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Abstract. Networks provide a powerful way of modelling the dynamics
of complex systems. Going beyond binary relations, embracing n-ary
relations in network science can generalise many structures. This starts
with hypergraphs and their Galois structures. Simplicial complexes
generalise hypergraphs by adding orientation. Their multidimensional
q-connectivity structure generalises connectivity in networks. Hyper-
simplices generalise simplices by making the relational structure ex-
plicit in the notation. This gives a new way of representing multilevel
systems and their dynamics, leading to a new fragment-recombine oper-
ator to model the complex dynamics of interacting multilevel systems.

1 Introduction

Over the past decades networks have emerged as a powerful way of representing
complex systems. It is suggested that network science will become even more powerful
if it embraces n-ary relations between any number of vertices. This is very natural
since it unifies well known structures in the network family as shown in Fig. 1. Less
well known in the network community are simplicial families and hypernetworks,
even though these are natural generalisations of networks and multiplex networks. It
will be shown that hypersimplices and hypernetworks give a new way of representing
multilevel objects and their dynamics. This allows the definition of new multilevel
operations on multilevel systems with potentially rich mathematical properties and
applications.

2 Hypergraphs

Rather remarkably, with some notable exceptions, the network community has barely
engaged with n-ary relations between many vertices. For example in Fig. 2(a) the
musical chord of A minor is made up of the notes {A, C, E}, and all these notes are
required. For example, removing A from the chord of A minor gives {C,E}. This is the
same as removing the note G from the chord of C major, {C,E,G} {G} = {C,E} =
{A,C,E} {A}. Thus the notes needed to make the chord of A minor are bound
together by a 3-ary relation, and the chord is heard as a Gestalt, or whole. Play just
the notes C and E and you get neither the chord of A minor nor the chord of C major.

http://www.epj.org/
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Fig. 1. The hypernetwork family of relational structures.

Fig. 2. 3-ary relations on musical notes make chords.

Fig. 3. The dual Berge hypergraphs.

Claude Berge gave the following definition [3,4]. Let X = {x1, x2, ..., xn} be a
finite set. A hypergraph on X is a family H = (E1, E2, ..., Em) of subsets of X such
that (1) Ei �= ∅, and (2)

⋃m
i=1Ei = X. The elements x1, x2, ..., xn are called vertices,

and the sets Ei are the edges of the hypergraph.
Figure 3(c) shows a relation R between vertices, X and edges E in Berge’s book.

Figure 3(a) shows the hypergraph here denoted as HE(X,R) which has edges Ej as
sets of vertices from X. Figure 3(b) shows the dual hypergraph HX(E,R).
Hypergraphs give a way of modelling n-ary relations where n can be any positive

number. For example, Fig. 2(c) shows the chords C major and A minor as intersecting
sets, or hypergraph edges. The generalisation of graphs to hypergraphs is shown on
the left of Fig. 1.

3 The Galois connection

Let R be a relation between A and B. Let R(a) = {b | for all b in B with aR b} and
R(b) = {a | for all a in A with aR b}. Then HA(B,R) def= {R(a)| for all a in A} and
HB(A,R)

def
= {R(b)| for all b in B} are called the dual hypergraphs of R.
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Fig. 4. Constructing the pair {mouse, hair, deer, camel} ↔ {brown, quadruped, vegetarian}.

Let A′ be a subset of A, A′ ⊆ A and let B′ be a subset of B, B′ ⊆ B. Let

R(A′) def= { b | for all b in B with b related to all a in A′} = ⋂a∈A′ R(a)

R(B′) def= { a | for all a in A with a related to all b in B′} = ⋂b∈B′ R(b)

For any A′ ⊆ A let B′′ = R(A′). For B′′ �= ∅ let A′′ = R(B′′). Then (A′′, B′′) is
defined to be a Galois pair of R, also written as A′′ ↔ B′′. Let

HA(B,R) = {B′′| there exists a Galois pair A′′ ↔ B′′}, and
HB(A,R) = {A′′| there exists a Galois pair A′′ ↔ B′′}. Then:

Proposition (Galois Connection)

(i) HA(B,R) ⊆ HA(B,R) and HB(A,R) ⊆ HB(A,R), and
(ii) There is a one-to-one correspondence between HA(B,R) and HB(A,R).
HA(B,R) and HB(A,R) are defined to be the dual Galois hypergraphs of the relation
R between A and B.
This is illustrated in Fig. 4 where A is a set of animals and B is a set of descrip-

tive features. Let A′={hare, deer}. Then as shown in Fig. 4(a) R(A′) = {brown,
quadruped, vegetarian} = B′′. The left of Fig. 4(b) shows that R(B′′) = {mouse,
hare, deer, camel} = A′′. Thus, starting with A′ def= {hare, deer} we have constructed
the Galois pair

A′′ = {mouse,hare,deer, camel} ↔ {brown, quadruped, vegetarian} = B′′.
By construction A′′ is “maximal”, the largest set related to all the b in B′′. B′′
is also “maximal”, since every b related to every member of A′′ is a member of
B′′. This follows from A′′ being a superset of A′: A′′ ⊇ A′ implies ∩a∈A′′R(a) ⊆
∩a∈A′R(a) = B′′.
Figure 5 illustrates the connection between the Galois pair just formed. On the

left are hypergraph edges for the four animals forming a star with their three shared
features as a hub. On the right the three features form a star with the four animals
as a hub. The hubs form the Galois pair.
Figure 6(a) shows Escher’s picture Sky and Water in which the birds at the top

of the picture seem to change into fish at the bottom. Figure 6(b) shows the various
shapes that appear in the picture.
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Fig. 5. The Galois pair as a star-hub configuration.

Fig. 6. The shapes and features abstracted from Escher’s Sky and Water.

Table 1 below shows a relation between the set of thirty nine shapes and a set of
twelve descriptors. The Galois pairs correspond to what are called maximal rectangles
in the incidence matrix. Note that the rows of the incidence matrix can be swapped
without losing information and the columns can be swapped without losing informa-
tion. If A′′ and B′′ form a Galois pair the rows can be swapped so that all of those
corresponding to A′′ are contiguous. Similarly the columns can be swapped so that
all the columns corresponding to B′′ are contiguous. When this is done the entries
corresponding to A′′ and B′′ in the matrix form a block of ones. These blocks are
called maximal rectangles because rearranging other rows and columns cannot make
them bigger.
In Table 1 the features and shapes have been arranged to show some of the larger

maximal rectangles corresponding to star-hub Galois pairs, including:

〈1, 2, 3, 4, 5, 6〉 ←→ 〈scales, mouth, gills, fish-tails, fins, fish-shape, eye〉
〈1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13〉 ←→ 〈fish-tails, fins, fish-shape, eye〉
〈21, 22, 23, 24, 25, 26, 28, 29〉 ←→ 〈eye, duck-shape, two-wings, feathers,
beak, legs〉
〈21, 22, 23, 24, 25, 26, 28, 29, 27, 31, 32, 33〉 ←→ 〈eye, duck-shape, two-wings〉
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Table 1. The incidence matrix for the animal – feature relation.

Fig. 7. Simplices generalise network edges to multidimensional space.

There are other Galois pairs whose rectangles are not outlined in Table 1, e.g.

〈1, 2, 3, 4, 5, 6, 8, 9, 10〉 ←→ 〈mouth, gills, fish-tails, fins, fish-shape, eye〉
〈21, 22, 23, 24, 25, 26, 28, 29, 27〉 ←→ 〈eye, duck-shape, two-wings, feathers,
beak〉
〈1, 2, 3, 4, 5, 6, 8, 9, 10, 7〉 ←→ 〈mouth, gills, fins, eye〉

Galois pairs play an important role in the move from binary to n-ary relations [8,9].

4 Simplicial families and complexes

Hypergraphs provide an excellent way of representing n-ary relations. Their set-
theoretic nature makes it easy to formulate structures such as the Galois pairs. How-
ever there is the problem. For example, when R is a relation such as “likes” on a set
of people, since {a, b} = {b, a} it follows that if a likes b then b likes a. In general this
is not true and it is necessary for edges to be oriented to reflect asymmetry. This is
achieved in networks which allow 〈a, b〉 �= 〈b, a〉.
In algebraic topology, given a set of vertices V , an abstract p-simplex is an or-

dered subset of those vertices 〈v0, v1, ..., vp〉. A p-simplex has an associated geometric
realisation as a p-dimensional polyhedron, as shown in Fig. 7. A set of simplices is
called a simplicial family.
The orientation of simplices can be very important and in general

〈..., vi, ..., vj , ...〉 �= 〈..., vi, ..., vj , ...〉. This is what distinguishes simplices from hyper-
graph edges. A hypergraph can be made into a simplicial family as follows. Let V be
the vertex set of a hypergraph. Let the members of V have an arbitrary but fixed
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Fig. 8. q-connected simplices.

numbering, v(1), v(2), v(3), etc. Call this the natural ordering. Let the hypergraph edge
{..., vi, ..., vj , ...} have the natural ordering if for all i and j, there exists v(α) = vi and
v(β) = vj such that α < β for i < j. In this way every hypergraph can be considered
to be a simplicial family.
A q-simplex σ=〈v0, v1, ..., vq〉 is a q-dimensional face of σ′=〈v′0, v′1, ..., v′p〉 if

{v0, v1, ..., vq} ⊆ {v′0, v′1, ..., v′p}, e.g. a tetrahedron has four 2-dimensional faces (tri-
angles), six 1-dimensional faces (edges) and four 0-dimensional faces (vertices).
A set of simplices with all its faces is a simplicial complex. Simplicial complexes

are used extensively in algebraic topology but this important aspect of hypernetworks
will not be developed here. For more details see (Johnson, 2014 [9]).
Two simplices are said to be q-near when they share a q-dimensional face. Two

simplices are said to be q-connected if there is a chain of pairwise q-near simplices be-
tween them. For example, in Fig. 8(a) the 5-dimensional simplices σ1 and σ2 are
1-near, and σ1 and σ4 are 1-connected through σ2 and σ3. In Fig. 8(b) the 6-
dimensional simplices σ5 and σ6 share a tetrahedral face and are 3-near. σ5 and
σ9 are 3-connected through σ6, σ7 and σ8, even though they share no vertices.

5 Q-analysis

Let F be a simplicial family. The dimension of the family is the highest dimension of
all its simplices. Being q-connected is an equivalence relation on the set of p-simplices
of F , p ≥ q, and partitions them into sets of q-connected components. A listing of
those q-connected components for each q from the dimension of F to zero is called a
Q-analysis, e.g. for Escher’s Sky and Water animal-feature relation the Q-analysis is:

q=6 {1, 2, 3, 4, 5, 6}
q=5 {1, 2, 3, 4, 5, 6, 8, 9, 10} {21, 22, 23, 24, 25, 26, 28, 29}
q=4 {1, 2, 3, 4, 5, 6, 8, 9, 10} {21, 22, 23, 24, 25, 26, 28, 29, 27}
q=3 {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 7} {21, 22, 23, 24, 25, 26, 28, 29, 27}
q=2 {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 7} {21, 22, 23, 24, 25, 26, 28, 29, 27, 31, 32, 33}
q=1 {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 7} {21, 22, 23, 24, 25, 26, 28, 29, 27, 31, 32, 33}
q=0 {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 7, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28,

29, 27, 31, 32, 33, 34, 35, 36, 37, 38}
Figure 9 shows a graphical way of displaying theQ-analysis using skyscraper diagrams.
The top diagram shows that the bird and fish shapes form distinct components.
Removing the “eye” descriptor creates two disconnected subfamilies, one with fish
shapes and the other with duck shapes. Thus the transition from ducks at the top of
Escher’s picture to the fish at the bottom does not involve morphing from one shape
to the other. Instead the picture is tiled by shapes, half of which get more duck-like
towards the top and half of which get more fish-like towards the bottom.
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Fig. 9. The skyscraper diagrams for the shapes – features Q-analyses.

Table 2. The most popular answers selected by the 45 students.

majority number of majority number of majority number of majority number of
answer students answer students answer students answer students
q1 – C1 43 96% q6 – F6 24 53% q11 – F11 37 82% q16 – D16 31 69%
q2 – B2 32 71% q7 – C7 40 89% q12 – C12 41 91% q17 – G17 42 93%
q3 – A3 45 100% q8 – D8 26 58% q13 – B13 35 78% q18 – D18 33 73%
q4 – G4 34 76% q9 – E9 36 80% q14 – D14 30 67% q19 – C19 30 67%
q5 – C5 45 100% q10– A10 34 76% q15 – F15 26 58% q20 – F20 36 80%

6 Example: Detecting hidden information by connectivity

In a multiple choice test, 45 students answered 20 questions. For each question, qi
they selected 1 from 7 answers, Ai, Bi, Ci,Di, Ei, Fi, Gi. Usually in multiple choice
tests the majority of students get the correct answers. The most popular answers are
shown in Table 2. This shows that for all but three of the questions, more than 66% of
the students chose the same answer. For questions q6, q8 and q15 the answers selected
for were F6 (53%), D8 (58%) and F15 (58%) respectively. Are these answers correct?
Let σ(si) be the simplex with the answers of student si as vertices, and FS(Q;R)

be the family {σ(si)|i = 1, ..., 45}. Its Q-analysis is given as the skyscraper diagram
in Fig. 10. This shows that six students s42, s16, s43, s4, s32, s19 all gave exactly the
same answers and had simplex:

σ∗
def
= 〈C1, B2, A3, G4, C5, E6, C7, D8, E9, A10, F11, C12, B13, D14, F15, D16, G17, D18, C19, F20〉.

Generally good students will be highly connected through correct answers, while poor
students will be relatively disconnected because their incorrect answers are scattered
between six distractors. This suggests the vertices of σ∗ are all correct answers.
〈D8〉 and 〈F15〉 are both vertices of σ∗ suggesting that they are correct answers,

despite only being selected by 58% of the students. However, the 53% majority an-
swer 〈F6〉 is not a vertex of σ∗, with 〈E6〉 selected instead by these six students.
There are no other 19-connected components (students sharing 20 answer vertices as a
19-dimensional simplex) which suggests the minority answer 〈E6〉 is correct.
At the left of Fig. 10 the students, s12, s26, s38 and s41 are the most disconnected

and likely to be the weakest and make the most errors. They all gave the majority
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Fig. 10. Q-analysis of the student-questions relation, FS(Q;R) showing connected students.

answer. Of the 14 students on the left of Fig. 10, s12 to s28, twelve (86%) gave the
majority answer 〈F6〉. This is further strong evidence that this answer is incorrect.
Looking back to the top right of Fig. 10, of the twenty most highly connected

students s20 to s1, sixteen (75%) gave the minority answer, suggesting it is correct.
Thus the Q-analysis gives very strong evidence that the majority answer 〈F6〉 is

incorrect and that the minority answer 〈E6〉 is correct.
Having reached this conclusion solely on the basis of the Q-analysis, it can be

tested by looking at Question 6: “A body moves in such a way that its speed (in
miles per hour) after t hours is 4t3. How far has it travelled after 3 hours?” It gives
the options (A6)16 miles, (B6) 27 miles, (C6)54 miles, (D6) 64 miles, (E6) 81 miles,
(F6) 108 miles, and (G6) 243 miles. The stronger students correctly integrated 4t

3

and substitute 3 into t4 to give 81 miles (E6), while the weaker student incorrectly
substituted 3 directly into 4t3 to obtain 108 miles (F6). This example shows how
multidimensional connectivity can be used to find hidden information.

7 Backcloth, traffic and q-transmission

Complex systems science requires qualitative (relational) and quantitative (numeri-
cal) information to be combined. Let F be a simplicial family and let f : σ → R where
R is a number system such as the reals. For example, let σ be a choir with vertices
singers, and let f(σ) be the time they take to sing a song. Then, as R. H. Atkin
suggested, F acts as a relatively static backcloth supporting the relatively dynamic
traffic of the system [1,2]. Other examples include a backcloth of company simplices
supporting a traffic of sales and payments.
The concept of q-transmission is based on the idea that q-connectedness constrains

the dynamics of system behaviour, where connected simplices can “infect” each other
with changes in their traffic. For example, let the simplices in Fig. 11 be committees
with vertices committee members. Four people are members of both σ1 and σ2. When
committee σ2 meets these four bring their memory of the business of committee
σ1. Since there are four people their individual (vertex) memories will be reinforced
within the group (tetrahedron), e.g. one person may make mention something which
the others can reinforce and add to. Thus committee σ2 is ‘infected’ with information
from committee σ1. Similarly, committee σ3 can be infected with information from
committee σ1, even though σ1 and σ3 share no vertices. Committee σ6 only shares one
member with committee σ3 and the transmission of information will be weaker with,
potentially, less information being transmitted and the veracity of that information
being more questionable. In contrast, committee σ4 shares a tetrahedral face with σ3
supporting the transmission of more and higher quality information. Thus, although
committee σ5 is “more distant” from committee σ1 than σ6 the quantity and quality
of the information it receives from σ1 may be superior.
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Fig. 11. Information transmission through q-connected simplices.

Fig. 12. q-transmission through shared 1-dimensional faces (edges with 2 vertices).

In Fig. 12(a) σ1 and σ2 are two q-near simplices in a simplicial family supporting a
traffic mapping f . Suppose that a change δfσ1 of the value of f on σ1 causes a change
δfσ2 of the value of f on σ2. Then the change δf is said to be q-transmitted from σ1
to σ2. More generally, change can be q-transmitted along chains of q-connection, e.g.
1-transmission from σ1 through σ2 and σ3 to σ4 as illustrated in (Fig. 12(b)).

q-transmission fronts

The general idea behind q-transmission is that change will be propagated through a
simplicial family in a way conditioned by its q-connectivity. Figure 13(a) shows a chain
of q-connection, and Fig. 13(b) shows how such chains can make up q-transmission
fronts, through which changes are transmitted, as shown in Fig. 13(c).
Let σ be a simplex in the simplicial family F . Let F0 = {σ0}. Let F1 be the set

of simplices in F that are q-near σ0. In general let Fk+1 be the set of simplices which
are q-near to a simplex in Fk but not q-near any simplices in Fj for j < k. The first
condition, being q-near to a simplex in Fk identifies the new q-near simplices. Not
being a member of Fj for j < k, ensures that the simplices do not belong to previous
transmission fronts. Thus the transmission fronts are disjoint sets of simplices.
Q-transmission fronts constrain q-transmission dynamics. Change is experienced

later and may be weaker at more distant fronts.
The idea of q-transmission contrasts with percolation in networks. The

q-transmission property requires that q-dimensional simplices are required for change
to be transmitted rather than vertices. A q-connected component will be said to
q-percolate when all its simplices are infected by a change in f .

8 Hypersimplices and hypernetworks

Hypernetworks are characterised by three major ideas: the first is that of “re-
lational simplex” or hypersimplex ; the second is that hypersimplices provide an



1046 The European Physical Journal Special Topics

Fig. 13. q-transmission through q-transmission fronts.

Fig. 14. Parts combined into a whole by R forming a relational hypersimplex.

unambiguous way of discriminating levels in multilevel systems; and the third is that
these structures can support multilevel system backcloth and traffic dynamics.
A hypersimplex is a simplex that carries its defining relation explicitly following

the vertices, e.g. the blocks b1, b2 and b3 in Fig. 14 are combined by the relation R
to create the hypersimplex σ = 〈 b1, b2, b3 ; R 〉, where the “arch” σ exists at a higher
more aggregate level than its parts, as shown in Fig. 14.
Hypersimplices provide well defined multilevel aggregation from parts at Level

N to structured wholes at Level N+1. Fig. 14(b) shows a simplex as a list of parts
mapped to a hypersimplex as a structure, R : 〈b1, b2, b3〉 −→ 〈b1, b2, b3;R〉. The part-
whole assembly can be represented by hierarchical cones as shown in Fig. 14(c).
Hypernetworks allow many relations on the same vertex set, and generalise mul-

tiplex networks [5]. This allows the implementation of multiplex relational algebra:

〈x0, ..., xp;R1〉 ∧ 〈x0, ..., xp;R2〉 = 〈x0, ..., xp;R1 ∧R2〉.

Example: The knight fork

Figure 15 shows three configurations of chess pieces. The configuration on the left,
〈rook, knight, king; R1〉, is called a knight fork because the white knight threatens
the black rook at the same time that it puts the black king in check. Unless black
has a piece that can take it, the white knight can take the more valuable black rook
because black must move the king out of check.
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Fig. 15. Relational structure in chess.

Fig. 16. Chemical isomers as relational simplices.

The configuration in the centre, 〈rook, knight, king; R2〉, is also a knight
fork, but the configuration on the right is not. Thus, the same three pieces are
assembled by three different relations, R1, R2 and R3 to form three different
structures.

Example: Chemical Isomers

Chemical molecules are assemblies of atoms. For example propanol assembles three
carbon atoms with eight hydrogen atoms and an oxygen atom, written as C3H8O
or C3H7OH. Figure 16(a) is n-propyl alcohol and Fig. 16(b) is isopropyl alcohol.
The oxygen atom is attached to an end carbon atom in the first and to the cen-
tre carbon atom in the second, with the C-O-H hydroxyl group substructure com-
mon to both. In Fig. 16(c) the oxygen atom is connected to two carbon atoms
and there is no C-O-H substructure. This makes it an ether, methyl-ethyl-ether,
rather than an alcohol. Thus the relational simplices of the isomers have the same
vertices, but the assembly relations are different and the molecules have differ-
ent emergent properties. The hypersimplex notation discriminates the isomers as
follows:

〈C, C, C, H, H, H, H, H, H, H, H, O ; R n−propylalcohol〉 �=
〈C, C, C, H, H, H, H, H, H, H, H, O ; R isopropylalcohol〉 �=
〈C, C, C, H, H, H, H, H, H, H, H, O ; Rmethyl−ethyl−ether〉.

Example: The sun illusion and virtual contours

Figure 17(a) shows the set of lines �1, ..., �16 arranged in a circle by the relation
R1. The resulting structure 〈�1, ..., �16;R1〉 has the emergent property of a central
white disk, the so-called sun illusion. Figure 17(b) shows the same set of lines
assembled under the relation, R2. Now there is no disk but a rectangle shape
emerges. Figure 17(c) shows the same sixteen lines assembled by R3 so that a virtual
contour emerges. Thus the same set of lines can be assembled into three different
hypersimplices.
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Fig. 17. Emergent features in line assemblies.

Fig. 18. Motifs as hypersimplices.

Example: Motifs and the tetrahedral 3-degree rule

In their book Connected [6] Christakis and Fowler write “You may not know him
personally, but your friend’s husband’s coworker can make you fat. And your sister’s
friend’s boyfriend can make you thin.” However, “Our influence gradually dissipates
and ceases to have a noticeable effect on people beyond the social frontier that lies at
three degrees of separation.” These chains of influence are drawn as paths as shown
in Fig. 18. They are examples of motifs, or recurring structural configurations.
Generally motifs are defined by n-ary relations, as shown by the vertex removal

test, e.g. remove any of 〈you〉, 〈your friend〉, 〈your friend’s husband〉, or 〈your friend’s
husband’s co-worker〉 and the 3-ary relation ‘make you fatter’ ceases to hold. Thus in
this motif the people form a tetrahedral hypersimplex 〈you, your friend, your friend’s
husband, your friend’s husband’s co-worker; Rmakes you fat〉 as shown in Fig. 18(b).
Christakis and Fowler’s “three degree” rule means that these hypersimplices are

restricted to tetrahedra. Dunbar gives evidence suggesting that human beings can
manage relationships with at most 150–200 other people [7]. Suppose the figure were
100. Then, ignoring repetitions, you are directly influenced by 100 people, each of
these is influenced by 100 people, and each of these is influenced by 100 people, so
each of us has about a million tetrahedra with the potential to influence us according
to the three degree rule. In practice it is less because of the connectivity of people’s
q-transmission fronts, as illustrated in Fig. 13(c).

9 The multilevel backcloth of complex systems

Systems may have many levels of representation, e.g. biological systems aggregate
from molecules to proteins to cells to organs to organisms. Currently the bottom-up
and top-down dynamics of complex systems is poorly understood. Hypersimplices
provide a way of representing multilevel aggregation and disaggregation.
Figure 19 shows hierarchical aggregation between three levels, N+k−1, N+k and

N+k+1. N is an arbitrary but fixed base level. The number k allows the focus to move
up and down the levels.
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Fig. 19. Multilevel aggregation: Level N+k simplices map to Level N+k+1 vertices.

The key idea is that an n-ary relation RN+ki maps an ordered set of vertices (sim-

plex) 〈xN+k1 , ..., xN+kn 〉 at Level N+k to the hypersimplex σN+k+1i = 〈xN+k1 , ..., xN+kn ;

RN+ki 〉 at Level N+k+1 where it is treated as a vertex, σN+k+1i

def≡ xN+k+1i .

For example, let vertices 〈xN+k−11 , ..., xN+k−17 〉 be people employed by a company.
They are assembled by the 7-ary relation RN+k−13 to form the company, σN+k3 . The
company is then treated as a vertex at Level N+k. At Level N+k there are five
companies assembled by RN+k2 into, say, a market σN+k+12 at Level N+k+1. Figure 19
shows the following aggregations:
Level N+k-1 to N+k RN+k−13 : 〈xN+k−11 , xN+k−12 , xN+k−13 , xN+k−14 , xN+k−15 ,

xN+k−16 , xN+k−17 〉 → σN+k3
def
= 〈xN+k−11 , xN+k−12 , xN+k−13 , xN+k−14 , xN+k−15 ,

xN+k−16 , xN+k−17 ;RN+k−13 〉
Level N+k to N+k+1 RN+k2 : 〈σN+k1 , σN+k2 , σN+k3 , σN+k4 , σN+k5 〉 −→ σN+k+12

where σN+k+12
def
= 〈σN+k1 , σN+k2 , σN+k3 , σN+k4 , σN+k5 ;RN+k2 〉.

In general the relation RN+ki maps a simplex (an ordered list of Level N+k vertices)

to a hypersimplex, σN+k+1i , at Level N+k+1 where it is treated as a vertex, xN+k+1i .

10 Hierarchical traffic aggregation

Unifying the dynamics of complex multilevel systems is a major outstanding scientific
problem. An objective of hypernetwork theory is to make hierarchical traffic aggre-
gation and disaggregation well defined between backcloth levels N+k and N+k+1,
and therefore between all levels in multilevel systems. In Fig. 20 let RN+ki be an
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Fig. 20. Multilevel traffic aggregating across the multilevel backcloth.

Fig. 21. ψN+k
RN+k
i

transforms a vertex mapping at Level N+k to a vertex mapping at N+k+1.

assembly relation on the simplex 〈vN+k1 , ..., vN+k7 〉, RN+ki 〈vN+k1 , ..., vN+k7 〉 def
=

σN+k+1i = 〈vN+k1 , ..., vN+kp ;RN+ki 〉. This is to be treated as a vertex vN+k+1i at Level
N+k+1.
Let φN+k be a mapping of the vertices of the simplex 〈vN+k1 , ..., vN+kp 〉 to a number

system such as the reals, R. Let

φN+k〈vN+k1 , ..., vN+kp 〉 def= 〈φN+k(vN+k1 ), ..., φN+k(vN+kp )〉
Let ψN+k

RN+ki

: 〈φN+kvN+k1 , ..., φN+kvN+kp 〉 → R be a mapping associated with RN+ki ,

Then ψN+k
RN+ki

is defined to be a hierarchical traffic aggregation mapping

ψN+k
RN+ki

: φN+k → φN+k+1

if the diagram in Fig. 21 commutes with φN+k+1RN+ki = ψN+k
RN+ki

φN+k.

Science involves the reconstruction of systems from data. Given a traffic mapping
φN+k relevant to the dynamics of a system at Level N+k there are two possibilities:

– The mapping φN+k can be reconstructed from data at Level N+k or above. In
this case the system is said to be information complete at Level N+k.

– The mapping φN+k cannot be reconstructed from data at Level N+k or above.
It is information incomplete. In this case to reconstruct a system’s dynamics it is
necessary to use lower level data given by functions φN+k−i, i ≥ 1, and to find
hierarchical traffic aggregation mappings ψN+k−i

RN+k−ij

.

Hypernetwork structures, or equivalents, are necessary to address the second case [9].
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Fig. 22. Multilevel operator on multilevel triangles.

Fig. 23. Multilevel fragment-recombine operators.

11 The multilevel fragment-recombine operator

When dealing with multilevel systems it would be useful to have a single symbol to
represent the very complicated multilevel cone structures illustrated in Fig. 22(a).
One possibility is to enclose them by triangle. This representation allows a subsystem
to be represented by a triangle within a triangle as shown in Fig. 22(b). Since the
intersection of two triangles is also a triangle, this representation is convenient to
denote the intersection of two multilevel systems, as shown in Fig. 22(c).
This representation suggests an exciting new possibility for multilevel complex

systems. To be more concrete consider a narrative as a multilevel structure made of
words, phrases, paragraphs and complete stories. Narratives are very important in
policy and very important for the development of a theory of complex social systems.
For example, Europe is grappling with many narratives associated with migrants,

and these narratives work at the level of the plight of individual people, through to
more aggregate structures such as people traffickers’ boats to more aggregate struc-
tures such as countries and their policies. The narratives include political and eco-
nomic aspects at many level of aggregation. Let this multilevel narrative be called
NMigration as shown top-left in Fig. 23. �Mi is the state of the narrative at time ti.
Alongside the strong migration UK narrative there are others, e.g. the unemploy-

ment narrative, NUnemployment, shown bottom-left in Fig. 23.
Both these narratives evolve in time, with information and invention being added

or lost as the meanings of the narrative evolve. Figure 23 shows these narratives
evolving independently until they crash into each other at time t5. The combinatorial
dynamics of such a crash is not well understood, but it involves parts of the two
multilevel systems interacting and each of the multilevel narratives fragmenting before
they recombine to form new composite narratives, e.g. Nmigrants are taking our jobs.
Let the fragment-recombine operator of multilevel systems, 	, be defined as

	 : (Δ1,Δ2) → Δ1 	Δ2
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where Δ1 and Δ2 are multilevel systems before they crash and Δ1	Δ2 is the multilevel
system after. The multilevel 	 operator is completely new and developing its properties
is a great opportunity for mathematicians, informaticians and social scientists.

12 Conclusions: Research challenges in hypernetwork theory

Hypernetworks have been presented as a generalisation of hypergraph theory, net-
work theory, and multiplex network theory. There remain many research challenges
in hypernetwork theory including:

– understanding better the multilevel interactions of backcloth and traffic dy-
namics, including q-transmission, chain length, and information completeness.

– hypernetworks allow many relations between vertices. The formulation of hy-
persimplices allows new algebraic operations to be defined between n-ary rela-
tions, e.g. 〈x0, ..., xp;R1〉 � 〈x0, ..., xp;R2〉 = 〈x0, ..., xp;R1 �R2〉

– the nature of hypersimplex intersection, 〈x1, x2, ..., xn;R1〉 ∩ 〈y1, y2, ..., yp′ ;R2〉
?
= 〈z1, z2, ..., zq;R1 ∧ R2〉, where {z1, z2, ..., zq} = {x1, x2, ..., xp} ∩ {y1, y +
2, ..., yp′}.

– the multilevel fragment-recombine operator 	 : (�1,�2, ...)→�1, 	�2 	 ... for
multilevel systems presents many new opportunities and challenges.
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