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Abstract A stationary body that is out of thermal equilibrium with its environment, and for which the
electric susceptibility is non-reciprocal, experiences a quantum torque. This arises from the spatially non-
symmetric electrical response of the body to its interaction with the non-equilibrium thermal fluctuations
of the electromagnetic field: the non-equilibrium nature of the thermal field fluctuations results in a net
energy flow through the body, and the spatially non-symmetric nature of the electrical response of the
body to its interaction with these field fluctuations causes that energy flow to be transformed into a
rotational motion. We establish an exact, closed-form, analytical expression for this torque in the case
that the environment is the vacuum and the material of the body is described by a damped oscillator
model, where the non-reciprocal nature of the electric susceptibility is induced by an external magnetic
field, as for magneto-optical media. We also generalise this expression to the context in which the body
is slowly rotating. By exploring the high-temperature expansion of the torque, we are able to identify the
separate contributions from the continuous spectral distribution of the non-reciprocal electric susceptibility,
and from the resonance modes. In particular, we find that the torque persists in the limiting case of zero
damping parameter, due to the contribution of the resonance modes. We also consider the low-temperature
expansion of the torque. This work extends our previous consideration of this model to an external magnetic
field of arbitrary strength, thereby including non-linear magnetic field effects.

1 Introduction

Recent years have witnessed considerable interest in non-equilibrium quantum thermodynamic phenomena, includ-
ing heat transfer, torque, and non-reciprocal surface forces. For a small selection of notable papers on these topics,
see Refs. [1–12].

In Ref. [13], we considered the quantum torque on a body made of non-reciprocal material that is out of thermal
equilibrium with its environment, an expression for which was first obtained in Ref. [10], and subsequently in
Ref. [12]; see also Ref. [11]. Broadly, such a torque arises as follows: the non-equilibrium nature of the thermal
fluctuations of the electromagnetic field results in a net energy flow through the body, and the spatially non-
symmetric electrical response of the body to its interaction with these field fluctuations causes that energy flow to
be transformed into a rotational motion. Generally, for a single body, the existence of a quantum torque appears
to require both that the system is out of thermal equilibrium and that it exhibits a broken spatial symmetry [4].

In our previous analysis, the environment was the vacuum and the material of the body was described by a
damped oscillator model, where the non-reciprocal nature of the electric susceptibility was induced by an external
magnetic field, as in the case of magneto-optical media [9–11]. There, we considered only contributions to first order
in the magnetic field strength, which provides a good numerical approximation where the corresponding cyclotron
frequency is much less than the damping parameter for the oscillator model. Here, we extend our previous analysis
to consideration of an external magnetic field of arbitrary strength, thereby including non-linear magnetic field
effects.

a e-mail: g.kennedy@soton.ac.uk (corresponding author)

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-023-01068-0&domain=pdf
http://orcid.org/0000-0003-4844-6231
mailto:g.kennedy@soton.ac.uk


3198 Eur. Phys. J. Spec. Top. (2023) 232:3197–3208

The present paper therefore has quite a narrow focus. It is primarily concerned with investigation of the structure
of the quantum torque for such a model for arbitrary external magnetic field strength, and, in particular, its spectral
decomposition. Accordingly, it has a slightly more mathematical flavour than our previous analysis in Ref. [13].

The remainder of this paper is structured as follows. In Sect. 2, we briefly review the damped oscillator model
for the electromagnetic response of the constituents of the material of the body, and the corresponding spatially
non-symmetric electric susceptibility that is induced by an external magnetic field. In Sect. 3, we consider the non-
equilibrium quantum torque on a stationary such body, and establish an exact, closed-form, analytical expression
for this torque that is valid for arbitrary external magnetic field strength. The corresponding torque for a slowly
rotating such body is also considered. In Sect. 4, we explore the high-temperature expansion of the quantum
torque for a stationary non-reciprocal body, which enables the identification of the separate contributions from the
continuous spectral distribution of the non-reciprocal electric susceptibility of the body, and from the resonance
modes. In particular, we find that, in the limit of vanishing damping parameter for the oscillator model, the
contribution of the resonance modes results in a persistent quantum torque. The corresponding low-temperature
expansion is considered in Sect. 5 and brief conclusions are presented in Sect. 6.

We use Heaviside–Lorentz electromagnetic units, and set � = c = 1, except where numerical values are presented.

2 Non-reciprocal electric susceptibility

As in Ref. [13], we employ the following damped oscillator model to describe the non-equilibrium displacement,
u(t), at time t , of the particles that constitute the material of a body, in response to the application of a fluctuating
electric field, E(t), and a constant external magnetic field, B:

m
d2u
dt2

+ mη
du
dt

+ mω2
0u = e

(
E +

du
dt

× B
)

, (2.1)

where e is the particle charge, m is the particle mass, η is the damping parameter, and ω0 is the free oscillation
frequency.

For the case of a metal, the restoring force is set to zero, so ω0 = 0, and the model then reduces to that of Refs.
[9, 10]; see also Refs. [6, 11, 14, 15]. In this case, the displacement diverges in the limit of a static (zero-frequency)
electric field, with the result that the body becomes highly delocalised. Here, however, we employ the model in
Eq. (2.1) only for a fluctuating electric field, where the frequency dependence of the autocorrelation of the mean-
zero electric field fluctuations ensures regularity of relevant physical quantities, such as the quantum torque, in
the zero-frequency limit.

This dynamical equation is easily solved in the frequency domain to yield the polarisation, P(ω) = neu(ω) ≡
χ(ω)E(ω), which is here expressed in terms of the electric susceptibility

χ(ω) = ω2
p

⎡
⎢⎢⎢⎣

ω2
0−ω2−iωη

(ω2
0−ω2−iωη)2−ω2ω2

c

−iωωc

(ω2
0−ω2−iωη)2−ω2ω2

c

0

iωωc

(ω2
0−ω2−iωη)2−ω2ω2

c

ω2
0−ω2−iωη

(ω2
0−ω2−iωη)2−ω2ω2

c

0

0 0 1
ω2

0−ω2−iωη

⎤
⎥⎥⎥⎦, (2.2)

where, without loss of generality, the external magnetic field has been chosen to lie in the z -direction, ωc ≡ e
mB is

the corresponding cyclotron frequency, and ω2
p ≡ ne2

m is the square of the plasma frequency, n being the particle
density. For B �= 0, this electric susceptibility is clearly non-symmetric and, moreover, non-reciprocal, that is,
Re χ(ω) is non-symmetric.

For a metal, we may set ω0 = 0 and use the charge and mass of the electron. For gold, the parameter values
at room temperature are ωp = 9 eV and η = 0.035 eV [16]. For an external magnetic field strength of 1 T, the
corresponding cyclotron frequency is ωc ∼ 10−4 eV, which is much smaller than the damping parameter, so, in
practice, keeping only terms linear in ωc provides a good numerical approximation, one that we followed in our
previous work [13]. Here, however, our interest is primarily in the structure of the torque, and, in particular, its
spectral decomposition, rather than its magnitude. We therefore include non-linear magnetic field effects to all
orders, and the expressions we derive are exact in ωc.

In the dilute limit, the mean polarisability of the body is given by

α(ω) =
∫

(dr)χ(r;ω), (2.3)
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where the electric susceptibility may, in general, be position-dependent, and the integration extends over the
domain of the body. Thus, for a non-reciprocal such body,1 Re α(ω) is, in general, non-symmetric.

In particular, for a homogeneous such body of volume V that is made of non-reciprocal material with electric
susceptibility as given in Eq. (2.2) and with ω0 = 0,

Re αxy(ω) = −Re αyx(ω) =
ωcω

2
pV

ω
Im

[
1

(ω + iη)2 − ω2
c

]
, (2.4)

that is,

Re αxy(ω) = − 2ηωcω
2
pV

[(ω + iη)2 − ω2
c ][(ω − iη)2 − ω2

c ]

= − 2ηωcω
2
pV

[ω2 + (η + iωc)2][ω2 + (η − iωc)2]

= ω2
pV Im

[
1

ω2 + ξ2

]
, (2.5)

where

ξ ≡ η + iωc =
(
η2 + ω2

c

)1
2 eiθ, θ = tan−1

(
ωc

η

)
. (2.6)

Alternatively, Eq. (2.4) may be expressed in terms of partial fractions, as

Re αxy(ω) = −Re αyx(ω) =
ω2

pV

2ω
Im

[
1

ω − ωc + iη
− 1

ω + ωc + iη

]
. (2.7)

Similarly,

Im αxx(ω) = Im αyy(ω) = −ω2
pV

ω
Im

[
ω + iη

(ω + iη)2 − ω2
c

]
, (2.8)

that is,

Im αxx(ω) =
ω2

pV η
(
ω2 + η2 + ω2

c

)
ω[(ω + iη)2 − ω2

c ][(ω − iη)2 − ω2
c ]

=
ω2

pV η
(
ω2 + η2 + ω2

c

)
ω[ω2 + (η + iωc)2][ω2 + (η − iωc)2]

= − ω2
pV

2ωωc
Im

[
ω2 + η2 + ω2

c

ω2 + ξ2

]

=
ω2

pV

ω
Re

[
ξ

ω2 + ξ2

]
. (2.9)

3 Quantum torque on a non-reciprocal body

In Ref. [13], we used the Fluctuation–Dissipation Theorem to express the quantum torque on a stationary non-
reciprocal body, with mean polarisability α(ω) in the dilute limit, as

τ0
i =

∫ ∞

−∞

dω

2π

ω3

6π
εijkRe αjk(ω)

(
coth

βω

2
− coth

β′ω
2

)
, (3.1)

1In this paper, a non-reciprocal body is defined to be one made of non-reciprocal material, that is, one for which
Re χ(r; ω) is non-symmetric.
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where β′ is the inverse temperature of the body and β is the inverse temperature of the environment, which is
taken to be the vacuum. See also Refs. [10, 12].

Thus, from Eq. (2.5), the only non-zero component of the quantum torque for the damped oscillator model with
ω0 = 0 is

τ0
z = 2ω2

pV

∫ ∞

−∞

dω

2π

ω3

6π
Im

[
1

ω2 + ξ2

](
coth

βω

2
− coth

β′ω
2

)
, (3.2)

which becomes

τ0
z = 8ω2

pV

∫ ∞

0

dω

2π

ω3

6π
Im

[
1

ω2 + ξ2

](
1

eβω − 1
− 1

eβ′ω − 1

)

= −2ω2
pV

3π2
Im

[
ξ2

∫ ∞

0

dω
ω

ω2 + ξ2

(
1

eβω − 1
− 1

eβ′ω − 1

)]
, (3.3)

that is,

τ0
z =

ω2
pV

3π2

{
πωc

(
1
β

− 1
β′

)
− 2ηωc log

(
β

β′

)
+ Im

[
ξ2

(
ψ

(
βξ

2π

)
− ψ

(
β′ξ
2π

))]}
, (3.4)

where we have employed the integral representation of the digamma function [17–20]

ψ(s) = log s − 1
2s

− 2
∫ ∞

0

dt
t

(t2 + s2)(e2πt − 1)
, Re s > 0. (3.5)

Keeping only terms to first order in ωc, it is easily verified that Eq. (3.4) agrees with Eq. (4.15) of our earlier work
[13].

For a sense of scale, note that for a gold nanosphere of radius 100 nm, with the parameter values given in
Sect. 2, in an external magnetic field of strength 1 T, the magnitude of the coefficient of the log term in Eq. (3.4)
is 1.6 × 10−24 Nm.

The extension to a slowly rotating body was also considered in Ref. [13]; see also Ref. [10]. There, the z -
component of the quantum torque on a non-reciprocal body undergoing a non-relativistic rotation about the
z -axis with angular frequency Ω, and with mean polarisability α(ω) in the dilute limit, was expressed as

τz =
∫ ∞

−∞

dω

2π

ω3
+

6π
[Im(αxx + αyy)(ω) + Re(αxy − αyx)(ω)]

(
coth

βω+

2
− coth

β′ω
2

)
, (3.6)

where ω+ ≡ ω + Ω. Keeping only terms to first order in Ω, we may write

τz = τ0
z + Ω τ1

z , (3.7)

where τ0
z is given by Eq. (3.1) and

τ1
z =

(
3 + β

∂

∂β

)
τ̂1
z (3.8)

with

τ̂1
z ≡

∫ ∞

−∞

dω

2π

ω2

6π
Im(αxx + αyy)(ω)

(
coth

βω

2
− coth

β′ω
2

)
. (3.9)

Thus, from Eq. (2.9) for the damped oscillator model with ω0 = 0,

τ̂1
z = 2ω2

pV

∫ ∞

−∞

dω

2π

ω

6π
Re

[
ξ

ω2 + ξ2

](
coth

βω

2
− coth

β′ω
2

)
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= 8ω2
pV

∫ ∞

0

dω

2π

ω

6π
Re

[
ξ

ω2 + ξ2

](
1

eβω − 1
− 1

eβ′ω − 1

)

=
2ω2

pV

3π2
Re

[
ξ

∫ ∞

0

dω
ω

ω2 + ξ2

(
1

eβω − 1
− 1

eβ′ω − 1

)]
, (3.10)

that is,

τ̂1
z =

ω2
pV

3π2

{
−π

(
1
β

− 1
β′

)
+ η log

(
β

β′

)
− Re

[
ξ

(
ψ

(
βξ

2π

)
− ψ

(
β′ξ
2π

))]}
, (3.11)

whence,

τ1
z =

ω2
pV

3π2

{
−π

(
2
β

− 3
β′

)
+ 3η log

(
β

β′

)
+ η − 3Re

[
ξ

(
ψ

(
βξ

2π

)
− ψ

(
β′ξ
2π

))]
− β

2π
Re

[
ξ2 ψ′

(
βξ

2π

)]}
. (3.12)

Keeping only terms to first order in ωc, it is easily verified that Eq. (3.12) agrees with Eq. (5.10) of our earlier
work [13].

The quantum torque on a rotating non-reciprocal body, made of material described by the damped oscillator
model with ω0 = 0, is therefore given, to first order in Ω, by Eq. (3.7), together with Eqs. (3.4) and (3.12).

It follows immediately from Eqs. (2.5) and (2.9), respectively, that Re αxy(ω) is odd in ωc, and therefore in B ,
while Im αxx(ω) is even in ωc, and therefore in B . Thus, from Eqs. (3.1) and (3.9), τ0

z is odd in B , while τ1
z is even

in B .
Although the expressions derived in this section are valid for arbitrary magnetic field strength, it should be noted

that, in the limit B → ∞, all components of the electric susceptibility in Eq. (2.2) vanish, with the exception of
χzz(ω). It then follows from Eq. (3.6), or from Eqs. (3.1) and (3.9), that τz = 0 in this limit.

4 High-temperature expansion

It is instructive to consider the high-temperature expansion of the quantum torque. We do so here only for a
stationary body; the same approach could also be applied to a slowly rotating body.

For high temperatures, β, β′ → 0+, use of the power series representation [18–20]

ψ(s) = −1
s

− γ +
∞∑

n=2

(−1)nζ(n) sn−1, |s|< 1, (4.1)

in Eq. (3.4) yields

τ0
z =

ω2
pV

3π2

{
−πωc

(
1
β

− 1
β′

)
− 2ηωc log

(
β

β′

)
+

∞∑
n=2

(−1)nζ(n)
(2π)n−1

ξn+1

(
βn−1 − β′n−1

)}
, (4.2)

where

ξk ≡ Im
[
ξk

]
=

(
η2 + ω2

c

)k
2 sin (kθ), k ∈ Z. (4.3)

It is easily seen that ξk satisfies the reflection formula

ξ−k = −(
η2 + ω2

c

)−k
ξk, k ∈ Z, (4.4)

and the recurrence relation

ξk = 2η ξk−1 − (
η2 + ω2

c

)
ξk−2, k ∈ Z. (4.5)
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The latter may be used to recursively generate ξk. For example, the first few ξk for non-negative k , generated in
this way, are as follows:

ξ0 = 0, (4.6)

ξ1 = ωc, (4.7)

ξ2 = 2ηωc, (4.8)

ξ3 = 3η2ωc − ω3
c , (4.9)

ξ4 = 4η3ωc − 4ηω3
c , (4.10)

ξ5 = 5η4ωc − 10η2ω3
c + ω5

c , (4.11)

ξ6 = 6η5ωc − 20η3ω3
c + 6ηω5

c . (4.12)

Alternatively, these expressions may be established directly by using a suitable multiple-angle formula, as in the
following, for k ≥ 1:

ξk =
(
η2 + ω2

c

)k
2 sin θ Uk−1(cos θ)

= ωc

	 k−1
2 
∑

r=0

(−1)r

(
k − 1 − r

r

)
(2η)k−1−2r

(
η2 + ω2

c

)r

=
	 k−1

2 
∑
m=0

(−1)m

(
k

2m + 1

)
ηk−1−2m ω2m+1

c , (4.13)

where Un denotes the Chebyshev polynomial of the second kind of order n.
It follows immediately from Eq. (4.5), or from Eqs. (4.13) and (4.4), that, in the limit of vanishing damping

parameter, the behaviour of ξk differs, depending on whether the index, k ∈ Z, is even or odd:

lim
η→0+

ξk =
{

0, for k even,
(−1)

k−1
2 ωk

c , for k odd.
(4.14)

As a consequence, only the odd β, β′ powers in Eq. (4.2) survive in this limit, resulting in

lim
η→0+

τ0
z =

ω2
pV

3π2

∞∑
m=0

(−1)mζ(2m)
(2π)2m−1

ω2m+1
c

(
β2m−1 − β′2m−1

)

= −ω2
pV

3π

∞∑
m=0

B2m

(2m)!
ω2m+1

c

(
β2m−1 − β′2m−1

)
. (4.15)

It may be slightly surprising to note that limη→0+ τ0
z �= 0, since it is clear from Eq. (2.4) that if η = 0 then

Re αxy(ω) = 0, and it then follows from Eq. (3.1) that τ0
z = 0. That is, τ0

z is a discontinuous function of η as
η → 0+.

In fact, this behaviour is due to the existence of resonance modes at ω = ±ωc − iη in the complex-ω plane,
corresponding to poles of the integrand in Eq. (3.2). In the limit η → 0+, these poles approach the real line from
below, and the integral in Eq. (3.2) then becomes formally divergent. However, it may be assigned a finite value
by invoking the Sokhotski–Plemelj Theorem, which may be written in the form

lim
η→0+

1
x ± iη

= P
(

1
x

)
∓ iπδ(x), (4.16)

where P denotes the corresponding Cauchy Principal Value (CPV) integral. See, for example, Ref. [21], where it
is shown that the CPV integral may, equivalently, be expressed as an Analytic Principal Value integral.
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Indeed, using the partial fraction representation for Reαxy(ω) given in Eq. (2.7), Eq. (3.1) may be alternatively
written as

τ0
z = Im

∫ ∞

−∞
dω

[
1

ω − ωc + iη
− 1

ω + ωc + iη

]
f(ω), (4.17)

where

f(ω) ≡ ω2
pV

12π2
ω2

(
coth

βω

2
− coth

β′ω
2

)
. (4.18)

Echoing the decomposition in Eq. (4.16), Eq. (4.17) has the limit

lim
η→0+

τ0
z = lim

η→0+
τ0P
z + lim

η→0+
τ0R
z , (4.19)

where the CPV contribution, indicated by P, and the resonance contribution, indicated by R, are, respectively,
given by

lim
η→0+

τ0P
z = 0, (4.20)

since the integrand in Eq. (4.17) is real in this limit, and

lim
η→0+

τ0R
z = −ω2

cω2
pV

6π

(
coth

βωc

2
− coth

β′ωc

2

)

= −ω2
cω2

pV

3π

(
1

eβωc − 1
− 1

eβ′ωc − 1

)
. (4.21)

It is easily verified, using the exponential generating function of the Bernoulli numbers,

x

ex − 1
=

∞∑
k=0

Bk

k!
xk, (4.22)

that Eq. (4.21) is a more compact equivalent of Eq. (4.15). Thus, the fact that limη→0+ τ0
z �= 0 is due entirely to

the contribution of the resonance modes.
The persistence of the quantum torque in the limit of vanishing damping found here is reminiscent of similar

behaviour found in our earlier work [22] for a charged particle passing a conducting plate with permittivity governed
by the Drude model. There, the transverse magnetic component of the classical electrodynamic friction on the
particle was found to persist in the limit of vanishing damping (resistivity) parameter, again due to the presence,
in this limit, of a singularity in the integrand for the friction.

Let us now generalise the above to finite η. Using the residue theorem to replace the integral over the real line
in Eq. (4.17) by that over the contour C displayed in Fig. 1, we may write

τ0
z = Im

{∫
C

dω

[
1

ω − ωc + iη
− 1

ω + ωc + iη

]
f(ω) − 2πi[f(ωc − iη) − f(−ωc − iη)]

}

= Im
{

P
∫

C

dω

[
1

ω − ωc + iη
− 1

ω + ωc + iη

]
f(ω) − πi[f(ωc − iη) − f(−ωc − iη)]

}

= P
∫ ∞

−∞
dω Im

[
1

ω − ωc + iη
− 1

ω + ωc + iη

]
f(ω) − π[f(ωc − iη) + f(ωc + iη)], (4.23)

where the CPV integral over the contour C excludes the semi-circles around the poles at ω = ±ωc − iη, and is
evaluated in the limit ε → 0+, where it is equal to the corresponding integral over the real line, excluding the
points ω = ±ωc.

Thus, we may write

τ0
z = τ0P

z + τ0R
z , (4.24)
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Fig. 1 The contour C used for the evaluation of τ0
z . The corresponding CPV integral over C excludes the semi-circles

around the poles at ω = ±ωc − iη, and is evaluated in the limit ε → 0+.

where

τ0P
z ≡ ω2

pV

12π2
P

∫ ∞

−∞
dω ω2 Im

[
1

ω − ωc + iη
− 1

ω + ωc + iη

](
coth

βω

2
− coth

β′ω
2

)
(4.25)

and

τ0R
z ≡ −ω2

pV

6π
Re

[
(ωc + iη)2

(
coth

β(ωc + iη)
2

− coth
β′(ωc + iη)

2

)]

= −ω2
pV

3π
Re

[
(ωc + iη)2

(
1

eβ(ωc+iη) − 1
− 1

eβ′(ωc+iη) − 1

)]
. (4.26)

Again using Eq. (4.22), it is easily verified that Eq. (4.26) may be written as

τ0R
z = −ω2

pV

3π

∞∑
m=0

(−1)mB2m

(2m)!
ξ2m+1

(
β2m−1 − β′2m−1

)
, (4.27)

which agrees with the odd β, β′ powers in Eq. (4.2). Also, it is immediate that Eq. (4.26) agrees with Eq. (4.21)
in the limit η → 0+.

To evaluate Eq. (4.25), it suffices to again express the integrand in the form seen in Eq. (3.2), but accommodate
the CPV by using the high-frequency expansion of Im

[
1

ω2+ξ2

]
away from the poles at ω = ±ωc − iη. This results

in

τ0P
z =

2ω2
pV

3π2

∞∑
k=0

(−1)kξ2k

∫ ∞

0

dω ω1−2k

(
1

eβω − 1
− 1

eβ′ω − 1

)

=
2ω2

pV

3π2

∞∑
k=0

(−1)kξ2kΓ(2 − 2k)ζ(2 − 2k)
(
β2k−2 − β′2k−2

)

=
ω2

pV

3π2

{
−2ηωc log

(
β

β′

)
−

∞∑
m=1

ζ(2m + 1)
(2π)2m

ξ2m+2

(
β2m − β′2m

)}
, (4.28)

where we have used the functional equation

ζ(s) = 2(2π)s−1 sin
(πs

2

)
Γ(1 − s)ζ(1 − s) (4.29)
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to evaluate the formally divergent integrals by analytic continuation and have interpreted the k = 1 term as the
limit

lim
k→1

Γ(2 − 2k)ζ(2 − 2k)
(
β2k−2 − β′2k−2

)
=

1
2

log
(

β

β′

)
. (4.30)

See Ref. [23] for interpretation of the finite part of the divergent integrals that may result from term-by-term
integration, and how missing terms in such integration arise from singularities of the integrand. As expected,
Eq. (4.28) agrees with the even β, β′ powers, and logarithms, in Eq. (4.2), and, from Eq. (4.14), with Eq. (4.20)
in the limit η → 0+.

Therefore, we may conclude that the continuous spectral distribution of Reαxy(ω) in Eq. (3.1) generates the
even β, β′ powers, and logarithms, in the high-temperature expansion of the quantum torque, Eq. (4.2), while the
discrete spectral distribution of Reαxy(ω), arising from the resonance modes, generates the odd β, β′ powers.

However, it should be noted that, like the power series representation, Eq. (4.1), Eq. (4.2) is an exact expression
for the quantum torque, simply one that has been written in a form that is suitable for high-temperature expansion.
Thus, the evenness and oddness of the two types of contribution above under change of sign of the inverse
temperatures is a property that enables closed-form expressions for these two types of contribution to be easily
identified.

We may therefore write

τ0P
z =

τ0
z (β, β′) + τ0

z (−β, −β′)
2

(4.31)

and

τ0R
z =

τ0
z (β, β′) − τ0

z (−β, −β′)
2

, (4.32)

which, from Eq. (3.4), generate the corresponding closed-form expressions

τ0P
z =

ω2
pV

6π2

{
−4ηωc log

(
β

β′

)
+ Im

[
ξ2

(
ψ

(
βξ

2π

)
+ ψ

(
−βξ

2π

)
− ψ

(
β′ξ
2π

)
− ψ

(
−β′ξ

2π

))]}
(4.33)

and

τ0R
z =

ω2
pV

6π2

{
2πωc

(
1
β

− 1
β′

)
+ Im

[
ξ2

(
ψ

(
βξ

2π

)
− ψ

(
−βξ

2π

)
− ψ

(
β′ξ
2π

)
+ ψ

(
−β′ξ

2π

))]}
. (4.34)

It is easily verified from the reflection formula [18]

ψ(−s) = ψ(s) + π cot(πs) +
1
s

(4.35)

that Eq. (4.34) agrees with the more compact equivalent of Eq. (4.26).
Evenness or oddness under change of sign of the inverse temperatures is suggestive of similar behaviour under

time reversal, since the corresponding thermal Green functions are periodic in imaginary time, with period equal to
the relevant inverse temperature. Indeed, the model in Eq. (2.1) is invariant under time reversal if we also reverse
the signs of both η and ωc, the latter corresponding to change in the sign of B. It is easily seen from Eq. (4.13)
and Eq. (4.4) that, for k ∈ Z,

ξk(−η) = (−1)k−1ξk(η) and ξk(−ωc) = −ξk(ωc), (4.36)

whence

ξk(−η, −ωc) = (−1)kξk(η, ωc). (4.37)
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Thus, alternatively, the two types of contribution to the quantum torque may be extracted by writing

τ0P
z =

τ0
z (η, ωc) + τ0

z (−η, −ωc)
2

(4.38)

and

τ0R
z =

τ0
z (η, ωc) − τ0

z (−η, −ωc)
2

. (4.39)

5 Low-temperature expansion

The low-temperature expansion of the quantum torque is less interesting, but is still worth considering. Again, for
illustration, we do so here only for a stationary body.

For low temperatures, β, β′ → ∞, use of the asymptotic series representation [18, 20]

ψ(s) ∼ log s − 1
2s

−
∞∑

n=1

B2n

2ns2n
, |arg s|< π, s → ∞ (5.1)

in Eq. (3.4) yields

τ0
z ∼ −ω2

pV

3π2

∞∑
n=2

(2π)2nB2n

2n
ξ2−2n

(
1

β2n
− 1

β′2n

)
. (5.2)

On the other hand, use of the low-frequency expansion of Im
[

1
ω2+ξ2

]
in the integrand of Eq. (3.2) results in

τ0P
z =

2ω2
pV

3π2

∞∑
k=0

(−1)kξ−2−2k

∫ ∞

0

dω ω3+2k

(
1

eβω − 1
− 1

eβ′ω − 1

)

=
2ω2

pV

3π2

∞∑
k=0

(−1)kξ−2−2k Γ(4 + 2k) ζ(4 + 2k)
(

1
β4+2k

− 1
β′4+2k

)

= −ω2
pV

3π2

∞∑
n=2

(2π)2nB2n

2n
ξ2−2n

(
1

β2n
− 1

β′2n

)
, (5.3)

in agreement with the asymptotic expression, Eq. (5.2).
Therefore, for low temperatures, τ0

z may again be decomposed as in Eq. (4.24), with the CPV contribution
as in Eq. (5.3) and the resonance contribution as in Eq. (4.26), but, in this case, the resonance contribution is
exponentially damped (that is, the resonance modes are not excited at low temperatures), and so, it does not
feature in the asymptotic representation, Eq. (5.2).

6 Conclusion

In this paper, we have considered the quantum torque experienced by a non-reciprocal body that is out of thermal
equilibrium with its environment, where the material of the body is described by a damped oscillator model and
where the non-reciprocal nature of the electric susceptibility is induced by an external magnetic field of arbitrary
strength, thereby extending our previous consideration of this model [13] to include non-linear magnetic field
effects.

We have established an exact, closed-form, analytical expression for the quantum torque on a stationary such
body, and have generalised this expression to the context in which the body is slowly rotating.

By exploring the high-temperature expansion of the quantum torque on a stationary non-reciprocal body, we
have been able to identify the separate contributions to this torque arising from the continuous spectral distribution
of the electric susceptibility, and from the resonance modes. These two types of contribution have been found to
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differ in parity: that from the continuous spectral distribution is even under combined reflection of the inverse
temperatures of the body and of its environment, while that from the resonance modes is odd under such reflection.

In particular, we have demonstrated that, while the contribution to the quantum torque due to the continuous
spectral distribution vanishes in the limit of vanishing damping parameter, that due to the resonance modes does
not, resulting in a persistent quantum torque in this limit. The quantum torque is, therefore, a discontinuous
function of the damping parameter in this limit.

We have also considered the low-temperature expansion of the quantum torque on a stationary non-reciprocal
body, where the two types of contribution again display the parity characteristics described above, but where that
due to the resonance modes is exponentially damped.

There are, of course, limitations to our analysis. In particular, we have considered the mean polarisability of
the non-reciprocal body only in the dilute limit, and have assumed that the temperatures of the body and of its
environment do not change with time, so that the non-equilibrium nature of the configuration is maintained. These
limitations are discussed in our previous work [13], and are not explored further here.

In addition, for simplicity, we have restricted attention only to the case in which the environment is the vacuum.
It would be interesting to extend this work to encompass more general environments, such as a dielectric medium,
to explore related phenomena, such as angular momentum transfer, and to consider more realistic physical models
for non-reciprocal bodies, including magneto-optical media.

Our focus in this paper has been unashamedly theoretical. However, recent experiments [24–26] involving the
optical levitation of a nanoparticle, and its use as an ultra-sensitive torque detector, suggest that this theoretical
work also may be of some relevant experimental interest in coming years.
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