Skip to main content

Advertisement

Log in

A generation-attraction model for renewable energy flows in Italy: A complex network approach

  • Regular Article
  • Application
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In recent years, in Italy, the trend of the electricity demand and the need to connect a large number of renewable energy power generators to the power-grid, developed a novel type of energy transmission/distribution infrastructure. The Italian Transmission System Operator (TSO) and the Distribution System Operator (DSO), worked on a new infrastructural model, based on electronic meters and information technology. In pursuing this objective it is crucial importance to understand how even more larger shares of renewable energy can be fully integrated, providing a constant and reliable energy background over space and time. This is particularly true for intermittent sources as photovoltaic installations due to the fine-grained distribution of them across the Country. In this work we use an over-simplified model to characterize the Italian power grid as a graph whose nodes are Italian municipalities and the edges cross the administrative boundaries between a selected municipality and its first neighbours, following a Delaunay triangulation. Our aim is to describe the power flow as a diffusion process over a network, and using open data on the solar irradiation at the ground level, we estimate the production of photovoltaic energy in each node. An attraction index was also defined using demographic data, in accordance with average per capita energy consumption data. The available energy on each node was calculated by finding the stationary state of a generation-attraction model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. UN world urbanization prospect: the 2014 revision

  2. C.A. Kennedy, N. Ibrahim, D. Hoornweg, Nature Climate Change 4, 343 (2014)

    Article  ADS  Google Scholar 

  3. http://www.se4all.org/

  4. S.T. Chen, H.I. Kuo, C.C. Chen, Energy Policy 35, 2611 (2007)

    Article  Google Scholar 

  5. J.E. Payne, Appl. Energy 87, 723 (2011)

    Article  Google Scholar 

  6. B. Liddle, S. Lung, Global Environmental Change, 24, 42 (2014)

    Article  ADS  Google Scholar 

  7. C. Kennedy, I. Stewart, A. Facchini, I. Cersosimo, R. Mele et al., Proc. Natl. Acad. Sci. 112, 5985 (2015)

    Article  ADS  Google Scholar 

  8. H. Lund, B.V. Mathiesen, Energy 34, 524 (2009)

    Article  Google Scholar 

  9. S. Hammer, L. Kamal-Chaoui, A. Robert, M. Plouinet, Cities and Green Growth: A Conceptual Framework. OECD Regional Development Working Paper 2011/08, OECD Publishing. http://dx.doi.org/10.1787/5kg0tflmzx34-en

  10. World Bank, 2013. Planning, Connecting, and Financing Cities—Now: Priorities for City Leaders. Washington, DC: World Bank. DOI: 10.1596/978-0-8213-9839-5

  11. International Energy Agency (2011) Key world energy statistics 2011, Available: http://www.iea.org/textbase/nppdf/free/2011/key_world_energy_stats.pdf

  12. M.F. Akorede, H. Hizam, E. Pouresmaeil, Ren. Sust. Energy Rev. 14, 724 (2010)

    Article  Google Scholar 

  13. O. Ozgener, A. Hepbasli, Ren. Sust. Energy Rev. 11, 482 (2007)

    Article  Google Scholar 

  14. T. Beatley, J. Urban Technol. 14, 31 (2007)

    Article  Google Scholar 

  15. M.L. Parisi, S. Maranghi, R. Basosi, Ren. Sust. Energy Rev. 39, 124 (2014)

    Article  Google Scholar 

  16. A. Dessì, M. Calamante, A. Mordini, M. Peruzzini, A. Sinicropi, R. Basosi, F. Fabrizi de Biani, M. Taddei, D. Colonna, A. Di Carlo, G. Reginato, L. Zani. Organic dyes with intense light absorption especially suitable for application in thin-layer dye-sensitized solar cells Chemical Communications, 50, 09 (2014)

    Google Scholar 

  17. TERNA S.p.a. and Gruppo Terna (2011) Dati Statistici Sull’Energia Elettrica in Italia, 2010, Available: http://www.terna.it/LinkClick.aspx?fileticket=rF4Xri6AY8c%3D&tabid=3664&mid=17871

  18. M. Bravi, M.L. Parisi, E. Tiezzi, R. Basosi, Energy 36, 4297 (2011)

    Article  Google Scholar 

  19. G.L. Giannuzzi, L. Valori, R. Basosi, Lo chiamavano il Paese del Sole. Il Fotovoltaico italiano tra spontaneo insediamento e pianificazione (Aracne, 2014), p. 184

  20. GSE Statistical Office. GSE Statistical report 2010 – Renewable energy power plants, (yr2011). Available: http://www.gse.it/it/GSE_Documenti/Statistical%20report%202010.pdf

  21. TERNA S.p.a. Verso la rete del futuro, nuove idee per una rete elettrica intelligente e a basso impatto ambientale (2012). Available: http://www.terna.it/LinkClick.aspx?fileticket=rF4Xri6AY8c%3D&tabid=3664&mid=17871

  22. A. Facchini, RES NOVÆ: new things and concepts in the smart city of Bari, in R. Mele, O. Nello (eds.), Cities in the 21st Century (Taylor & Francis, 2016)

  23. S. Bolase, Smart Grids: Infrastructure, Technology, and Solutions (CRC Press, 2012)

  24. L. Fangxing, et al., Smart transmission grid: Vision and framework, Smart Grid - IEEE Transactions on, 1, 168 (2010)

    Article  Google Scholar 

  25. M. Kolhe, The Electricity J. 25, 88 (2012)

    Article  Google Scholar 

  26. D. Connolly, H. Lund, B.V. Mathiesen, M. Leahy, Appl. Energy 87, 1059 (2010)

    Article  Google Scholar 

  27. A.A. Bazmi, G. Zahedi, A review, Ren. Sust. Energy Rev. 15, 3480 (2011)

    Article  Google Scholar 

  28. H. Halu, A. Scala, A. Khiyami, M.C. Gonzalez, Sci. Adv. 2, e1500700 (2016)

    Article  ADS  Google Scholar 

  29. R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  Google Scholar 

  30. G. Caldarelli, in Scale free networks: complex webs in nature and technology (Cambridge University Press, Cambridge, 2007), p. 328

  31. GSE Atlasole, Available: http://atlasole.gse.it/atlasole/

  32. TERNA Dati statistici, Available: http://www.terna.it/default.aspx?tabid=418

  33. ENEA Archivio climatico DBT, Available: http://clisun.casaccia.enea.it/Pagine/Radiazione.htm

  34. ISTAT Codici dei comuni, delle provincie e delle regioni, Available: http://www.istat.it/it/archivio/6789

  35. Comuniverso, Available: http://www.comuniverso.it/

  36. ENEA - Archivio dei comuni, Available: http://clisun.casaccia.enea.it/Pagine/Comuni.htm

  37. K.G. Goulias, Transport system planning: methods and applications (CRC Press, U.S.A, 2003), p. 456

  38. F. Indovina, Dalla città diffusa all’arcipelago urbano, (Franco Angeli, Milano, 2009)

  39. SAPEI il cavo dei record, Available: http://www.sapei.it/Home.aspx

  40. Joint Research Centre, Institute for Energy and Transport, European Commission, Photovoltaic Geographical Information System, Available: http://re.jrc.ec.europa.eu/pvgis/

  41. O. Häggström, Finite Markov chains and algorithmic applications (Cambridge University Press, Cambridge, 2002), p. 124

  42. P. Asmus, The Electricity Journal 23, 78 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Basosi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valori, L., Giannuzzi, G., Facchini, A. et al. A generation-attraction model for renewable energy flows in Italy: A complex network approach. Eur. Phys. J. Spec. Top. 225, 1913–1927 (2016). https://doi.org/10.1140/epjst/e2016-60019-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60019-3

Navigation