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Abstract. This topical issue collects contributions exemplifying the re-
cent scientific progress in understanding the dynamics of multistable
systems. The individual papers focus on different questions of present
day interest in theory and applications of systems with multiple attrac-
tors. The particular attention is paid to uncovering and characterizing
hidden attractors. Both theoretical and experimental studies are pre-
sented.

Multistability is a system property which refers to systems that are neither stable nor
totally instable, but that alternate between two or more mutually exclusive states
(attractors) over time [1–11]. Multistable systems are very sensitive towards noise
[10,11], initial conditions [2,4,6] and system parameter [5] so to keep the system on
the desired attractor one needs to apply anappropriate controlling scheme [4].
Most of the common examples of both chaotic and regular attractors, like that

of van der Pol, Beluosov-Zhabotinsky, Lorenz, Rossler, Chua and many others are
located in the neighbouhoods of unstable fixed points (its basins of attraction touch
unstable fixed points). Such attractors are called the self-exited attractor and can
can be easily localized numerically by the standard computational procedure (one
can start with the initial conditions in a small neighborhood of the unstable fixed
point on unstable manifold and observe how it is attracted) [12,13].
Recently, it has been shown that multistability is connected with the occurrence of

unpredictable attractors [1–11] which have been called the hidden attractors [14–17].
An attractor is called hidden attractor if its basin of attraction does not intersect with
small neighborhoods of the unstable fixed point, i.e., the basins of attraction of the
hidden atttractors do not contain unstable fixed points and are located far away from
such points. For example, the hidden attractor is the periodic or chaotic attractor in
the system without equilibria or with the only stable equilibrium (a special case of
multistability and coexistence of attractors). Various examples of hidden attractors
are presented in [18–25].
Contrary to the self-exited attractors for numerical localization of hidden attrac-

tors it is necessary to develop special analytical-numerical procedures, since there are
no similar transient processes leading to such attractors from the neighborhoods of
the unstable fixed points [26,27].
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This special issue on Multistability and Hidden Attractors reviews the current
state of art in the research on multistable systems, particularly on hidden attractors
and point out the directions of further studies. New examples of hidden attractors,
numerical procedures for finding them as well as methods of controlling mustistable
systems are presented. Experimental evidence of the existence of hidden attractors
is given. Most of the presented cases are stricktly deterministic (ordinary differential
equations) but two of them [32,38] deal with nonlinear dynamics assisted by random
noise (nonlinear stochastic differential equations).
Paper [28] shows the examples of three-dimensional chaotic systems with different

types of equilibrium poins (both hyperbolic and nonhyperbolic). It is shown that for
5 (out of 8) classes of hyperbolic equilibrium points one can expect the existence
of hidden attractors. Generally, the results of this paper support the idea that any
dynamical behavior not theoretically forbidden (by rigorous theorem) can occur in
an appropriately designed system.
The notion of self-excited and hidden attractors for a Lorenz-like system are dis-

cussed [29]. It is shown that for cetrain parameters self excited attractors coexist with
hidden attractors. The upper estimate of the Lyapunov dimensions of self-ecxited and
hidden attractors is derived analytically.
The occurrence of hidden attractors in van der Pol-Duffing oscillator is discussed

in [30]. The calculations of the basins of attraction of co-existing attractors and analy-
sis of the births and deaths of hidden attractors are presented.
Several types of new chaotic flows with hidden attractors are reviewed in [31]. The

considered flows are divided into three groups: (i) flows with no equilibrium, (ii) flows
with equilibrium line, and (iii) flows with a stable equilibrium.
Using a simple bistable perception model, paper [32] demonstrates how the co-

existing states can be controlled by periodic modulation. The statistical analysis of
transitions between the coexisting attractors is performed.
Multistability and coexistence of different attractors often create unpredictability

of the final state. Paper [33] shows how to control multistability in the hidden at-
tractors through the scheme of linear augmentations and achieve monostability. The
transition from multiple attractors to the single attractor is confirmed by the calcu-
latiion of the size of the basin of attraction.
The properties of the symmetrical chaotic systems are described in [34]. The au-

thors have shown that such systems provide the possibility of multistability that can
be controlled by the independent amplitude control parameter. Through the design
of symmetric Rossler systems, a symmetric pair of coexisting chaotic attractors is
obtained.
The hidden attractors in the system with an exponential term are studied in [35].

It has been shown that four-dimensional autonomous flow can generate hidden chaotic
attractors. A digital hardware platform-based emulator is designed and implemented
to verify the numerical results.
The dynamics of an impulsive Goodwin oscilator with time delay is considered in

[36]. The paper focuses on the complexity that arises when the time delay exceeds
the typical bursting interval of the feedback. It has been shown that under these con-
ditions the system is capable of displaying quasiperiodicity as well as multistability
and hidden attractors.
Paper [37] discusses the occurence of various synchronous states in a ring of uni-

directionally coupled modified Rossler oscillators with infinite number of solutions
(depending on the initial conditions). It has been shown that with the increase of the
coupling the infinitely many synchronous states are observed. The calculations have
been performed for three and four oscillators but the possible scenarios for larger
networks are discussed.
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The peculiarities of attractors in systems with an equilibrium line are studied in
[38]. The oscillator with Chua’s memristor as well as for the oscillator with a more
realistic model of the memristive element are considered. Both numerical simulations
and analog experiments are performed for one of the circuits of the memristor os-
cillator. In particular the problem, how a system with an equilibrium line can be
realized in physical experiments and whether the oscillations in such systems are
self-sustained, is considered.
The effects of memristor on chaotic dynamical systems are theoretically and ex-

perimentally analyzed in [39]. It has been shown that generally the memristor system
has less fixed points than the original one.
The qualitative properties of five-dimensional Rikitake model as discussed in [40].

The existence of five-dimensional hyperchaotic hidden attractor has been proven in
numerical simulations and analog experiments.
In [41], the projective synchronization of two hidden hyperchaotic systems with

unknown parameters are discussed. Based on Lyapunov stability theory adaptive con-
trollers are constructed to achieve adaptive switched generalized function projective
synchronization between two different hyperchaotic systems.
Multistability in the large system of the coupled pendula is investigated in [42].

The occurence of patterns of multi-headed chimera states in which pendula clustered
in different heads behave differently (oscillate with different frequencies) and create
different types of synchronous states (complete or phase synchronization) is discussed.
The effect of delayed feedbacks on the Sprott B system with hidden attractors is

disscussed in [43]. The detailed analysis of Hopf bifurcations is shown.
Paper [44] considers three-dimensional dissipative flow with quadratic nonlinear-

ities in which there is no equilibrium. Various types of coexisting hidden attractors
have been identified.
Thus, this special issue provides a wide spectrum of current research on multistable

systems (particularly on hidden attractors), and we hope that the related researchers
in this field will find it useful. We wish to express our appreciation to the authors
of all the papers in this special issue for the excellent contributions as well as many
reviewers for their high-quality work on reviewing the manuscripts.
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