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Abstract. Using resummation techniques based on the 2PI effective action we study the scalar ¢* theory
at finite temperature. We present an analytical as well as numerical study for a renormalized two-loop
truncation of the action. Both the spectral properties and critical behaviour of the theory are investigated.
Within the truncation, we explicitly check that the physical observables are UV-finite.

PACS. 11.10.Wx Finite-temperature field theory

1 Introduction

The thermodynamical properties of a physical system can
be extracted from the effective potential, which is given
as a function y[¢] of a condensate field ¢. In the thermo-
dynamic limit, its stationary point defines the free energy
F as
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Once the free energy is known, all other thermodynamic
quantities, such as the entropy or energy density, can be
easily derived. At finite temperature collective phenomena
are known to modify substantially the properties of the el-
ementary excitations, so the use of a perturbative expan-
sion around the free theory to calculate the effective poten-
tial becomes questionable and often leads to inconsisten-
cies. One needs then to consider nonperturbative schemes.
For situations where the effects of the collective phenom-
ena can be conveniently captured by a suitable modifi-
cation of the two-point functions, resummation schemes
based on the 2PI effective action can be very useful [1,2].
The 2PI effective action consists of a reorganization of the
perturbative expansion around dressed two-point func-
tions, which are determined self-consistently for a given
approximation/truncation. The technique is systematic
and allows to go beyond mean-field and Hartree-type ap-
proximations, which are also included at lowest orders in
the truncation. In this work we study the thermodynam-
ics of the scalar ¢* theory using a two-loop truncation of
the 2PT effective action.
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2 Two-loop truncation of the 2Pl effective
action

For the scalar ¢* theory the 2PI effective action is usually
parametrized as [3]
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with ¢ and G generic one- and two-point functions and
A- B ashorthand notation for the convolution of A and B.
The term I3,; contains the interactions and can be written
as an expansion in terms of two-particle-irreducible (2PI)
diagrams. Up to two-loops it is given by
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where the Feynman rules are:
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Within the approximation, “physical” one- and two-point
functions ¢ and G are determined self-consistenly as the
stationary points of the 2PI effective action, i.e.
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The stationary conditions (4) turn into a set of coupled
implicit equations for G and ¢ which have to be solved
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in order to calculate any physical quantity. In particu-
lar, the knowledge of the dressed two-point function G
allows one to calculate the effective potential as v[¢] =
TV Typi[6, Gl6].

One of the main complications that arises when deal-
ing with truncations of the 2PI effective action is the fact
that two- and higher n-point functions are not uniquely de-
fined [4]. In particular, a given truncation defines two pos-
sible two-point functions and three four-point functions.
One of the two-point functions is given by the stationary
value G, while the other is related to the inverse curvature
of the effective potential as G~* = TV ~1[62y[¢]/d¢2]. The
three four-point functions and their corresponding vertices
are given in terms of coupled Bethe-Salpeter—like equa-
tions [4]. Concerning renormalization, the ambiguity in
the definition of the vertex functions implies that there
are more than one counterterm of a given type [5]. A
given counterterm is determined by applying a renormal-
ization condition to the corresponding vertex. For consis-
tency, identical renormalization conditions are applied to
all counterterms of the same type. It is simpler to consider
renormalization conditions applied at a reference tempera-
ture T}, for which the physical field configuration is ¢, = 0.
This requires that Ty > T, if a critical temperature T, ex-
ists. Deﬁnmg the self-energy from Dyson’s equation XY=

G- G , the renormalized equations for X and ¢ are
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with f; a shorthand notation for the standard sum-
integral over momentum K at temperature 7', and

/ G(K
The bar in ¢ has been omitted in the first equation to
stress the fact that it can be solved for any value. This
is needed, for instance, to calculate the effective potential
v[¢]. The explicit expressions for the counterterms dm3,
dm3, 6o, 0A2 and dA\y can be found in ref. [4]. With
those counterterms it can be shown that, for any value of
T and ¢, the results for G, ¢ and [¢] are UV-finite.

G(K + P). (7)

3 Numerical analysis

The gap and field equations (5) and (6) are solved numer-
ically in Minkowski space. We split the self-energy into a
local and a non-local part as ¥(P) = X! + X" (P). The
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Fig. 1. Spectral function p(pg,0) for A = 1, ¢/m = 1 and
T./m =1 and several temperatures.

momentum-dependent part is expanded in both pg and |p|
using N Chebyshev polynomials as
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The solution to the gap and field equations is obtained
by solving the matrix equation for the N? coefficients ¢;;
plus the local terms X! and/or ¢? by means of a multi-
dimensional Newton-Raphson method. This numerical al-
gorithm is fairly stable and converges after few iterations.
For a given N, the numerical solution oscillates around
the “full” solution, which is convenient for the calculation
of integrated quantities, such as the effective potential.
Unlike lattice-based methods, this technique also allows
the use of large (small) UV (IR) cutoffs, which is useful
for the study of renormalization and/or critical phenom-
ena. Although numerically more expensive, the advantage
of solving the equations in Minkowski space is that one
can obtain directly spectral properties of the system with-
out the need of analytic continuation. In particular, the
spectral function p(pg, |p|) can be constructed from the
knowledge of the real and imaginary parts of the retarded
self-energy, which come directly from solving eq. (5) (see
fig. 1 for an example result at several temperatures). The
width, the position of the quasiparticle pole and the effect
of multiparticle contributions can be adequately studied
with the presented algorithm.

We can also look at the critical behaviour in a system
with broken symmetry. A simple quantity to compute is
the critical temperature which can be read off the two-
point functions at vanishing effective mass M. As we dis-
cussed previously there are two possible two-point func-
tions (G and &), for which the corresponding effective
masses are (in the symmetric phase)

i (IpD)- (8)
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Fig. 2. Critical temperatures for several couplings (7. /m = 5).
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Fig. 3. UV cutoff dependence for A = 3 (T../m = 5).
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Fig. 4. Field expectation value ¢ as a function of T for A\ = 3
and T, /m = 5.

Starting from T, and reducing the temperature, the crit-
ical values T, and T. are found when M2 and M? van-
ish. The results for several couplings are shown in fig. 2.
We can also vary the UV cutoff in the calculation of the
critical temperatures and therefore check the validity of
the renormalization procedure (see fig. 3). We find that
both quadratic and logarithmic divergences (present, re-
spectively, in T, and Tc) are properly renormalized and
hence the renormalization is satisfactory.

Solving in addition the field equation (6) allows us to
study the phase transition. In fig. 4 we show the behavior
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Fig. 5. Effective potential for A = 3 and T../m = 5.

of the order parameter ¢ as a function of the temperature.
We see that the transition is clearly of second order. This
agrees with lattice studies as well as results from other
non-perturbative approaches [6]. So, unlike mean-field or
Hartree approximations, which predict the wrong order for
the transition, methods based on the 2PI effective action
give the correct result. A similar conclusion is reached by
computing directly the effective potential y[¢] (see fig. 5).
Finally, we checked that ¥[@#], from which a renormalized
free energy and pressure can be extracted, is indeed cutoff
independent.

4 Conclusions and prospects

We have shown for a simple scalar ¢* theory that the
resummation methods based on the 2PI effective actions
can be used to obtain physically meaningful (i.e., renor-
malized) information about the thermodynamics, spec-
tral properties and phase structure of a given system
beyond mean-field or Hartree approximations. The nat-
ural next step is to apply the technique to theories phys-
ically more relevant, specially to those for which most
non-perturbative finite-temperature studies are limited to
mean-field and/or Hartree-type approximations. Of par-
ticular importance to heavy-ion phenomenology are chiral
effective theories such as sigma or Nambu-Jona-Lasinio—
type models (some work in that direction is underway [2])
and gauge theories'.
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