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Abstract. We present a calculation of generalized baryon form factors in the framework of three-flavor
covariant baryon chiral perturbation theory at leading one-loop order, necessary for the calculation of the
first moments of generalized parton distribution functions. The formulae we derive can be used to guide
the chiral extrapolation of three-flavor lattice calculations of the corresponding QCD matrix elements.

1 Introduction

The concept of generalized parton distributions (GPDs)
connects several different, seemingly unconnected hadron
structure observables such as form factors, angular mo-
mentum carried by quarks and gluons, moments of par-
ton distribution funtions, transverse spatial structure, etc.
Thus, GPDs and Mellin moments thereof are important
quantities for studying hadron structure [1,2].

Lattice QCD has proven to be able to probe hadron
structure in the non-perturbative regime quite successfully
for two dynamical quark flavors [3], but today most simu-
lations are carried out for three or four dynamical flavors.
The quark masses in these simulations are typically un-
physically large as it often seems more efficient to invest
computing time in simulating with larger volumes, finer
lattices or better fermion actions. Covariant baryon chi-
ral perturbation theory (BChPT) [4,5] is an effective field
theory of QCD which supplies extrapolation formulae for
variable quark masses (pseudoscalar meson masses) which
are of vital importance to thoroughly analyze lattice data.

In this article, we generalize the work presented in [6]
to three quark flavors. In sect. 2 we shortly review the
connection between GPDs and the so-called generalized
form factors. In sect. 3 we present the effective chiral La-
grangian needed for a leading one-loop calculation of the
SU(3) version of As,v

2,0 in the forward limit and in sect. 4
we show the results for the nucleon sector. We give a short
conclusion in sect. 5.

2 GPDs and generalized form factors

It is well known that the parity-even generalized par-
ton distribution functions Hq(x, ξ,Δ2) and Eq(x, ξ,Δ2)
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(with Bjorken-x, skewedness ξ and momentum transfer Δ)
are connected to three generalized form factors Aq

2,0(Δ
2),

Bq
2,0(Δ

2) and Cq
2,0(Δ

2) via their first Mellin moments [2].
These generalized form factors themselves are accessible
through calculation of baryon matrix elements of totally
symmetrized and traceless local operators

Oq
μν = iq̄γ{μ

←→
D ν}q. (1)

Here, we have introduced the abbreviations

A{μBν} =
1
2

(
gαμgβν + gβμgαν − 2

d
gαβgμν

)
AαBβ , (2)

←→
D μ =

1
2

(−→
Dμ −←−

Dμ

)
, (3)

where d represents the space-time dimension. For two
light-quark flavors and assuming isospin symmetry, this
matrix element can be decomposed into the said general-
ized form factors. In the SU(3) case, however, one finds
five different form factors if one imposes no restrictions
on isospin or baryon content. In this work, we analyze the
flavor-singlet and the flavor-octet sector, i.e.

Ms
B′B = 〈B′, s′,p′|iq̄�γ{μ

←→
D ν}q|B, s,p〉, (4)

Mv,i
B′B = 〈B′, s′,p′|iq̄λiγ{μ

←→
D ν}q|B, s,p〉, (5)

where the λi denote the Gell-Mann matrices and B(B′)
labels the incoming (outgoing) baryon from the lowest-
lying baryon octet. The decomposition of these matrix
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elements yields the following result:

Ms,v
B′B = ū(p′)

[
As,v

B′B(Δ2)γ{μp̄ν}

−i
Bs,v

B′B(Δ2)
2m̄

Δασα{μp̄ν} +
Cs,v

B′B(Δ2)
m̄

Δ{μΔν}

+
Ds,v

B′B(Δ2)
2m̄

p̄{μΔν} + Es,v
B′B(Δ2)γ{μΔν}

]
u(p).

(6)

Here, we have introduced another standard momentum
variable p̄ = (p′ + p)/2. Moreover, m̄ = (mB + mB′)/2.
Taking P-, C- and T -symmetry into account, we find that
As,v, Bs,v and Cs,v are Hermitian 8×8-matrices, whereas
Ds,v and Es,v are anti-Hermitian. These matrices are di-
rectly accessible via SU(3) BChPT.

As also mentioned in [2], in the forward limit, the gen-
eralized form factor Aq

2,0(0) is linked to the first moment
of the parton distribution functions (PDFs) q(x) and q̄(x)
via the relation

〈x〉q =
∫ 1

0

dxx [q(x) + q̄(x)] , (7)

and thus, certain Ai
B′B(0) or linear combinations thereof

are connected to a linear combination of these 〈x〉q, e.g.,
for the isovector moment, we find

Av,3
pp (0) =

1
2

(
〈x〉u − 〈x〉d

)
≡ 1

2
〈x〉u−d . (8)

3 Effective Lagrangians

Chiral Perturbation Theory provides low-energy expan-
sions of QCD Green functions in terms of a small param-
eter p (small compared to a typical hadronic scale of ∼1
GeV), where p can stand for meson four-momenta, baryon
three-momenta or meson masses. The well-known leading-
order SU(3) Lagrangian [7] in the one-baryon-sector reads

L
(1)
MB = i〈B̄γμ[Dμ, B]〉 − m0〈B̄B〉

+
D

2
〈B̄γμγ5{uμ, B}〉 +

F

2
〈B̄γμγ5[uμ, B]〉,

(9)

where B denotes the baryon octet

B =

⎛
⎜⎝

1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

⎞
⎟⎠ , (10)

m0 represents the baryon mass in the chiral limit and D
and F are the two axial-vector coupling constants. Fur-
thermore, we collect the pseudoscalar fields in a 3 × 3
unitary matrix u which is defined as u = exp{iΦ/F0},
where

Φ =
1√
2

⎛
⎜⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

⎞
⎟⎠ , (11)

contains the pseudoscalar octet of (pseudo) Goldstone
bosons associated with the spontaneously broken approx-
imate chiral symmetry of QCD, and F0 is the pertinent
meson decay constant in the chiral limit. Dμ is the ap-
propriate covariant derivative and is defined as DμB =
∂μB + [Γμ, B], with the chiral connection (we set external
vector or axial-vector fields to zero here)

Γμ =
1
2
[u†, ∂μu]. (12)

The operator uμ is defined as uμ = iu†∂μu−iu∂μu†, again
without external vector or axial-vector fields, and trans-
forms in the same way under chiral rotations as the matter
field B [7,8].

As proposed in [6], we now extend this Lagrangian to
the interaction between the baryon octet and symmetric,
traceless external flavor-singlet ṽ{μν} and flavor-octet ten-
sor fields vi

{μν} of definite parity. For the construction of
the Lagrangian, we utilize the tensor structures

V ±
μν =

(
u†λi

2
vi
{μν}u ± u

λi

2
vi
{μν}u

†
)

, (13)

V 0
μν = ṽ{μν} ×

�

2
. (14)

We do not assign a chiral power to these tensor structures
and thus our leading-order Lagrangian is of zeroth order.
We can now write down all terms that are allowed by
the symmetry properties of QCD and Lorentz invariance,
which leads to the following result:

L
(0)
MB,t =

aD

4
〈B̄iγμ{V +

μν ,DνB}〉 + h.c.

+
aF

4
〈B̄iγμ[V +

μν ,DνB]〉 + h.c.

+
ΔaD

4
〈B̄iγμγ5{V −

μν ,DνB}〉 + h.c. (15)

+
ΔaF

4
〈B̄iγμγ5[V −

μν ,DνB]〉 + h.c.

+
as

2
〈B̄iγμV 0

μνDνB〉 + h.c.

For the construction of the O(p2) Lagrangian we need
additional building blocks, namely the chiral symmetry
breaking term χ which contains the quark mass matrix
M:

χ = 2B0M, M = diag (mu,md,ms) , (16)

χ+ = u†χu† + uχ†u, χ̃+ = χ+ − 1/3〈χ+〉. (17)

Using these definitions we can construct the second-order
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Lagrangian needed for our leading-loop calculation:

L
(2)
MB,t = t1〈B̄iγμ{V +

μν ,DνB}〉〈χ+〉 + h.c.

+t2〈B̄iγμ[V +
μν ,DνB]〉〈χ+〉 + h.c.

+t3〈B̄iγμ{{V +
μν , χ̃+},DνB}〉 + h.c.

+t4〈B̄iγμ[{V +
μν , χ̃+},DνB]〉 + h.c.

+t5〈B̄iγμ{[V +
μν , χ̃+],DνB}〉 + h.c.

+t6〈B̄iγμ[[V +
μν , χ̃+],DνB]〉 + h.c.

+t7〈B̄iγμ{V +
μν , {χ̃+,DνB}}〉 + h.c. (18)

+t8〈B̄iγμ[V +
μν , {χ̃+,DνB}]〉 + h.c.

+t9〈B̄iγμDνB〉〈V +
μν χ̃+〉 + h.c.

+t10〈B̄iγμV +
μν〉〈χ̃+DνB〉 + h.c.

+t11〈B̄iγμ{V 0
μν ,DνB}〉〈χ+〉 + h.c.

+t12〈B̄iγμ{{V 0
μν , χ̃+},DνB}〉 + h.c.

+t13〈B̄iγμ[{V 0
μν , χ̃+},DνB]〉 + h.c.

Note that the coupling t10 multiplies a non-Hermitian
strucure and can therefore be complex in general. Also,
this coupling will give a contribution to the form factor E
defined in eq. (6).

4 Results

As mentioned in the introduction, our calculation is in-
tended as a direct generalization of [6] to the three-flavor
case. Therefore, the only fields appearing as dynamical
degrees of freedom are the mesons and baryons from the
ground-state octets of flavor SU(3). The effects of all other
fields are (at least to the order we are working here) en-
coded in the (so far undetermined) LECs appearing in the
effective Lagrangians constructed above, in analogy to the
treatment of the baryon masses in [9,10]. Of course, the
problem is more urgent in a three-flavor calculation: The
threshold energy for, e.g., a KΣ state, which is included in
our calculation, is at about 1685MeV, while that of πΔ is
at 1370MeV, the π-Roper threshold at roughly 1580MeV,
and so on. Let us concentrate on the decuplet, which would
certainly be the most important resonant state due to the
small N − Δ mass splitting. It has been incorporated in
many studies employing three-flavor HBChPT, see, e.g.,
[11,12], and an extension of Infrared Regularization to the
case of dynamical decuplet fields has also been given in
the meantime [13]. For the observables calculated here,
however, the inclusion of explicit decuplet fields would
not render the theory more effective, since again a host
of new undetermined parameters would have to be intro-
duced (e.g., V ΔMB, V ΔΔ couplings, where V denotes
the tensor source field), of which there are already enough
to absorb the leading effects of resonances in our present
framework. It might therefore happen that some of our
LECs will be enhanced (comparing to natural size esti-
mates) due to important resonance contributions. On the
other hand, in order to study the momentum dependence

(a) (b)

(c) (d)

Fig. 1. Feynman diagrams contributing to leading-loop or-
der: the solid line denotes baryons, the dashed line denotes
pseudoscalar mesons and the dot represents an external tensor
field from the O(p0) Lagrangian coupling to the baryons and
mesons. The tree level diagrams are not shown here.

of the form factors, and in particular for the study of finite
volume effects, the explicit inclusion of the decuplet fields
will probably be inevitable in a three-flavor calculation.
These considerations are still work in progress.

The standard BChPT power counting formula [5] can
be written down as

D = 2L + 1 +
∑

n

(n − 2)N (n)
M +

∑
n

(n − 1)N (n)
MB , (19)

where D represents the chiral dimension of a Feynman di-
agram, L denotes the number of loops and N

(n)
M,MB counts

the number of vertices that stem from the meson and
meson-baryon Lagrangians of power pn, respectively. In
our case, one has to take into account the fact that the
lowest-order meson-baryon Lagrangian including symmet-
ric tensor fields starts at order O(p0) and thus, all leading
one-loop order diagrams are of O(p2). These topologies
are depicted in fig. 1.

From our calculation, we can extract the flavor-singlet
and flavor-octet generalized form factor As,v

B′B to O(p2) in
the forward case for different B′ and B. In this work, we
only show the results for the nucleon-channels, because all
expressions are rather lengthy and the complete list is only
of interest for practitioners of such calculations. The com-
plete set of results is, however, available electronically [14].
We note that some of these matrix elements have also been
calculated in the framework of partially quenched ChPT,
see refs. [15,16]. Our results are exact to leading one-loop
order O(p2). In our formulae, however, we display the full
loop functions, which also contain terms of higher order
in the meson mass (quark mass) expansion. We have ob-
served that the truncated leading one-loop results approxi-
mate the full loop functions rather badly for meson masses
already above ∼ 300MeV. In particular, the non-analytic
M3 contributions to the loops are far from negligible. As
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truncated at O(p2)
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Fig. 2. One-loop wave function renormalization factor for
Mπ = MK = Mη ≡ Msymm: full result (solid line) and trun-
cated results (dashed and dotted lines).

an example, we show the baryon one-loop wave function
renormalization factor at Mπ = MK = Mη ≡ Msymm

in fig. 2, and the truncated O(p2) (dashed) and O(p3)
(dotted) approximations to it. For the other graphs, the
situation is very similar. Therefore, to take the numeri-
cally important higher-order parts into account, we insist
to use the full loop functions everywhere, in accord with
the original proposal in [17]. As a side remark, we note
that the fact that Z 	 1 for meson masses much above
400MeV may cast doubts on the applicability of BChPT
in this regime. Projecting our effective Lagrangian onto
the SU(2) sector, and comparing our results for the one-
loop amplitudes with those derived in [6], we also obtain
matching relations for the SU(2) parameters av,s

2,0 and c
(r)
8,9

to the SU(3) parameters aD, aF , as and t
(r)
i .

The results for the generalized form factors As,v
B′B(0)

are presented in eqs. (24)–(27), while the matching rela-
tions can be found in eqs. (20)–(23). We have left out the
index r of the renormalized couplings t

(r)
i for better legi-

bility. In the matching relations, one could also replace the
strange quark mass by the Gell-Mann-Oakes-Renner rela-
tion 2B0ms = 2M2

K −M2
π to the order we are working in.

Note that the singlet form factors do not get contributions
from loop graphs at leading one-loop order. Also, note that
Av,1

np = Av,3
pp , Av,2

np = iAv,3
pp , Av,3

nn = −Av,3
pp , Av,8

nn = Av,8
pp .

av
2,0 = aD + aF

+16B0ms

(
t1 + t2 −

1
3
(2(t3 + t4) − t7 − t8)

)

+
M2

K

48π2F 2
0

[
aF (D2 − 6DF − 3F 2)

+aD

(
−7D2 + 2DF − 3F 2

)
−3

(
aD

(
1 + 7D2 − 2DF + 3F 2

)

+aF

(
1−D2+6DF +3F 2

))
log

(
MK

m0

)]
+O(M3

K), (20)

as
2,0 = as +

16
3

B0ms(3t11 + t12 − 3t13) + O(M3
K), (21)

cr
8(λ = m0) =

m2
0

(
4(t1+t2)+

2
3
(2(t3+t4)−t7−t8)

)
+O(M2

K), (22)

c9 =
2
3
m2

0(6t11 − t12 + 3t13) + O(M2
K). (23)

As
pp(0) =

as

2
+

8
3
M2

K(3t11 + t12 − 3t13)

+M2
π

(
4t11 −

8t12
3

+ 8t13

)
, (24)

As
nn(0) =

as

2
+

8
3
M2

K(3t11 + t12 − 3t13)

+M2
π

(
4t11 −

8t12
3

+ 8t13

)
, (25)

Av,3
pp = ZN

aD + aF

2
+

4
3

[
3(t1 + t2)(2M2

K + M2
π)

−2(2t3 + 2t4 − t7 − t8)(M2
K − M2

π)
]

+
IM (Mπ)

(24F 2
0 m2

0)

[
(D + F )(3(aD + aF )(D + F )

+8(ΔaD + ΔaF ))M2
π

−3(aD + aF )(4 + (D + F )2)m2
0

]

+
IM (MK)
(36F 2

0 m2
0)

[
2(−ΔaD(D − 3F ) − 9aF (D − F )2

+3aD(D − F )(D + 3F ) + 3(D + F )ΔaF )M2
K

−3(3aF −6aF (D−F )2+aD(3+2(D−F )(D+3F )))m2
0

]

+
IM (Mη)

(24F 2
0 m2

0)
(aD + aF )(D − 3F )2(m2

0 − M2
η )

− IMB(Mπ)
(48F 2

0 m2
0)

(D+F )M2
π

[
−16(ΔaD+ΔaF )(4m2

0−M2
π)

+3(aD + aF )(D + F )(−8m2
0 + 5M2

π)
]

−IMB(MK)
(36F 2

0 m2
0)

M2
K

[
2(D(ΔaD − 3ΔaF )

−3F (ΔaD + ΔaF ))(4m2
0 − M2

K)

+3(D−F )((aD−3aF )D+3(aD+aF )F )(−8m2
0+5M2

K)
]

+
IMB(Mη)
(48F 2

0 m2
0)

(aD + aF )(D − 3F )2M2
η

×(−8m2
0+5M2

η )+
IMBB(0,Mπ)

(16F 2
0 m2

0)
(aD+aF )(D+F )2M2

π

×(8m4
0 − 12m2

0M
2
π + 3M4

π)

+
IMBB(0,MK)

(12F 2
0 m2

0)
(D−F )((aD−3aF )D+3(aD+aF )F )

×M2
K(8m4

0 − 12m2
0M

2
K + 3M4

K)

−IMBB(0,Mη)
(48F 2

0 m2
0)

(aD + aF )(D − 3F )2M2
η
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×(8m4
0 − 12m2

0M
2
η + 3M4

η )

− (D + F )M4
π

(2304π2F 2
0 m4

0)

[
9(aD + aF )(D + F )(2m2

0 − M2
π)

+4(ΔaD + ΔaF )(6m2
0 − M2

π)
]

+
M4

K

(3456π2F 2
0 m4

0)

[
54aF (D − F )2(2m2

0 − M2
K)

−18aD(D2 + 2DF − 3F 2)(2m2
0 − M2

K)

+(D(ΔaD − 3ΔaF ) − 3F (ΔaD + ΔaF ))(6m2
0 − M2

K)
]

+
(aD + aF )(D − 3F )2(2m2

0M
4
η − M6

η )
(768π2F 2

0 m4
0)

, (26)

Av,8
pp = −ZN

aD − 3aF

2
√

3
− 4

3
√

3

[
3(t1 − 3t2)(2M2

K + M2
π)

+2(10t3 − 6t4 + t7 − 3t8 + 6t9)(M2
K − M2

π)
]

+
IM (Mπ)
(8F 2

0 m2
0)

√
3(aD − 3aF )(D + F )2(−m2

0 + M2
π)

+
IM (MK)

(12
√

3F 2
0 m2

0)

[
2(5DΔaD − 4aDD(D − 3F )

−3ΔaDF − 3DΔaF + 9FΔaF )M2
K

+(−27aF + aD(9 + 8D(D − 3F )))m2
0

]

− IM (Mη)
(24

√
3F 2

0 m2
0)

(aD − 3aF )(D − 3F )2(m2
0 − M2

η )

+
IMB(Mπ)
(16F 2

0 m2
0)

√
3(aD − 3aF )(D + F )2M2

π(8m2
0 − 5M2

π)

+
IMB(MK)

(6
√

3F 2
0 m2

0)
M2

K

[
(5DΔaD − 3ΔaDF

−3DΔaF + 9FΔaF )(4m2
0 − M2

K)

+2aDD(D − 3F )(−8m2
0 + 5M2

K)
]

+
IMB(Mη)

(48
√

3F 2
0 m2

0)
(aD − 3aF )(D − 3F )2M2

η (8m2
0 − 5M2

η )

+
IMBB(0,Mπ)

(16F 2
0 m2

0)

√
3(aD − 3aF )(D + F )2M2

π

×(8m4
0 − 12m2

0M
2
π + 3M4

π)

−IMBB(0,MK)
(3
√

3F 2
0 m2

0)
aDD(D − 3F )M2

K

×(8m4
0 − 12m2

0M
2
K + 3M4

K)

+
IMBB(0,Mη)
(48

√
3F 2

0 m2
0)

(aD − 3aF )(D − 3F )2M2
η

×(8m4
0 − 12m2

0M
2
η + 3M4

η )

−
√

3(aD − 3aF )(D + F )2(2m2
0M

4
π − M6

π)
(256π2F 2

0 m4
0)

+
M4

K

(1152
√

3π2F 2
0 m4

0)

[
−(5DΔaD − 3ΔaDF

−3DΔaF + 9FΔaF )(6m2
0 − M2

K)

+24aDD(D − 3F )(2m2
0 − M2

K)
]

−
(aD − 3aF )(D − 3F )2(2m2

0M
4
η − M6

η )

(768
√

3π2F 2
0 m4

0)
. (27)

5 Discussion and conclusion

In this work, we have calculated the flavor-singlet and
flavor-octet generalized form factor As,v

B′B in the forward
limit for three dynamical quark flavors. We have presented
the results for the nucleon channels including the full loop
functions, employing the covariant regularization scheme
of [17]. We have also calculated the matching relations
between the SU(3) parameters and the SU(2) parameters
introduced in [6]. Together with the information from two-
flavor lattice simulations and the corresponding results
of [6], these relations can be used as constraints on fitting
parameters when chiral extrapolations of three-flavor lat-
tice calculations of the matrix elements in eqs. (4), (5) are
performed. However, a word of caution is in order here.
It is well known that three-flavor baryon ChPT is only
poorly converging, mostly due to the large kaon and eta
masses, see, e.g., [9,18]. It is therefore reasonable to ex-
pect that a leading one-loop calculation as presented here
might not be sufficient for a satisfactory description of
lattice data near the physical regime.

Despite this known difficulty, there exist some ap-
proaches to lattice simulations where the chiral extrapola-
tion formulae derived here should be useful. The strategy
followed in [19,20] is to start from the SU(3)-symmetric
point where mu = md = ms and to approach the physi-
cal point keeping the average (singlet) quark mass fixed.
For realistic values of the quark masses, this corresponds
to octet meson masses of M2

symm = 1
3 (2M2

K + M2
π) ≈

(411MeV)2. So, in the vicinity of the symmetric point,
the kaon and eta masses are considerably smaller than
in the real world. As one can easily see from eq. (18),
only the constants t1, t2, t11 are relevant at the symmet-
ric point, while the other couplings only parametrize de-
viations from the SU(3) symmetry limit. In the case of
baryon masses, it has been argued in [21] that an accu-
rate extrapolation to the physical point can be obtained
already employing an expansion linear in the symmetry
breaking due to the quark masses, which amounts to a
linear extrapolation in M2

symm −M2
π . This seems to work

reasonably well and leads to so-called fan plots for the
baryon masses, shown in [21]. In the case of GPDs, how-
ever, one should expect that it is more important to take
the proper chirally nonanalytic behaviour for small pion
masses into account, because already the leading correc-
tion of O(p2) to these form factors features chiral loga-
rithms. This is not the case for baryon masses, where the
leading quark mass correction is just given by mass inser-
tions from local counterterms in the chiral Lagrangian.

In the following, we would like to argue that the men-
tioned type of lattice simulations is well suited for an ap-
plication of our extrapolation formulae, presented in the
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Fig. 3. The form factors A3
pp(Msymm) and A3

pp(M2
π)/

A3
pp(M2

symm) for different values for ΔaD, ΔaF . The expected
size of higher-order corrections is represented by the grey band,
generated as specified in the text, while the dotted line marks
the result for ΔaD = ΔaF = 0.

last section. To get a rough estimate of the size of possi-
ble higher-order corrections to these results for this case,
we consider the contributions from the graphs in figs. 1(a)
and (b), which turn out to start only at next-to-leading
loop order O(p3). They are proportional to the couplings
ΔaD,F , of which only the order of magnitude is (roughly)
known, see table 2 of [6] for the value of the corresponding
SU(2) parameter Δav

2,0. We vary these couplings in the
range −0.3 < ΔaD, ΔaF < 0.5, with all other couplings
fixed at typical values consistent with the analysis in the
SU(2) sector and earlier work on BChPT (aD = aF = 0.1,
m0 = 1GeV, D = 0.8, F = 0.5 and F0 = 0.09GeV) and
all ti set to zero. The generated band shown in fig. 3 should
give a good impression of the expected size of higher-order
contributions. In the lower panel of fig. 3, the singlet quark
mass is kept fixed, while the pion mass is varied, in anal-
ogy to the “fan plots” shown in [21]. Regarding the rather
generous range for the variation of the LECs ΔaD, ΔaF ,
and earlier experiences with the convergence properties

of three-flavor chiral expansions, the band in the lower
panel indicates an improved stability to higher-order cor-
rections, which leaves us optimistic that the presently
derived chiral extrapolation formulae provide a realistic
description for the special type of lattice simulations de-
scribed above. In principle it is straightforward to extend
the analysis to a next-to-leading one-loop calculation. On
the other hand, some additional coupling constants will
appear if one pushes the calculation to higher orders, and
one would have to specify the individual baryon masses
in the loop functions, which complicates the calculations
a lot. Even at the order we are presently working, it will
require an enormous amount of three-flavor lattice data
to be able to pin down all of our LECs t

(r)
i . Therefore, we

defer the extension of the present results to a later commu-
nication. In our opinion, the most promising strategy for
the moment is to stay with the results as derived here, and
to first concentrate on a better understanding of the two-
flavor sector, e.g., by analyzing higher-order corrections
to the existing calculations [6,22,23]. There, the number
of new undetermined parameters is much more limited,
and convergence is a less severe issue than in the three-
flavor framework. Work along this direction is already in
progress [24,25].

This work was supported by SFB/TR-55.

Appendix A. Loop functions

In sect. 4, we have used the following abbreviations for
the loop functions:

IM (M) =
M2

8π2
ln α, (A.1)

where α = M/m0. Note that we use μ = m0 for the renor-
malization scale everywhere, following the original pro-
posal of Infrared Regularization by Becher and Leutwyler.
Furthermore,

IMB(M) =
1

16π2

[
(2 ln α−1)

α2

2
+α

√
4−α2 arccos

(
−α

2

)]
. (A.2)

Moreover, the renormalized three-point function in In-
frared Regularization, taken at Δ2 = 0, is given by

IMBB(0,M) =

− 1
32π2m2

0

[
2 ln α+1− 2α√

4 − α2
arccos

(
−α

2

)]
. (A.3)

The nucleon wave function renormalization factor, at the
one-loop level, is given by

ZN = 1 − M2
π

3(D + F )2

(32π2F 2
0 )

−M2
K

5D2 − 6DF + 9F 2

(48π2F 2
0 )

− M2
η

(D − 3F )2

(96π2F 2
0 )

−3(D + F )2M3
π(−3m2

0 + M2
π)

(16π2F 2
0 m3

0

√
4 − M2

π

m2
0
)

arccos
(
− Mπ

2m0

)
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−
(D − 3F )2M3

η (−3m2
0 + M2

η )

(48π2F 2
0 m3

0

√
4 − M2

η

m2
0
)

arccos
(
− Mη

2m0

)

− (5D2−6DF +9F 2)M3
K(−3m2

0+M2
K)

(24π2F 2
0 m3

0

√
4−M2

K

m2
0

)
arccos

(
−MK

2m0

)

+
3(D + F )2M2

π(−3m2
0 + 2M2

π)
(32π2F 2

0 m2
0)

log
(

Mπ

m0

)

+
(5D2 − 6DF + 9F 2)M2

K(−3m2
0 + 2M2

K)
(48π2F 2

0 m2
0)

log
(

MK

m0

)

+
(D − 3F )2M2

η (−3m2
0 + 2M2

η )
(96π2F 2

0 m2
0)

log
(

Mη

m0

)
. (A.4)
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