade Federal de Santa Catarina, Florianópolis - SC - CP. 476 - CEP 88.040-900,
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Abstract. In the present work we apply non-extensive statistics to obtain equations of state suitable to
describe stellar matter and verify its effects on microscopic and macroscopic quantities. Two snapshots of
the star evolution are considered and the direct Urca process is investigated with two different parameter
sets. q-values are chosen as 1.05 and 1.14. The equations of state are only slightly modified, but the effects
are enough to produce stars with slightly higher maximum masses. The onsets of the constituents are
more strongly affected and the internal stellar temperature decreases with the increase of the q-value, with
consequences on the strangeness and cooling rates of the stars.

1 Introduction

A type II supernova explosion is triggered when massive
stars (8M� < M < 30M� ) exhaust their fuel supply,
causing the core to be crushed by gravity. The remnant
of this gravitational collapse is a compact star or a black
hole, depending on the initial condition of the collapse.
Newly-born protoneutron stars (PNS) are hot and rich in
leptons, mostly e− and νe and have masses of the order
of 1–2M� [1,2]. During the very beginning of the evolu-
tion, most of the binding energy, of the order of 1053 ergs
is radiated away by the neutrinos. During the temporal
evolution of the PNS in the so-called Kelvin-Helmholtz
epoch, the remnant compact object changes from a hot
and lepton-rich PNS to a cold and deleptonized neutron
star [3,4]. The neutrinos already present or generated in
the PNS hot matter escape by diffusion because of the very
high densities and temperatures involved. At zero tem-
perature no trapped neutrinos are left in the star because
their mean free path would be larger than the compact
star radius. Simulations have shown that the evolutionary
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picture can be understood if one studies three snapshots
of the time evolution of a compact star in its first minutes
of life [5]. At first, the PNS is warm (represented by fixed
entropy per particle) and has a large number of trapped
neutrinos (represented by fixed lepton fraction). As the
trapped neutrinos diffuse, they heat up the star. Finally,
the star is considered cold.

To describe these three snapshots, appropriate equa-
tions of state (EOS) have to be used. These EOS are nor-
mally parameter dependent and are adjusted so as to re-
produce nuclear matter bulk properties, as the binding en-
ergy at the correct saturation density and incompressibil-
ity as well as ground-state properties of some nuclei [6–9].
Until recently, when two stars with masses of the order of
2M� were confirmed [10,11], most EOS were expected to
produce maximum stellar masses just larger than 1.44M�
and radii of the order of 10 to 13 km. The new measure-
ments imposed more rigid constraints on the EOS.

On the other hand, the effects of non-extensive statis-
tical mechanics [12,13] have been explored both in high-
energy physics [14–16] and astrophysical problems [17].
The q-deformed entropy functional that underlines non-
extensive statistics depends on a real parameter (q) that
determines the degree of non-additivity of the functional
and in the limit q → 1, it becomes additive and the stan-
dard Boltzmann-Gibbs entropy is recovered. The results
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of High-Energy Physics (HEP) experiments have shown
that non-extensive statistics can play an important role
in the description of collisions with energy above

√
s ∼

10GeV [14,18,19]. In fact the well-known Hagedorn’s the-
ory [20] can be extended to include non-extensive statis-
tics, resulting in a Non-Extensive Self-Consistent Ther-
modynamics (NESCT) predicting a limiting temperature,
To, a characteristic entropic index, qo, for the hot hadronic
system obtained at HEP experiments and a new hadron
mass spectrum formula.

Systematic analyses of HEP data have shown that in-
deed a limiting temperature is obtained, with To = 61GeV
and qo = 1.14 [19,21–23]. In addition it was shown that
the new hadron mass spectrum formula describes very
well the known hadronic states masses with values for To

and qo that are in agreement with those found in HEP
data analysis. These results show that the main aspects
of high-energy collisions can be described by the NESCT
approach.

With the values for To and for qo one obtains the en-
tire thermodynamical description according to the non-
extensive theory for null chemical potential, μ, as ex-
pected to happen in HEP. In fact most of the Lattice
QCD (LQCD) calculations are performed with μ = 0. A
comparison between NESCT and LQCD results was done
in [24] showing that there was a fair agreement between
the results from both approaches considering the large dif-
ferences in the results from different LQCD calculations.
Notice that LQCD does not include non-extensivity ex-
plicitly, so a conclusion one can get from here is that non-
extensivity is an emerging feature for QCD interacting
systems.

The extension of NESCT to finite chemical potential
was performed in [25] (see also [26,27]), where it was
also obtained the partition function for a non-extensive
quantum ideal gas. This work opens the possibility to use
NESCT in systems very different from those in HEP. The
study of neutron stars, where low-temperature hadronic
matter at extremely high densities can give rise to a phase
transition that is in many aspects similar to that observed
in HEP experiment, is a potential candidate.

In the present work we investigate how the considera-
tion of non-extensive statistics affects hadronic matter at
finite temperature and large densities by applying it to
PNS. Based on an extensive study of parameter depen-
dent relativistic models [28] and on the mentioned 2M�
stars, we have opted to work with two parametrizations
of the non-linear Walecka model [6,7], namely GM1 [29]
and IUFSU [30]. Hence, we also check how parameter
dependent the stellar matter microscopic (EOS, particle
fractions, strangeness, internal temperature, direct Urca
process onset) and macroscopic (radius, gravitational and
baryonic masses, central energy density) properties are
when Tsallis statistics is used.

The work is organized as follows: in sect. 2, the basic
equations necessary to follow the EOS calculations both
with standard hadrodynamics and with non-extensive
statistics are outlined. In sect. 3 our results are displayed
and discussed, and finally the main conclusions are drawn
in sect. 4.

2 The formalism

2.1 Standard quantum hadrodynamics

In this section we present the hadronic equations of state
(EOS) used in this work. We describe hadronic mat-
ter within the framework of the relativistic non-linear
Walecka model (NLWM) [6,7]. In this model the nucleons
are coupled to neutral scalar σ, isoscalar-vector ωμ and
isovector-vector ρμ meson fields. We also include a ρ − ω
meson coupling term as in [30–33] because it was shown
to have important consequences in neutron star properties
related to the symmetry energy and its slope [34].

The Lagrangian density reads

L =
∑

j

ψ̄j

[
γμ (i∂μ − gωj ωμ − gρj τ j .ρμ) − m∗

j

]
ψj

+
1
2
∂μσ∂μσ − 1

2
m2

σσ2 − 1
3!

kσ3 − 1
4!

λσ4

−1
4
Ωμν Ωμν +

1
2
m2

ω ωμωμ +
1
4!

ξg4
ω(ωμωμ)2

−1
4
Rμν .Rμν +

1
2
m2

ρ ρμ .ρμ

+Λv(g2
ρ ρμ .ρμ)(g2

ω ωμωμ)

+
∑

l

ψ̄l (iγμ∂μ − ml) ψl , (1)

where
m∗

j = mj − gσjσ (2)

is the baryon effective mass, Ωμν = ∂μων − ∂νωμ ,
Rμν = ∂μρν − ∂νρμ − gρ

(
ρμ × ρν

)
, gij = Xigi are

the coupling constants of mesons i = σ, ω, ρ with baryon
j, mi, i = σ, ω, ρ is the mass of meson i and l repre-
sents the leptons e− and μ− and respective neutrinos.
The couplings k (k = 2MN g3

σ b) and λ (λ = 6 g4
σ c)

are the weights of the non-linear scalar terms, Λ is the
weight of the cross ω − ρ interaction and τ is the isospin
operator. The sum over j in eq. (1) can be extended
over neutrons and protons only or over the lightest eight
baryons {n, p, Λ,Σ−, Σ0, Σ+, Ξ−, Ξ0}. The coupling con-
stants {gσj}j=Λ,Σ,Ξ of the hyperons with the scalar me-
son σ can be constrained by the hyper-nuclear poten-
tials in nuclear matter to be consistent with hyper-nuclear
data [35–38], but we next consider Xσ = 0.7 and Xω =
Xρ = 0.783 and equal for all the hyperons as in [8]. As it is
well known that the softness/stiffness of the EOS depends
on the value of these unknown quantities, we restrict our-
selves just to one possible case. In table 1 we give the
symmetric nuclear matter properties at saturation den-
sity as well as the parameters of the models used in the
present work.

Applying the Euler-Lagrange equations to eq. (1),
assuming translational and rotational invariance, static
mesonic fields and using the mean-field approximation
(σ → 〈σ〉 = σ0; ωμ → 〈ωμ〉 = δμ0 ω0; ρμ → 〈ρμ〉 =
δμ0 δi3ρ3

0 ≡ δμ0 δi3ρ03), we obtain the following equations
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Table 1: Parameter sets used in this work and corresponding
saturation properties.

IU-FSU [30] GM1 [29]

n0 (fm−3) 0.155 0.153
K (MeV) 231.2 300

m∗/m 0.62 0.70
m (MeV) 939 938

−B/A (MeV) 16.4 16.3
Esym (MeV) 31.3 32.5
L (MeV) 47.2 94

mσ (MeV) 491.5 512
mω (MeV) 782.5 783
mρ (MeV) 763 770

gσ 9.971 8.910
gω 13.032 10.610
gρ 13.590 8.196
b 0.001800 0.002947
c 0.000049 −0.001070
ξ 0.03 0

Λv 0.046 0

of motion for the meson fields:

m2
σ σ0 = −k

2
σ2

0 − λ

6
σ3

0 +
∑

j

gσj ns
j ,

m2
ω ω0 = −ξg4

ω

6
ω3

0 +
∑

j

gωj nj − 2Λv g2
ρ g2

ω ρ2
03 ω0 ,

m2
ρ ρ03 =

∑

j

gρj τ3j nj − 2Λv g2
ρ g2

ω ω2
0 ρ03 , (3)

where

ns
j =

∫
d3p

(2π)3
m∗

j

E∗
j

(fj+ + fj−) (4)

is the baryon scalar density of particle j and the respective
baryon density,

nj =
2

(2π)3

∫
d3p (fj+ − fj−), nB =

∑

j

nj , (5)

and fj± is the Fermi distribution for the baryons (+) and
anti-baryons (−) j:

fj± =
1

eβ(E∗
j ∓νj) + 1

, (6)

with β = 1/T , E∗
j = (p2

j + m∗ 2
j )1/2 and the effective

chemical potential of baryon j is given by

νj = μj − gωjω0 − τ3j gρj ρ03. (7)

The EOS can then be calculated and reads

P =
1

3π2

∑

j

∫
p4dp√

p2 + m∗2
j

(fj+ + fj−) +
m2

ω

2
ω2

0 +
ξ

24
ω4

0

+
m2

ρ

2
ρ2
03 −

m2
σ

2
σ2

0 − k

6
σ3

0 − λ

24
σ4

0 + Λvg
2
ρg2

ωω2
0ρ2

03

+
1

3π2

∑

l

∫
p4dp√
p2 + m2

l

(fl+ + fl−), (8)

E =
1
π2

∑

j

∫
p2dp

√
p2 + m∗2

j (fj++fj−)+
m2

ω

2
ω2

0 +
ξ

8
ω4

0

+
m2

ρ

2
ρ2
03 +

m2
σ

2
σ2

0 +
k

6
σ3

0 +
λ

24
σ4

0 + 3Λvg
2
ρg2

ωω2
0ρ2

03

+
1
π2

∑

l

∫
p2dp

√
p2 + m2

l (fl+ + fl−), (9)

where the last terms in eqs. (8) and (9) are due to the
inclusion of leptons as a free gas in the system and their
distribution functions are given by

fl± =
1

eβ(El∓μl) + 1
, (10)

with El = (p2
l + m2

l )
1/2.

The entropy per particle (baryon) can be calculated
through the thermodynamical expression

S
nB

=
E + P −

∑
j μjnj

TnB
. (11)

When the hyperons are present we define the
strangeness fraction,

fs =
1
3

∑
j |sj |nj

nB
, (12)

where sj is the strangeness of baryon j and nB is the total
baryonic density given in eq. (5).

2.2 Non-extensive statistics

In order to introduce non-extensivity in the NS problem
we use the NESCT approach in obtaining the EOS for the
hadronic matter. The extension for finite chemical poten-
tial given in ref. [25] is the most appropriate framework
since we expect μ �= 0 for the NS matter. The starting
point is the partition function [25]

log Ξq(V, T, μ) = −ξV

∫
d3p

(2π)3
∑

r=±
Θ(rx)

× log(−r)
q

(
e
(r)
q (x) − ξ

e
(r)
q (x)

)
, (13)

where x = β(Ep − μ), we take ξ = ±1 for bosons and
fermions, respectively, Θ is the step function, and the q-
logarithm

{
log(+)

q (x) = xq−1−1
q−1 , x ≥ 0,

log(−)
q (x) = x1−q−1

1−q , x < 0,
(14)
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is the inverse function of the q-exponential given by
⎧
⎨

⎩
e
(+)
q (x) = [1 + (q − 1)x]1/(q−1), x ≥ 0,

e
(−)
q (x) = 1

e
(+)
q (|x|)

= [1 + (1 − q)x]1/(1−q), x < 0.

(15)
From the definition of q-deformed entropy [39], we can
write the distribution functions:⎧

⎪⎨

⎪⎩

n
(+)
q (x) = 1

(e
(+)
q (x)+1)q

, x ≥ 0,

n
(−)
q (x) = 1

(e
(−)
q (x)+1)2−q

, x < 0.
(16)

From here one gets the entropy density

S =
1

π2(q − 1)

∑

j

∑

r=±

∫
p2dpΘ(rxj)r

×
[
1 − n(r)

q (xj) −
(
1 − ñ(r)

q (xj)
)q̃

]
, (17)

where

q̃ =

{
q, x ≥ 0 ,

2 − q, x < 0 ,
(18)

and we have defined ñ
(±)
q (x) ≡ 1/(e(±)

q (x) + 1).
Before analysing the non-extensive thermodynamics

applied to a stellar system it is worthwhile to discuss some
differences between the approach used here and the one
used in ref. [17]. The q-exponential functions defined in
eq. (15) are the same as the ones used by Lavagno and
Pigato [17], but the distribution function derived from
the partition function adopted in the present work, as
shown in eq. (16), differs from the corresponding func-
tion in ref. [17] in the region x < 0. Here the exponent
in the denominator is 2 − q while in their work Lavagno
and Pigato used the exponent q. There are in addition
some typos in [39], as discussed in [25], which remain un-
modified in [17]. It is important to notice that eq. (16)
is consistently obtained from the partition function and
entropy proposed in [25]. These comments refer to the
regime q > 1. The case q < 1 is not discussed in de-
tails in the present work, but we give some insight at the
end of this section. An interesting analysis of the several
non-extensive versions of a quantum ideal gas has been
recently done in ref. [40].

Notice that the distribution function n
(−)
q (x) is a di-

rect result of the application of the usual formalism of
Thermodynamics to the proposed partition function, and
the exponent 2 − q is not introduced deliberately, but re-
sults from the usual calculations. Therefore q in the equa-
tion for the distribution function has the same value as in
other parts of the paper. It is worth to mention that there
are recent approaches to this problem that avoids the dis-
continuity in the second derivatives of thermodynamical
functions [41].

The pressure is

P =
T

π2

∑

j

∑

r=±

∫
p2dpΘ(rxj) log(−r)

q

(
1

1 − ñ
(r)
q (xj)

)
,

(19)

the baryonic density

N =

{
1

π2

∑
j

∫
p2dp n

(+)
q (xj) , xj ≥ 0,

1
π2

∑
j

∫
p2dp n

(−)
q (xj) + 2Cn , xj < 0

(20)

with

Cn =
μjT

√
μ2

j − M∗
j

2

2π2

(2q−1 + 21−q − 2)
q − 1

θ(μj − M∗
j )

and the energy density,

E =

{
1

π2

∑
j

∫
p2dp E n

(+)
q (xj) , xj ≥ 0,

1
π2

∑
j

∫
p2dp E n

(−)
q (xj) + 2Ce , xj < 0,

(21)
with

Ce = μjCn

and where xj = β(E∗
j − μj).

The constants Cn and Ce were introduced in ref. [25]
to tackle the jump in n(±)(x) at x = 0. As observed in
ref. [40] such a jump could be related to the excess of par-
ticles and the deficiency of anti-particles at the border of
the Fermi surface, what is not observed at high energy. For
a deeper discussion on this regard the reader is addressed
to ref. [40]. It is also worth noting that in the numerical
results presented next, these constants play practically no
role.

When non-extensive statistical mechanics is used in-
stead of the usual Fermi-Dirac expressions for the gas part
of the EOS presented in the last section, the expressions
for pressure and energy density are rewritten in such a
way that the first and last terms in eqs. (8) and (9) are
substituted by eqs. (19) and (21), respectively. Moreover,
the usual baryonic density given in eq. (5) is replaced by
eq. (20). In the equations of motion, the scalar density
eq. (4) is replaced by

ns
j =

⎧
⎨

⎩

1
π2

∫
p2dp

m∗
j

E∗
j
n

(+)
q (xj) xj ≥ 0,

1
π2

∫
p2dp

m∗
j

E∗
j
n

(−)
q (xj) xj < 0.

(22)

Notice that thermodynamical consistency, shown in
ref. [25] for non-interaction particles, is also achieved in
the presence of interaction hadrons.

2.2.1 Super and sub-extensive regimes

Before we proceed by applying the above results to neu-
tron stars, it is important to comment on possible choices
for the q-value. We can expand the entropy as S(q) =
S(q = 1)+O(q−1)+O((q−1)2)+ · · ·+O((q−1)4)+ · · · ,
which is possible to compute for both q larger and smaller
than 1.

In order to exemplify the results, we add two figures
for a fixed temperature of T = 20MeV and fixed chemi-
cal potential μB = 1.016GeV. This temperature is chosen
because it is of interest in the applications to protoneu-
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Fig. 1: Entropy density for different q-values with a fixed
temperature of T = 20 MeV and a fixed chemical potential
μB = 1.016 GeV. The continuous blue line represents the full
results and the dashed red lines the expansions up to (a) (q−1)
and (b) (q − 1)4.

trostars that follows. It was obtained in [25] that at this
value of the chemical potential a chemical freeze-out takes
place at T = 20MeV. In fig. 1a, we compare the results
for the entropy density with q > 1 and full computation,
obtained from eq. (17), with the results obtained from the
expansion above for q > 1 and q < 1 up to order (q − 1).
In fig. 1b the expansion goes up to order (q−1)4, showing
a very good agreement with the full result. For q-values
lower than 1, the full computation would give complex re-
sults, but the expansion would still be possible. Had we
decided to use q < 1, as in [17], the thermodynamic quan-
tities would have to be expanded, at least, up to order q−1.

We also display in fig. 2 the total baryonic density N ,
defined in eq. (20), for different values of q as a function
of the particle mass for fixed temperatures and the same
chemical potential as in the graphs for the entropy. Up to a
certain mass, of the order of 1.05GeV at T = 20MeV and
1.1GeV at T = 30MeV, non-extensivity plays almost no
role, but as q and T increase, heavier particles are favored.
Of course, the value of the chosen chemical potential de-
fines the mass value for which non-extensivity becomes im-
portant and the chosen chemical potential is of the order
of the baryon chemical potentials of the particles in stellar
medium that will be investigated in the next sections.
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Fig. 2: Baryonic density as a function of baryon mass for dif-
ferent q-values, T = 20 and 30MeV and μB = 1.016 GeV.

2.3 Stellar matter

In stellar matter there are two conditions that have to
be fulfilled, namely, charge neutrality and β-stability and
they read: ∑

j

qjnj +
∑

l

qlnl = 0, (23)

where qtype, type = j, l stand for the electric charge of
baryons and leptons, respectively, and

μj = qjμn − qe(μe − μν), μμ = μe. (24)

We have also used the non-extensive statistics for the lep-
tons, which enter the calculation as free particles obeying
the above-mentioned conditions.

The three snapshots of the time evolution of a neutron
star in its first minutes of life are given by

– S/nB = 1, Yl = 0.3,
– S/nB = 2, μν = 0,
– S/nB = 0, μν = 0,

where

Yl =
∑

l nl

nB
, (25)

which, according to simulations [42], can reach Yl 

0.3–0.4. In the present work we are interested in finite
temperature systems and hence, most of the results refer
to the first two snapshots.

Another aspect of the evolution of compact stars that
is worth investigating is the direct Urca (DU) process,
n → p + e− + ν̄e [43]. It is known that the cooling of the
star by neutrino emission can occur relatively fast if it is
allowed, what happens when the proton fraction exceeds
a critical value xDU[43], evaluated in terms of the leptonic
fraction as [44]:

xDU =
1

1 + (1 + x
1/3
e )3

, (26)

where xe = ne/(ne + nμ) is the electron leptonic fraction,
ne is the number density of electrons and nμ is the number
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density of muons. Cooling rates of neutron stars seem to
indicate that this fast cooling process does not occur and,
therefore, a constraint is set imposing that the direct Urca
process is only allowed in stars with a mass larger than
1.5M�, or a less restrictive limit, 1.35M� [44]. The DU
process can also occur for hyperons, if they are taken into
account in the EOS. Although the neutrino luminosities in
these processes are much smaller than the ones obtained in
the nucleon direct Urca process, they play an important
role if they occur at densities below the nucleon direct
Urca process [45]. The process Λ → p+e+ ν̄, for instance,
may occur at densities below the nucleon DU onset. In the
next section we also investigate the effects of non-extensive
statistics on the onset of the DU process.

To make our results depend as little as possible on
too many degrees of freedom, we start by analysing the
EOS with nucleons only for different values of q. We also
investigate the effects of non-extensivity on a free Fermi
gas at finite temperature, where nucleons and leptons are
only subject to the conditions of β-equilibrium and charge
neutrality. As it is widely accepted that hyperons should
be present inside (proto)neutron stars, they are also in-
cluded and the effects of using different q-values, always
larger than one, are checked.

3 Results

We now calculate and analyze stellar properties obtained
with two different values of the non-extensive statistics q
parameter, namely q = 1.05 and 1.14. Our results are then
compared with the ones shown in ref. [17]. We have cho-
sen values larger than one because lower values produce a
slightly softer EOS, which result in lower maximum stellar
masses as compared with the standard non-linear Walecka
model, as can be seen in ref. [17] and therefore, may not
useful if we want to explain massive compact objects. In
addition, in ref. [18] it was shown that there is an up-
per limit for the entropic index at qmax = 11/9. On the
other hand, all experimental information on hadronic sys-
tems show that q > 1. Since our main goal is to check
whether 2M� stars can be attained with the help of non-
extensive thermodynamics when the traditional one fails,
we restrict ourselves to values that go in the desired direc-
tion. In ref. [21], the entropic index q, is taken as a fixed
property of the hadronic matter with its value determined
as q = 1.14 from the analysis of pT -distributions and in the
study of the hadronic mass spectrum. The value q = 1.05
is used because it is slightly larger than the value used
in [17], where the authors used q = 1.03 that represents
just a small deviation from the standard stellar matter
physics. We have checked that the results obtained with
q = 1.03 and q = 1.05 are numerically very similar. Had
we plotted the next figures with both of them, the curves
would be practically indistinguishable.

In all graphs shown next, the GM1 parametrization
was used, but the qualitative results are the same for the
IU-FSU parameter set, despite the inclusion of the ω-ρ in-
teraction. Another aspect that we should mention is that
quantum hadrodynamic models cannot describe the very
low-density part of the EOS well and they are usually
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Fig. 3: Equation of state for hadronic matter constituted by
nucleons only (np) and including the lightest eight baryons
(npH) for different values of q and (a) first (b) second snapshot
of the star evolution (c) for q = 1.14 only and both snapshots.

linked to an appropriate EOS named BPS [46] at low
densities and zero temperature. In the present work we
have chosen not to use the BPS, which does not affect
the macroscopic quantities we are interested to analyse.
Moreover, non-extensive thermodynamics is only valid at
finite temperature, where the BPS would only be an ap-
proximate EOS.
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Fig. 4: Temperature as a function of density (in units of nuclear matter saturation density) for different values of q and (a) GM1
and first (b) GM1 and second (c) IU-FSU and first and (d) IU-FSU and second snapshot of the star evolution.

We start by showing the EOS for the first two snap-
shots of the star evolution in fig. 3 for the cases with nu-
cleons only and also with hyperons. As it is always the
case, hyperons make the EOS softer for a fixed q-value.
It is difficult to distinguish the curves for our choice of
q’s because numerically they are indeed very close, but
not identical. The deviation obtained with non-extensive
statistics is very small, but larger at high densities for
the q-values we have considered, with consequences in the
maximum stellar masses, which will be seen later. It is
important to observe that, for a fixed q-value, the EOS is
slightly harder for S/nB = 2, μν = 0 than for S/nB = 1,
Yl = 0.3 when only nucleons are taken as internal neutron
star constituents, but it is softer when the hyperons are
considered. Nevertheless, this behaviour is valid also for
the usual thermodynamics, when q = 1 and hence, it is
not a consequence of the use of non-extensivity.

We then analyze the effects of non-extensivity on the
internal stellar temperature by plotting the temperature
as a function of density again for the first two snapshots
of the star evolution in fig. 4 for both parametrizations
investigated in the present work. We display temperature
results for densities higher than nuclear matter saturation

density because at subsaturation densities, the EOS would
be more similar to the one of a free Fermi gas and at very
low densities a BPS-like EOS would have to be employed,
what we have not done. Nevertheless, we can see from ta-
bles 2 and 3 that the effects of non-extensivity on a free gas
at fixed temperature are very small, which means that the
curves would tend to get closer to each other as the density
and the temperature decrease. Then, we clearly see that
the temperature decreases with the increase of q, a be-
haviour already expected from the calculations performed
in [25] (see, for instance figs. 2 and 6 of that reference). At
densities of the order of 5 times nuclear saturation den-
sity, the temperature decreases by approximately 25% in
average, with important consequences in the neutrino dif-
fusion during the Kevin-Helmholtz epoch, when the star
evolves from a hot and lepton rich object to a cold and
deleptonized compact star. The cooling would be faster for
larger q-values. However, in ref. [17], the behaviour is ex-
actly the opposite, i.e. the temperature increases with the
increase of the q-value, a result that we do not reproduce.
We do not believe that the use of a different expression for
the partition function, as we have commented in sect. 2.2
is responsible for this opposite behaviour.
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Table 2: Protoneutron star macroscopic properties (maximum gravitation mass, maximum baryonic mass, corresponding radius
and central energy density) for different values of q and fixed temperature or one of the snapshots of the star evolution.

Model Case q
Mmax Mbmax R E0

(M�) (M�) (Km) (fm−4)

Free gas T = 30 MeV, Yν = 0 1.0 0.693 0.70 7.46 12.59
Free gas T = 30 MeV, Yν = 0 1.05 0.689 0.70 7.30 13.48
Free gas T = 30 MeV, Yν = 0 1.14 0.680 0.69 7.06 14.32

GM1/np T = 30 MeV, Yν = 0 1.0 2.10 2.37 11.48 5.83
GM1/np T = 30 MeV, Yν = 0 1.05 2.30 2.66 11.34 6.00
GM1/np T = 30 MeV, Yν = 0 1.14 2.29 2.64 11.36 5.85

GM1/np S/nB = 1, Yl = 0.3 1.0 2.31 2.67 11.57 5.18
GM1/np S/nB = 1, Yl = 0.3 1.05 2.31 2.67 11.38 5.77
GM1/np S/nB = 1, Yl = 0.3 1.14 2.32 2.68 11.61 5.18

GM1/np S/nB = 2, Yν = 0 1.0 2.33 2.66 11.60 5.71
GM1/np S/nB = 2, Yν = 0 1.05 2.33 2.68 11.64 5.62
GM1/np S/nB = 2, Yν = 0 1.14 2.34 2.70 11.61 5.71

GM1/np T = 0, Yν = 0 1.0 2.38 2.88 11.75 5.62

GM1/npH T = 30 MeV, Yν = 0 1.0 1.90 2.12 10.88 6.28
GM1/npH T = 30 MeV, Yν = 0 1.05 1.90 2.11 10.73 6.78
GM1/npH T = 30 MeV, Yν = 0 1.14 1.89 2.07 10.61 6.93

GM1/npH S/nB = 1, Yl = 0.3 1.0 2.10 2.39 11.40 5.69
GM1/npH S/nB = 1, Yl = 0.3 1.05 2.11 2.54 11.43 5.72
GM1/npH S/nB = 1, Yl = 0.3 1.14 2.11 2.39 11.44 5.84

GM1/npH S/nB = 2, Yν = 0 1.0 1.93 2.15 10.98 6.46
GM1/npH S/nB = 2, Yν = 0 1.05 1.95 2.18 11.10 6.29
GM1/npH S/nB = 2, Yν = 0 1.14 1.96 2.20 11.13 6.26

GM1/npH T = 0, Yν = 0 1.0 2.00 2.32 11.51 5.96

Table 3: Same as table 2.

Model Case q
Mmax Mbmax R E0

(M�) (M�) (Km) (fm−4)

free gas T = 30 MeV, Yν = 0 1.0 0.693 0.70 7.46 12.59
free gas T = 30 MeV, Yν = 0 1.05 0.689 0.70 7.30 13.48
free gas T = 30 MeV, Yν = 0 1.14 0.680 0.69 7.06 14.32

IU-FSU/np T = 30 MeV, Yν = 0 1.0 1.90 2.19 10.76 6.08
IU-FSU/np T = 30 MeV, Yν = 0 1.05 1.90 2.19 10.71 6.46
IU-FSU/np T = 30 MeV, Yν = 0 1.14 1.89 2.16 10.57 6.84

IU-FSU/np S/nB = 1, Yl = 0.3 1.0 1.89 2.13 10.55 6.59
IU-FSU/np S/nB = 1, Yl = 0.3 1.05 1.94 2.25 11.33 6.34
IU-FSU/np S/nB = 1, Yl = 0.3 1.14 1.94 2.14 11.30 6.34

IU-FSU/np S/nB = 2, Yν = 0 1.0 1.97 2.19 11.29 5.86
IU-FSU/np S/nB = 2, Yν = 0 1.05 1.97 2.20 11.25 5.96
IU-FSU/np S/nB = 2, Yν = 0 1.14 1.98 2.22 11.24 5.97

IU-FSU/np T = 0, Yν = 0 1.0 1.95 2.28 10.82 6.37
IU-FSU/npH T = 0, Yν = 0 1.0 1.52 1.71 10.31 6.90
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Fig. 5: Particle fractions obtained for (a) first and (b) second
snapshot of the star evolution. We use solid line for q = 1.0
(standard model) and dashed lines for q = 1.14.

In order to see how the internal constitution of the star
is affected by non-extensivity, we plot in fig. 5 the particle
fractions when the hyperons are considered and the re-
lated strangeness content in fig. 7. We do not include the
particle concentrations for the case with nucleons only be-
cause, they are affected very little by non-extensivity, as
shown in ref. [17]. From the figures we plot, we can see
that as q increases, the amount of strangeness decreases,
which means that the EOS becomes harder, resulting in
larger maximum masses. On the other hand, we already
knew that in a free system, heavier particles are favored
when q becomes larger than one, as seen in fig. 2, a be-
haviour that is also observed in fig. 5, i.e., the onset of
hyperons takes place at lower densities. But stellar mat-
ter is also subject to charge neutrality, β-equilibrium and
different values of temperature at different densities and
the final balance results in a system with a slightly smaller
strangeness content for larger q-values. The numbers used
in fig. 7 for the case S/nB = 2 at nB/n0 
 3 tell us that as
q goes from 1 to 1.05, the decrease in the strangeness con-
tent is 2.5%, when it goes from 1.05 to 1.14, it reaches 4.7%
and from q = 1 to q = 1.14, the decrease is of the order
of 7.1%. This decrease makes the EOS harder and hence
the explanation for the slightly larger maximum masses
obtained with non-extensivity.

 0.02

 0.04

 0.06

 0.08

 0.1

 1  2  3  4  5  6  7

Y
ν

nB/n0

Fig. 6: Neutrino content obtained for the first snapshot of the
star evolution. We use solid lines for q = 1.0 (standard model)
and dashed lines for q = 1.14.
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Fig. 7: Strangeness content as a function of density (in units
of nuclear matter saturation density) for different values of q
and two first snapshots of the star evolution.

Neutrinos also play an important role when the lep-
ton fraction is fixed, during the first snapshot of the star
evolution. If hyperons are included, neutrinos help in mak-
ing the EOS harder, but affect very little the EOS if only
nucleons are present in the system. This is a well-known
result for q = 1. In fig. 6 we plot only the neutrino frac-
tion, so that its behaviour with q becomes evident. Non-
extensivity practically does not change the amount of neu-
trinos. In the diffusion approximation normally used in
the calculation of the temporal evolution of protoneutron
stars in the Kelvin-Helmholtz phase, the neutrino mean
free path depends on the diffusion coefficients, obtained
from the EOS and dependent of the neutrino fraction and
distribution function. Hence, any change in the neutrino
content would certainly influence the stellar evolution, but
non-extensivity seems not to affect this quantity in a non-
neglectable way.

In table 2 and fig. 8 we show the main stellar properties
obtained from the solution of the Tolman-Oppenheimer-
Volkof (TOV) equations [47,48], which use the EOS just
discussed with the GM1 parametrization as input. As ex-
pected, from the observation of the EOS, the maximum
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Fig. 8: Mass-radius results obtained from the solution of the
TOV equations for hadronic matter constituted by nucleons
only (np) and including the lightest eight baryons (npH) for
different values of q and (a) first (b) second snapshot of the
star evolution (c) for q = 1.14 only and both snapshots.

stellar mass increases with the increase of the q-value.
When only nucleons are taken into account, the maximum
stellar masses are obtained during the second snapshot of
the star evolution (S/nB = 2, μν = 0) and when hy-
perons are also included, maximum masses come out for

S/nB = 1, Yl = 0.3. This behaviour corroborates the find-
ings in ref. [17]. For the sake of completeness, we also dis-
play results obtained at fixed temperature (T = 30MeV)
and compare them with the results for a free Fermi gas, in
which case neutrons, protons, electrons and muons obey
stellar matter conditions, but are not subject to nuclear
interaction. This temperature was chosen to be of interest
in the stellar medium, during the cooling process, as seen
in fig. 7. Of course, we could have chosen T = 20MeV
instead, a temperature at which chemical freeze-out takes
place in heavy ion collisions, but the numerical results
would be very similar. In the cases where GM1 was used,
there is no obvious pattern with respect to the q-value, i.e.
the maximum masses oscillate when the q-value increases.
When a free Fermi gas is used, the maximum masses de-
crease when q increases. As it is well known the huge in-
crease in the maximum masses is due to the inclusion of
the nuclear interaction, but we also found a lack of pat-
tern in a system with fixed temperature instead of fixed
entropy. In fig. 8 we plot mass-radius results obtained from
the EOS shown in fig. 3. In these curves the BPS [46] EOS
was not included because it is only valid at zero tempera-
ture and, as shown in fig. 4, the temperature at the surface
of the star for fixed entropies can be slightly higher. Had
we included the BPS EOS, our curves would present a tail
towards higher radii, but the differences in the maximum
masses would be minor.

To check the consistency of our results, in table 3 we
display, for a system with nucleons only, stellar properties
obtained with the IU-FSU parametrization. We have not
included hyperons because this parameter sets provides
too low maximum stellar masses when strangeness is taken
into account. The results show that the qualitative con-
clusions with respect to the effects of non-extensivity do
not depend on the chosen parameter set, even when extra
crossing terms involving the ω-ρ interaction is considered.

We now analyse the radii results. According to ref. [49],
the radii of the canonical 1.4M� neutron star should lie
in the range 9.7–13.9 km. Based on an analysis in which
it was assumed that all neutron stars have the same radii,
they should lie in the range R = 9.1+1,3

−1.5 [50] and another
calculation, based on a Bayesian analysis, foresees radii
of all neutron stars to lie in between 10 and 13.1 km [51].
The radii results shown in tables 2 and 3 correspond to the
maximum mass stars. If only nucleons are considered as
neutron star constituents, as q increases no general pat-
tern is found for the resulting radii. However, when hy-
perons are taken into account, the radii increase with the
increase of q. These radii, even for q = 1.14 are not too
large, varying around 11.5 km. However, if we consider the
radii of the canonical 1.4M� stars, we can see, from fig. 8
that non-extensivity generally makes them slightly larger
and they stand around 12 km, a somewhat large value if
the above-mentioned constraints are to be taken seriously.
Had we included the BPS EOS, they would be still a bit
larger. Let us stress that the radii are determined by the
parametrization chosen, depending also on the hyperon-
meson coupling constants. Hence, if a model succeeds in
describing a small radius, non-extensivity is not likely to
modify it too much.
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Finally, in fig. 9 we plot the onset of the direct Urca
process in stellar matter for matter with (dashed lines)
and without hyperons (solid lines) in the case where
S/nB = 2, μν = 0. The lines around a y-value of 0.12
refer to xDU and the other lines represent the proton frac-
tion. When the curves cross, we can see the value of the
proton fraction and the respective baryonic density. We
can see that the line for xDU coincides for the standard
model independently of considering or not hyperons. For
q = 1.14 both curves present a small deviation at large
densities. For GM1, the standard density value for which
the DU process occurs (at zero temperature and matter
without hyperons) is 1.81 times nuclear matter satura-
tion density [52] . When we fix the entropy density to
2 and keep q = 1, this value decreases to 1.207 (1.205)
nB/n0 with (without) hyperons but when we look at the
values for q = 1.14, we see that the onset of the DU
process increases again by approximately 21.5% to 1.423
(1.402) nB/n0 with (without) hyperons. The proton frac-
tion that we obtain with nucleons only and with hyper-
ons are coincident for a fixed q-value at low densities and
just deviate from each other when other hyperons with
positive charge appear. Therefore, if the DU process de-
termines how the star cools down, a system described by
non-extensive statistics would certainly affect the inter-
pretation of the cooling rate mechanism.

4 Final remarks

We have applied non-extensive statistics to calculate equa-
tions of state that describe stellar matter with two of
the commonly used parametrizations for the non-linear
Walecka model, namely GM1 [29] and IU-FSU [30]. We
have then fixed two q-values (1.05 and 1.14) and obtained
the most important microscopic quantities associated with
the equations of state, i.e. particle fractions, strangeness,
internal temperature and direct Urca process onset for two
snapshots of the star evolution. As compared with the ex-
isting work on the application of non-extensive thermo-

dynamics [17], some new features were investigated, apart
from the use of two different parameter sets. We have con-
firmed that the equations of state are only slightly mod-
ified, but the effects are enough to produce stars with
slightly higher maximum masses and these results are
common to both parameter sets used. However, contrary
to what was obtained in [17], we found that the internal
temperature of the stars decreases with the increase of
the q-value and at densities of the order of 5 times nuclear
saturation density, the temperature decreases by approx-
imately 25% in average, with important consequences in
the neutrino diffusion during the Kevin-Helmholtz epoch,
when the star evolves from a hot and lepton rich object to
a cold and deleptonized compact star. This aspect should
certainly be better investigated. Moreover, we have also
seen that the direct Urca process is substantially affected
by non-extensivity, with consequences on the cooling rates
of the stars.

As usually done in the search for macroscopic star
properties, the Tolman-Oppenheimer-Volkof equations
were then solved for the previously obtained EOS and the
macroscopic quantities were computed. The results were
compared with more academic calculations for fixed tem-
peratures and for a free-Fermi gas but in these cases, due
to the imposition of stellar matter constraints, no specific
pattern was found, differently from what happens in a
system with really free gases, as seen in figs. 1, 2 and in
ref. [25].

A final word on our choice of q-values larger than one is
worthy. All experimental information on hadronic systems
show that q > 1 and according to ref. [18], there is an
upper limit for the entropic index at qmax = 11/9. We
have checked that it is possible to use the sub-extensive
regime with the help of an appropriate expansion, but it
does not make sense in applications to protoneutron stars
if the desired effect is to increase the maximum mass and
this regime makes it decrease.

In this work, we have also used the non-extensive
statistics for the leptons, which enter the calculation as
free particles with respect to the strong nuclear interac-
tion, but subject to the conditions of charge neutrality
and β-equilibrium. We could have used different q-values
for the leptons, but for simplicity, we have opted to use
the same values as for the baryons.
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