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Abstract Quantum process tomography (QPT) is a crucial tool for characterizing and validating quantum
devices and quantum algorithms. However, the problem of finite sampling leads to an estimated process
matrix which is non-positive semi-definite (non-PSD), which can yield a reconstructed quantum channel
that is non-physical. To address this problem, various methods have been proposed to correct the issue of
finite sampling in the estimation of the process matrix. In this work, we perform a comparison of regulari-
sation methods that will be used to tackle the problem of finite sampling in QPT. For this comparison we
simulate some common single qubit quantum channels. We use two metrics, the minimum eigenvalue of
the Choi matrix and the fidelity, to compare the effectiveness of these methods. Our results show that the
spectral transformations perform the best overall in dealing with finite sampling present in reconstructing
the quantum channel in the NISQ era.

1 Introduction

Quantum process tomography (QPT) is an essential tool for characterizing and validating quantum devices and
quantum algorithms [1]. It is the process of determining the characteristics of a quantum channel by performing
measurements on various input states and output states. The process matrix obtained from QPT contains complete
information about the quantum channel, such as the probability of obtaining a specific output state given a
particular input state [1, 2].

However, a significant challenge in QPT arises due to the limited number of measurements that can be performed.
This results in the problem of finite sampling [3], which can lead to significant errors in the estimated process
matrix and leads to a process matrix that is not positive semi-definite (PSD). This yields a reconstructed quantum
channel that is non-physical. To address this problem, various methods have been proposed to correct the issue of
finite sampling in the estimation of the process matrix [3–5].

There are many situations that arise in science where matrices obtained from experiment are not PSD, one such
example is the issue of a non-PSD kernel matrix in quantum machine learning [6]. The authors of [6] proposed
various methods to correct the problem of the kernel matrix being non-PSD. These methods make use of semi
definite programming [6] as well as spectral transformations [6–8] to correct the kernel matrix. We propose the
use of these methods, as well as the methods used in [3, 4], to correct the non-PSD process matrix obtained
after performing the QPT. We shall use the term regularisation methods, as a blanket term that refers to all the
methods used to correct the non-PSD process matrix.

In recent years, Noisy Intermediate-Scale Quantum (NISQ) devices have emerged as a promising platform for
quantum computing. These devices are characterized by their relatively small size, limited coherence times, and
high levels of noise. While the issue of noise is a significant challenge for NISQ devices, it is important to note that
finite sampling will also be a challenge for both NISQ and fault-tolerant quantum computers. Researchers have
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developed methods for mitigating noise in NISQ devices, however there have been fewer methods developed for
dealing with finite sampling. Making the study of the effectiveness of these regularisation methods with dealing
with finite sampling in QPT essential for the NISQ era.

In this work we take inspiration from the article [9], which compares different regularisation methods for cor-
recting the non-PSD kernel matrix obtained from implementing quantum kernels on a quantum computer. We
aim to perform a comparison of regularisation methods that will be used to tackle the problem of finite sampling
in QPT.

Finite sampling is a problem that is prevalent in both the NISQ and fault tolerant setting as we are only ever
able to make a finite number of measurements on our quantum device. However, addressing this problem in the
NISQ era is of greater importance as repeating circuit evaluations to combat finite sampling in the NISQ era comes
with long execution times and high financial costs. This is the reason why the number of times we can measure
our system is often fixed to a maximum number depending on the device [10]. It is for this reason that we require
methods to address the problem of finite sampling that are efficient and easily generalise to many qubit systems.
Here we have selected a few well known regularisation methods to help combat the problem of finite sampling in
QPT. These methods rely on optimisation [3, 4, 6] or spectral transformations [11–14] to regularise the process
matrices obtained after QPT.

In this study, we perform comparisons of regularization methods for process matrices obtained in quantum
process tomography by simulating the circuits with the qasm_simulator from the python package Qiskit [15]. This
allows us to remove device noise from our experiments and focus solely on the effectiveness of the regularization
methods at dealing with finite sampling.

Recent literature explores modern methods to improve the efficiency and applicability of QPT, including Matrix
Product State representations [16], machine learning techniques [17–19], Bayesian methods [20] and CPTP projec-
tion methods [21]. Matrix Product States offer a more compact representation, machine learning leverages pattern
recognition, and Bayesian methods enhance robustness. Despite these advancements, the standard QPT method
remains essential for benchmarking and validation. This is why we make use of the the standard QPT [2] so that
we can compare only regularisation methods and we do not allow for any optimization or complex transformations
in the reconstruction step.

To perform the comparison we shall simulate three quantum channels, the amplitude damping (AD) channel,
depolarising (DEP) channel and a Pauli (PAU) channel. We construct quantum circuits for these channels and
perform a QPT using qiskit. For each channel we apply a regularisation method and obtain a ’corrected’ process
matrix called the regularised process matrix. To compare the effectiveness of these methods we use two metrics,
the minimum eigenvalue of the Choi matrix [22] and the fidelity [23]. We use this regularised process matrix to
calculate the Choi matrix and check that its eigenvalues are positive ensuring our channel is completely positive and
physical. We shall also compute the fidelity between the analytically obtained process matrix and the regularised
process matrix to check the quality of our matrix after regularisation. We then make some recommendations on
which is the best regularisation method to use based on these two metrics.

This article is outline as follows: in Sect. 2 we introduce some background information about the QPT. In Sect.
3 we shall briefly discuss the regularisation methods we will use in this work. Section 4 will introduce and define
the channels we will simulate. In Sect. 5 we present in detail the metrics we will use to compare the regularisation
methods and present the procedure we use to perform this comparison. Section 6 will present the results and the
discussion of the methods that performed the best. Lastly, in Sect. 7 we make some concluding remarks.

2 Quantum process tomography (QPT)

The reduced system dynamics of open quantum systems are usually described by a dynamical map Λt where t ≥ 0
and Λ0 = 1 i.e. a family of single parameter completely positive and trace preserving (CPTP) maps. If ρ(0) is the
initial state of the system then ρ(t) = Λtρ(0) represents the density operator at some time t [24]. A dynamical
map is also referred to as a quantum channel, these shall be used interchangeably throughout this work.

It is known that a quantum channel Λt has a Kraus representation [25]:

Λtρ =
∑

α

K̂αρK̂†
α (1)

where K̂α are the Kraus operators that satisfy
∑

α K̂†
αK̂α = 1. In this work we will consider the case of a single

qubit channel then the Kraus operators are 2 × 2 matrices. If we choose a complete basis for the Kraus operators
of a single qubit channel as {σ0 = 1, σ1, σ2, σ3}, where σi are the usual Pauli matrices. Then we can expand the
Kraus operators in terms of this basis to get the process matrix representation of the quantum channel for a single
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qubit:

Λtρ =
3∑

m,n=0

χmnσmρσn. (2)

Here χmn is a positive and Hermitian 4 × 4 matrix called the process matrix and shall be determined using a
quantum process tomography [1, 2]. Now if we know the process Matrix then we have a complete description of
the channel Λt.

To determine the elements of the process matrix we need to choose a complete set of input states, we choose
the states

D =
{

|ψ1〉 = |0〉, |ψ2〉 = |1〉,

|ψ3〉 = |+〉 =
1√
2
(|0〉 + |1〉),

|ψ4〉 = |+y〉 =
1√
2
(|0〉 + i|1〉)

}
. (3)

The states from the set D form a complete set as the projectors constructed from each ket vector in this set can be
used to construct the density operator of any physical single qubit state. Now we send these input states through
the channel Λt. We can prepare the initial state of the qubit as each of the input states. Using quantum state
tomography we reconstruct the state after each input state is passed through the channel [3]. Then the formulas
from [1, 2] are used to construct the χ matrix which allows us to reconstruct the channel Λt.

To perform a QPT on a quantum computer we construct a quantum circuit that implements the channel Λt,
this is usually done using the Stinespring dilation theorem [26], which requires ancillary qubits to simulate the
evolution of system and its environment. The next step is to prepare the system qubit in one of the input states
above thereafter we apply the quantum circuit. Lastly, we perform a state tomography on the system qubit for
each input state and get the corresponding counts. Using the counts obtained from the tomographic circuits we
can construct the initial process matrix [2], denoted by χin. The matrix χin obtained, will not be positive and
Hermitian. This is due to the fact that we can only make a finite number of measurements on the system qubit,
this is known as the problem of finite sampling. Finite sampling presents an issue in both the NISQ and fault
tolerant setting, since even fault tolerant quantum computers are also limited to a finite number of measurements.
There are many methods that attempt to fix the problem of finite sampling in quantum tomography by using
optimisation techniques [3, 4, 6] and spectral transformations [11–14] to find a process matrix that is positive
semi-definite and Hermitian. We use the term regularisation methods as a blanket term that encompasses both
optimisation techniques and spectral transformations. The regularisation methods will yield a process matrix,
denoted χc, which is positive semi-definite and Hermitian.

Finite sampling also presents a greater issue in many qubit systems, as the number of measurements and circuit
evaluations grow with the number of qubits. Therefore we require regularisation methods which can easily and
efficiently generalise to multi-qubit systems, for example the spectral transformations [11–14].

In the following sections we will outline the various regularisation methods that we will compare in this work.

3 Regularisation methods For QPT

In this work we make use of six regularisation methods that aim to solve the problem of finite sampling in QPT. In
Sect. 5. we shall discuss how we will bench mark and compare each of these regularisation methods. In this section,
we will briefly discuss how these methods work and how to implement them. We shall first discuss the regularisation
methods that rely on solving convex optimisation problems, these are: Least squares (LS) [4], Maximum Likelihood
Estimation (MLE) [3] and Semi-Definite Programming (SDP) [6]. Thereafter, we shall discuss the methods that
rely on transforming the spectrum of our initial process matrix, we refer to these as spectral transformations and
these are: Thresholding (THR), Tikhonov Regularisation (TIK) and Flipping (FLIP) [11–14]. All of these methods
can be easily generalised to many qubit systems. The methods that require optimisation are formulated in general
in their respective references [3, 4, 6], and for the spectral transformations, since they only rely on changing the
eigenvalues of the process matrix these methods can easily generalise to many qubit systems.
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3.1 Regularisation by optimisation

3.1.1 Least squares (LS)

To construct the LS optimisation [4] problem we first need to parameterise χc in terms of parameters that we can
optimise. We also define χc in such a way that it is Hermitian and positive semidefinite for all parameter values.
We now parameterise χc as,

χc = χc(x1, x2, ..., x16) = T †T (4)

where T = T (x1, x2, ..., x16) is a 4 × 4 triangular matrix that is a function of 16 real variables x1, x2, ..., x16 and
is shown below in matrix form:

T =

⎛

⎜⎜⎝

x1 0 0 0
x5 + ix6 x2 0 0

x11 + ix12 x7 + ix8 x3 0
x15 + ix16 x13 + ix14 x9 + ix10 x4

⎞

⎟⎟⎠. (5)

It is evident from this parameterisation that χc is positive semidefinite and Hermitian. To find χc with LS opti-
misation we need to define an objective function that will be minimised with respect to constraints. We define the
objective function by the squared difference between the theoretical and experimental probability distributions
for each of the counts obtained from the process tomography. The following projective measurement operators are
defined from the set D above,

{M1 = |ψ1〉〈ψ1|, M2 = |ψ2〉〈ψ2|,
M3 = |ψ3〉〈ψ3|, M4 = |ψ4〉〈ψ4|}. (6)

Next, we consider the input state ρi = |ψi〉〈ψi| where |ψi〉 ∈ D. Then the theoretical probability of being in the
state |ψj〉 after the application of the channel Λt to the initial state |ψi〉, denoted ptheij , is,

ptheij = Tr[MjΛt(ρi)] (7)

= Tr

[
Mj

(
4∑

m,n=1

(χc)mnσmρiσn

)]
(8)

=
4∑

m,n=1

(χc)mnTr[Mjσmρiσn]. (9)

The experimentally obtained probability pexpij of being the initial state ρi and measuring in the state |ψj〉 is,

pexpij =
nij

N
, (10)

where nij is the counts obtained from the circuit with input state |ψi〉 and output state |ψj〉 and N being the total
number of counts. Now we can define the objective function as,

F(x1, ..., x16) =
4∑

i, j=1

(
pexpij − ptheij

)2
(11)

=
4∑

i, j=1

(
nij

N
−

4∑

m,n=1

(χc)mnTr[Mjσmρiσn]

)2

. (12)

We should also take into consideration that the channel Λt should be trace preserving, however this constraint may
be too strict when solving the optimisation problem. We weaken this constraint, as they do in [4] and require only
that the channel Λt be trace non-increasing. This will be one of the constraints that we define for our optimisation
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problem. We can now state the optimisation problem that we want to solve that will yield a positive semidefinite
and Hermitian matrix χc that is the closest to χid,

min
{x1, ..., x16}

F(x1, ..., x16) (13)

such that,

(
1 −

4∑

m,n=1

(χc)mnσnσm

)
≥ 0, (14)

χc(x1, ..., x16) ≥ 0. (15)

The solution to this problem will yield the optimal values for x1, ..., x16 so that χc is positive semi-definite and
Hermitian.

3.1.2 Maximum likelihood estimation (MLE)

Maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability
distribution, given some observed data [3, 4]. To construct the objective function for MLE one starts with the
probability distribution for obtaining the measurement results from the counts obtained in the QPT i.e.

∏
i, j p

nij

ij ,
and takes the negative logarithm which yields,

L = − log

⎛

⎝
∏

i, j

p
nij

ij

⎞

⎠ = −
∑

i, j

nij log(pij), (16)

where nij is the counts obtained after inputing in the state ρi and measuring the state ρj and pij is the probability
of measuring the state ρj after inputing ρi. We can now write the objective function in terms of χc, set up the
constraints used in the LS method to yield,

L(x1, ..., x16) = −
∑

i, j

nij log(tr[MjΛt(ρi)]), (17)

= −
∑

i, j

nij log

(
∑

m,n

χctr[Mjσmρiσn]

)
. (18)

We can now define the MLE optimisation problem as,

min
{x1, ..., x16}

L(x1, ..., x16) (19)

such that,

(
1 −

4∑

m,n=1

(χc)mnσnσm

)
≥ 0, (20)

χc(x1, ..., x16) ≥ 0. (21)

Here, as well we also used the weakened constraint that the channel should be trace non-increasing, just as we did
in the case of the least squares method.

3.1.3 Semi-definite programming (SDP)

For the Semi-Definite Program (SDP), we parameterise χc as,

χc = χc(y1, y2, ..., y16) (22)

where each yi ∈ C is an element of the 4 × 4 process matrix. The objective function that will be used is

S = ||χc − χin||F (23)
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where ||A||F =
√〈A, A〉F denotes the Frobenius norm and 〈A, B〉F = Tr(A†B) is the Frobenius inner product for

any matrix A and B . This objective function describes the similarity between the initial process matrix, χin, and
the parameterised process matrix, χc.

The SDP can then be formulated as

min
{y1, ..., y16}

S(x1, ..., x16) (24)

such that, tr[χc(y1, ..., y16)] = 1. (25)

3.2 Regularisation By spectral transformation

The three spectral transformations used in this work first require an eigendecomposition of χin,

χin = UDinU †, (26)

where the columns u1, ..., u4 of U are the normalised eigenvectors of χin and

Din = diag(λ1, ...λ4) (27)

is a diagonal matrix with the corresponding eigenvalues λ1, ...λ4 of χin.
Thresholding (THR) requires that the negative eigenvalues are set to zero. Tikhonov Regularisation (TIK)

requires that the smallest negative eigenvalue of χin is subtracted from all the eigenvalues of χin. Flipping (FLIP)
requires that the negative eigenvalues of χin are multiplied by −1. When applied, these methods have no effect on
χin if χin is already positive semi-definite.

After the spectrum of χin has been transformed by one of the methods (THR, TIK or FLIP), χc is constructed
by the eigendecomposition

χin = UD′U †, (28)

where D′ is a diagonal matrix with the transformed eigenvalues λ′
1, ...λ′

4.
Each of these spectral transformations have physical motivations as well. For THR it has been shown that the

best approximation of a PSD matrix to a non-PSD matrix is achieved by neglecting all the negative eigenvalues
(setting them to zero). In this method, the negative eigenvalues are treated as ‘noise’. This has a motivation
because a physical and realizable quantum channel has a positive semi definite matrix and any deviation from this
is due to noise. For the FLIP method the motivation is also that a physical channel has a positive semi definite
process matrix, and therefore flipping the signs of the negative eigenvalues ensures that the process matrix is PSD
while keeping the numerical value of the eigenvalue of the original process matrix. Lastly, for TIK, the motivation
for the use of this method is that by subtracting by the smallest eigenvalue we remove the noise obtained during
the measurement process.

4 Single qubit quantum channels to be simulated

In this work we simulate three single qubit channels: Amplitude Damping, Depolarising and a Pauli Channel.
This section will briefly define these channels as well as present the quantum circuits we used to simulate these
channels.

4.1 Amplitude damping (AD) channel

The amplitude damping channel models physical processes such as spontaneous emission and a spin system at high
temperature approaching equilibrium with its environment. Of interest to us is the amplitude damping channel
for a single qubit. The amplitude-damping channel for a single qubit models energy relaxation from an excited
state to the ground state. We can define the AD channel for a single qubit in Kraus form,

Λ(AD)
t (ρ) = E0(t)ρE†

0(t) + E1(t)ρE†
1(t), (29)
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Fig. 1 Circuit implementing the amplitude damping channel for a single qubit, where the probability is given by pAD(t)

and the angle θAD(t) is determined by the formula, θAD(t) = 2 arcsin(
√

pAD(t)))

where,

E0(t) =
(

1 0
0

√
1 − pAD(t)

)
, (30)

E1(t) =
(

0
√

pAD(t)
0 0

)
(31)

and,

pAD(t) =
2.6(1 − e−t)

3
. (32)

To simulate the AD channel on a quantum computer we must construct a quantum circuit for this channel we
can do this by using the Stinespring dilation [26]. The quantum circuit is shown in Fig. 1, the angle θAD(t) is
determined by from pAD(t) i.e.

θAD(t) = 2 arcsin(
√

pAD(t)). (33)

The qubit in the state |ψ〉 is the system qubit and |0〉 is the state of the environment.

4.2 Depolarising (DEP) channel

The depolarising channel is a model for quantum noise in quantum systems [1]. We can define the DEP channel
for a single qubit as,

Λ(DEP)
t (ρ) =

(
1 − 3

4
pDEP(t)

)

+
pDEP(t)

4

3∑

i=1

σiρσi, (34)

where σi for i = 1, 2, 3 are the Pauli matrices and,

pDEP(t) =
1 − e−t

2
. (35)

To construct a quantum circuit for the DEP channel, we use the quantum circuit from [27] which can be seen in
Fig. 2.

4.3 Pauli (PAU) channel

The single qubit Pauli channel applies Pauli matrices to the state with some probability. We can define the Pauli
channel as,

ΛPAU
t (ρ) = pPAU(t)ρ +

(
1 − pPAU(t)

2

)
(σ1ρσ1 + σ2ρσ2), (36)
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Fig. 2 Circuit implementing the depolarizing channel for a single system qubit, for the probability pDEP(t). The angle θ
is determined by the formula θ(t) = 1

2
arccos(1 − 2pDEP(t))

Fig. 3 Quantum circuit implementing the Pauli channel Λ
(PAU)
t for probability pPAU(t)

where,

pPAU(t) =
1 + e−t

2
. (37)

We construct the circuit for the Pauli channel using the approach outlined in [27]. To summarise this approach,
we keep in mind that we want to leave the input state ρin unchanged with probability pPAU(t) and apply the noise
operators σ1 and σ2 to the input state with probability (1 − pPAU(t))/2. Refer to Fig. 3. for the quantum circuit
that implements the total channel. The parameters θ1 and θ2 in Fig. 3. are given as,

θ1(t) = 2 arccos(
√

pPAU(t)), θ2 =
π

2
. (38)

5 Methods for benchmarking the regularisation methods

Here we describe the methods that we will use to compare the regularization methods for the process matrices
obtained in QPT. To evaluate the performance of the different regularization methods, we will use two metrics
namely fidelity of the process matrix to the analytically obtained process matrix and the minimum eigenvalue of
the Choi matrix, which will be obtained from the regularised process matrix. We first describe the experimental
pipeline that we used to simulate the quantum channels and compare the regularisation methods. Then we shall
discuss the calculation of the two metrics used to benchmark the channels.

5.1 Metrics to benchmark regularisation methods

5.1.1 Minimum Eigenvalue of the choi matrix

The problem of finite sampling leads us to reconstruct process matrices that are not positive semi-definite which
yield non-physical channels. To check if a channel is completely positive and physical we must check that the Choi
matrix [22], denoted W (t), is positive semi-definite for all times t ≥ 0. In the case of our simulations we must
check that the Choi matrix Wc(t) obtained from the regularised process matrix χc(t) is positive semi-definite, to
do so we check the minimum eigenvalue of the Wc(t). We evaluate the regularisation method by first checking if
the method fixes any negative minimum eigenvalues. Also, we want to see how close to the analytical minimum
eigenvalue the minimum eigenvalue of Wc(t) is.
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To calculate Choi matrix W (t) from the process matrix χ(t) we make use of the transfer matrix F (t), which is
a concrete matrix representation of the channel Λt [28]. The elements of the transfer matrix are,

Fα, β(t) = Tr[G†
αΛtGβ ] (39)

where {Gα} are a set of orthonormal operators with respect to the Hilbert-Schmidt inner product [28]. We choose
the set {Gα} to be the standard matrix basis of M2(C) i.e. {G1 = |0〉〈0|, G2 = |0〉〈1|, G3 = |1〉〈0|, G4 = |1〉〈1|},
where {|0〉, |1〉} are the standard computational basis vectors of the single qubit.

For a given transfer matrix F (t) we can obtain the Choi matrix W (t), for a single qubit this can be written as:

W (t) =
1
2

4∑

α, β=1

Fα, β(t)(Gβ ⊗ Gα) (40)

This is derived by applying Λt to a single qubit of the maximally entangled state |β00〉 = 1√
2
(|00〉 + |11〉), hence

W (t) = (1 ⊗ Λt)|β00〉〈β00|.

5.1.2 Fidelity of the process matrix

We compute the process fidelity of the process matrix for each time t after optimisation, using the the following
formula [23, 29]:

Fp(χ, χid) =
Tr[(

√
χχid

√
χ)1/2]2

Tr[χ]Tr[χid]
. (41)

This is done to measure the quality of the process matrices obtained after regularisation and to see how close it
is to the ideal process matrix χid. We note that Fp ∈ [0, 1], when Fp = 1 this tells us that the process matrix
is the same as the ideal i.e. χ = χid and when Fp = 0 the process matrix is far from the ideal process matrix
χid. We acknowledge that the best way to compare the process matrix before and after regularisation would be to
use the diamond norm and compare the channels realised by the process matrices. This is because the diamond
norm is a completely bounded trace norm and takes into account the channel acting on a subsystem. However,
computing the diamond norm requires solving an optimisation problem [30] which adds extra computation that is
out of the scope of this work. We instead choose to compute the fidelities of the process matrices before and after
regularisation and use this as a simple measure for how well the regularisation methods performed.

5.2 Experimental pipeline

The pipeline we shall use to perform our comparison is summarised in Fig. 4. We make use of Python and Qiskit
[15] to construct the quantum circuits in Sect. 4 above for each time t ∈ [0, 5], in seconds, with a time step of

Fig. 4 A flow chart summarising the experimental procedure used tom simulate the channel, perform the QPT and regu-
larisation, and compute the metrics we used to compare each of the regularisation methods
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0.1 s for the three channels. We shall then perform a the measurements that are necessary for a QPT on the
circuits. Then, we make use of the qasm_simulator in Qiskit which simulates the effect of finite sampling and
run the circuits. Once we obtain the results we make use of the formulas from [] to construct the process matrix
χin(t). We then apply each of the regularisation methods outlined in Sect. 3 to obtain the process matrix χc(t).
We then compute Wc(t) from χc(t). We also compute Win(t), which is the Choi matrix obtained from χin(t) and
will sometimes be referred to as the ‘raw’ Choi matrices, using equations (41) and (42). We then plot the minimum
eigenvalue of Win(t) and Wc(t) for each regularisation method for each of the three channels. Then we calculate
the fidelities of the process matrices χc(t) and χin(t) with respect to the analytic process matrix and plot the
results for each regularisation method and for all three channels.

6 Results and discussion

There are two ways in which we will compare the quality of the regularisation methods. First, we will look at the
minimum eigenvalue of the Choi Matrices produced from the regularised Process Matrices. Then, we will look at
the fidelity of the Choi Matrices to the analytic Choi Matrices compared to the fidelity of the ‘raw’ Choi Matrices
to the analytic Choi Matrices. We also only present a portion of the results here, to see the results in detail please
refer to supplementary information.

6.1 Results

For all channels, the minimum eigenvalues of the Choi Matrices are expected to be greater than or equal to zero
in order to satisfy the properties of a physical channel. For the Amplitude Damping Channel as well as the Pauli
Channel, the minimum eigenvalues are expected to be zero for all time (t ∈ [0, 5]). However, for the Depolarising
Channel, the minimum eigenvalues are expected to follow a curve between 0 and 0.1. This is shown by the analytic
curve in Figs. 5 and 6. The mean minimum eigenvalues obtained from the ‘raw’ Choi Matrix for the Amplitude
Damping Channel are mostly small negative values, ranging from approximately −0.01 to 0. This is the same for
all the regularisation methods except MLE so we only present here the MLE method and TIK method shown in
Figs. 5b and 6a, we see that MLE produced much larger deviations than other methods, this is discussed in detail
later.

Similarly, for the Pauli Channel in Figs. 5a and 6b, there are a few small negative minimum eigenvalues between
approximately t = 0 to t = 2. Thereafter, the mean minimum eigenvalues are mostly small and positive but not 0.
For the Depolarising Channel, the mean minimum eigenvalue for t = 0 is small and negative while the rest of the
mean minimum eigenvalues are positive and follow the curve of the analytic minimum eigenvalues.

After the application of the regularisation strategies, we observe that the strategies ensure that the mean
minimum eigenvalues are positive for all time (t ∈ [0, 5]). The regularised post-processed Choi Matrices now
satisfy the properties of a physical channel for all time. We observe that MLE gives rise to Choi Matrices with

Fig. 5 Shows the minimum eigenvalues for each of the channels before and after applying the regularisation methods that
require optimisation LS, MLE and SDP. a A plot of the minimum eigenvalue for the PAU channel after using the LS method.
This method works well and the minimum eigenvalue is positive and close to zero. b Shoes the minimum eigenvalue for the
AD channel, we see here that the MLE method performs very poorly as the eigenvalue is positive by deviates very far from
zero. c Shows the minimum eigenvalue for the DEP channel after SDP, since the minimum eigenvalue was already positive
we see that the SDP does not change much but this is good as the regularisation method should not introduce error into
our reconstruction
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Fig. 6 Shows the minimum eigenvalues for each of the channels before and after applying the spectral transformation
regularisation methods TIK, THR and FLIP. a A plot of the minimum eigenvalue for the AD channel after using the TIK
method. This method works well and the minimum eigenvalue is zero after regularisation. b Shoes the minimum eigenvalue
for the PAU channel, we see here that the THR method performs very well since the minimum eigenvalue was already
positive we see that the SDP does not change much but this is good as the regularisation method should not introduce error
into our reconstruction. c Shows the minimum eigenvalue for the DEP channel after FLIP, and also leaves the eigenvalues
unchanged since they are positive

minimum eigenvalues that are far from their expected values. In addition, there are high standard deviations from
the mean minimum eigenvalues.

For the Amplitude Damping Channel, TIK and THR produce Choi Matrices with minimum eigenvalues equal
to for all time, as expected. This is because these regularisation strategies effectively set the negative eigenvalues
to 0. LS, SDP and FLIP produce Choi Matrices with mean minimum eigenvalue that are very close to 0 but not
equal to 0.

For the Depolarising Channel in Figs. 5 and 6c, every regularisation strategy except MLE produces a Choi
Matrix with mean minimum eigenvalues that follow the analytic curve as well as the curve produced from the
‘raw’ Choi Matrix. For this channel, we observe that the expected minimum eigenvalues are large enough that any
deviations that arise from finite sampling do not lead to negative eigenvalues.

For the Pauli Channel, it is observed that while the initial mean minimum eigenvalue is now positive, the rest
of the minimum eigenvalues are small positive numbers but not equal to 0. This is because the SDP and spectral
transformations, as seen in Fig. 6b where we have plot the minimum eigenvalues after using the THR method,
will leave the matrices unchanged if all the eigenvalues are already positive, that is, if the matrices are positive
semi-definite. The ‘raw’ matrices for all time t ≥ 0 have positive eigenvalues and so these matrices are left the
same.

Fig. 7 Shows the fidelities for each of the process matrices before and after applying the regularisation methods that require
optimisation LS, MLE and SDP. a A plot of the fidelity for the PAU channel after using the LS method. This method works
well and the fidelity is close to one. b Shoes the fidelity for the AD channel, we see here that the MLE method performs
very poorly as the fidelity deviates alot after MLE. c Shows the fidelity for the DEP channel after SDP, and the fidelity
has the value of 1 for all time t ∈ [0, 5]
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Fig. 8 Shows the fidelities for each of the process matrices before and after applying the regularisation methods that require
optimisation LS, MLE and SDP. a A plot of the fidelity for the AD channel after using the TIK method. This method works
well and the fidelity is close to one. b Shoes the fidelity for the AD channel, we see here that the THR method performs
very well as the fidelity is close to 1. c Shows the fidelity for the DEP channel after FLIP, and the fidelity has the value of
1 for all time t ∈ [0, 5]

6.2 Fidelity

We observe that, for all channels, the fidelity of the ‘raw’ Choi Matrices to the analytic Choi Matrices is approxi-
mately 1 for all time (t ∈ [0, 5]). This reveals that the fidelity does not reflect that, in some cases, physical channels
are not being simulated.

After the application of the regularisation strategies, we observe that the only strategy that consistently and
significantly decreases the fidelity to the analytic process Matrices is MLE as seen for the amplitude damping
channel in Fig. 7b.

For the Amplitude Damping Channel, LS also decreases the fidelity but not to any value below 0.9. SDP and
the spectral transformations lead to only slight reductions in the fidelity with very small standard deviations.

For the Depolarising Channel, the spectral transformations and LS lead to very slight reductions in the fidelity
for time t = 0 and thereafter lead to fidelities of approximately 1. The SDP achieves fidelities equal to 1, that
match the fidelities of the ‘raw’ process Matrices to the analytic process Matrices.

This is similar to the Pauli Channel, for which TIK and FLIP lead to very slight reductions in the fidelity for
time t = 0 and thereafter lead to fidelities of approximately 1. Thereafter, SDP and THR leads to fidelities equal
to 1 which can be seen in Fig. 8.

Any reductions in the fidelities at time t = 0 can be explained by the transformations that are applied to the
minimum eigenvalue of the Choi Matrices at that time.

6.3 Run times

The regularisation methods were implemented using two python packages scipy,numpy and cvxpy. We used scipy
and numpy for the MLE, LS methods and spectral transformations and we used cvxpy to implement the SDP
method. All of the regularisation method code was run on a personal computer with an AMD Ryzen 9 7950X 16
core CPU with 128 GB of RAM and an Nvidia 4090 GPU.

While the MLE and LS required run times of approximately 45 mins per channel: that is, approximately 0.54 s
per Chi Matrix. The SDP required a run time of 3 mins per channel: that is, approximately 0.036 s per Chi Matrix.
Each of the spectral transformations required a run time of 7 s per channel, that is 0.0014 s per Chi Matrix.

6.4 Discussion

Although commonly used for solving the problem of finite sampling in quantum state tomographies, we have found
that MLE does not well when applied to process tomographies. MLE may be good for state reconstruction since
the assumption that the counts are sampled from the same distribution as the theoretically obtained probabilities
holds true. However, this assumption does not hold true for channel reconstruction.

LS and SDP solve the problem of the negative eigenvalues by producing Choi Matrices with only positive
eigenvalues. However, for the Amplitude Damping Channel and the Pauli Channel, when the minimum eigenvalues
are expected to be 0, LS and SDP produce Choi matrices with small positive eigenvalues close to the eigenvalues
produced by the ‘raw’ data. It should be noted that SDP achieves fidelities greater than or the same as LS, even
though the SDP requires a much shorter run time.
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Overall, for the methods that require optimisation, the SDP may be the best choice for channel reconstruction.
This is interesting as the SDP merely finds the closest possible positive semi-definite process matrix to the process
matrix obtained from the ‘raw’ data, while the LS takes into account the distance between the experimentally
obtained probability distribution for the counts and the theoretical distribution. LS squares has access to more
information about the channel we are reconstructing, where as SDP only considers the properties of the process
matrix and has no extra information about the channel itself.

Similarly, the spectral transformations also only ensure that the process matrices are positive semi-definite and
account for no other information about the channel itself. These methods do not alter the process matrices unless
the eigenvalues are negative. While the TIK and THR both change the minimum eigenvalues to 0, FLIP flips
the sign of the minimum eigenvalue. It is for this reason that TIK and THR are able to produce the correct
minimum eigenvalues of 0 while FLIP results in the minimum eigenvalue being small and positive. Overall, these
transformations do not often reduce the fidelities and any reductions in the fidelity are very small. These methods
are also favourable for channel reconstruction because they require very short run times.

For channel reconstruction, we recommend using TIK and THR as they yielded the best fidelities, and solved
the problem of negative eigenvalues in the shortest run times.

7 Conclusion

In this work we compared various regularisation methods that deal with the problem of finite sampling in QPT.
We compared methods that require solving an optimisation problem i.e. MLE, LS and SDP, as well as spectral
transformations. Using the the metrics on the minimum eigenvalue of the Choi matrix and the fidelity we have come
to the conclusion that the spectral transformations perform the best overall, when dealing with finite sampling
present in reconstructing the quantum channel. The spectral transformations not only yield the best results but
they also have the shortest run times making them the most effective for regularising a process matrix obtained
from QPT. However, we should acknowledge the fact that we have only compared these methods on three single
qubit channels and further testing on more complex channels as well as channels of higher dimension to gain more
information on the effectiveness of the regularisation methods.

Future work could look into comparing the regularisation methods and how they deal with both finite sampling
and device noise. Another problem one could tackle would be finding better measures for the quality of the process
matrices obtained after QPT, as we have seen that high fidelities do not necessarily mean that the reconstructed
channel is physical.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1140/
epjs/s11734-023-01067-1.
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