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Abstract We extend our previous studies on a counter-intuitive effect in which a directed transport of a free
Brownian particle induced by active fluctuations can be significantly enhanced when the particle is placed
in a periodic potential. It is in clear contrast to a common situation when the velocity of the Brownian
particle is notably reduced if the periodic potential is switched on. As a model of active fluctuations, we
employ white Poissonian shot noise. We reconsider the case of the skew-normal amplitude distribution
of shot noise and focus on the impact of statistical characteristics of its amplitude like mean, variance,
and skewness on the magnitude of free particle transport enhancement. In particular, we detect intriguing
oscillations of the rescaled velocity of the particle as a function of the variance. Our findings can be
corroborated experimentally in both biological and artificial microscopic systems.

1 Introduction

An overdamped Brownian particle subjected to a con-
stant force f can be described by the following simple
rescaled Langevin equation:

ẋ = f +
√

2DT ξ(t), (1)

where DT corresponds to dimensionless temperature
of the system and ξ(t) represents thermal fluctuations
modeled by white Gaussian noise of zero mean 〈ξ(t)〉 =
0 and correlation function 〈ξ(t)ξ(s)〉 = δ(t − s). The
mean velocity of the Brownian particle reads

〈ẋ(t)〉 = f ≡ v0, (2)

where 〈·〉 stands for the average over noise realizations.
Let the system be additionally exposed to a spatially
periodic potential U(x) = U(x + L), that is

ẋ = −U ′(x) + f +
√

2DT ξ(t). (3)

For a weak constant force, i.e., for f < max|U ′(x)|,
the stationary averaged velocity 〈v〉 = limt→∞〈ẋ(t)〉
is notably reduced, 〈v〉 � v0, due to existence of the
potential barriers [1].
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Surprisingly, recently [2, 3], it has been reported that
when the free particle transport is induced by active
nonequilibrium fluctuations η(t) with equal statistical
bias 〈η(t)〉 = f , namely

ẋ = −U ′(x) + η(t) +
√

2DT ξ(t) (4)

transport can be enormously boosted when the parti-
cle is additionally placed in a periodic potential, i.e.,
〈v〉 � v0. In this work, we extend previous study [2,
3] and perform deeper analysis of the impact of statis-
tical parameters characterizing active nonequilibrium
fluctuations η(t) on this intriguing effect. In doing so,
without loss of generality, we restrict ourselves to the
simple spatially symmetric form of the periodic poten-
tial

U(x) = −ε cos x, (5)

where ε represents half of the potential barrier height.
The paper is organized as follows. In the next section,

we detail on the model of active fluctuations. Then, in
Sect. 3, we present a phenomenological derivation of
an approximate expression for transport enhancement
and focus on the impact of the statistical parameters of
fluctuations on the effect of free transport enhancement
in the periodic potential. The last section provides brief
summary and conclusions.
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2 Model of active fluctuations

As a model of active nonequilibrium fluctuations η(t),
we consider white Poisson shot noise [4–6]

η(t) =
n(t)∑

i=1

ziδ(t − ti), (6)

where ti are arrival times of Poisson point process n(t)
[7], i.e., the probability for occurrence of k impulses in
the time interval [0, t ] is

Pr{n(t) = k} =
(λt)k

k!
e−λt. (7)

The parameter λ describes the mean number of
impulses per unit time, and consequently, its inverse
1/λ = τP corresponds to the average time between
them. The amplitudes {zi} are independent random
variables distributed according to the same probabil-
ity density function ρ(z). Minimal conditions for ρ(z)
to generate the giant enhancement of the particle trans-
port have been reported in the literature [2]. If the
periodic potential U (x ) is symmetric, the probability
density ρ(z) has to be asymmetric and possesses vari-
ance σ2 = 〈(zi − ζ)2〉 which is independent on the mean
〈zi〉 = ζ. Moreover, the support of ρ(z) has to include
both positive and negative values. Such a model can
describe both an active particle self-propelling itself
inside a passive medium or a passive system immersed
in an active bath formed as a suspension of active parti-
cles [8–13]. The above constraints are satisfied by, e.g.,
the skew-normal statistics [14–16] defined by the prob-
ability density

ρ(z) =
1

π
√

2πω2
e−(z−μ)2/2ω2

∫ α[(z−μ)/ω]

−∞
e−s2/2 ds,

(8)

where μ, ω, and α are the location, scale, and shape
parameters, respectively. These quantities can be rede-
fined in terms of statistical moments of the distribu-
tion, i.e., its mean ζ, variance σ2 and skewness χ =
〈(zi − ζ)3〉/σ3 [17, 18], namely

α =
δ√

1 − δ2
,

ω =

√
σ2

1 − 2δ2/π
,

μ =ζ − δ

√
2σ2

π(1 − 2δ2/π)
, (9)

where δ reads

δ = sgn(χ)

√
|χ|2/3

(2/π){[(4 − π)/2]2/3 + |χ|2/3} . (10)

For such a choice of parametrization, the statistical bias
of active fluctuations reads

〈η(t)〉 = λ〈zi〉 = λζ = v0. (11)

For comparison, the deterministic bias is f = v0 as in
Eq. (3).

3 Results

The integro-differential equation of the
Fokker–Planck–Kolmorogov–Feller type corresponding
to Eq. (4) reads

∂P

∂t
=

∂

∂x
[U ′(x)P (x, t)] + DT

∂2

∂x2
P (x, t)

+λ

∫ ∞

−∞
[P (x − z, t) − P (x, t)]ρ(z)dz. (12)

Unfortunately, generally, it cannot be solved analyti-
cally [4], in particular for the skew-normal amplitude
distribution (8). It was achieved only for selected, much
simpler special cases [19–21]. Therefore, we had to
employ precise numerical simulations of the underly-
ing dynamics. In doing so, we exploit parallel comput-
ing capabilities of graphical processing units that allow
to speed up simulations several orders of magnitude as
compared to usual methods [22]. The quantity of inter-
est, namely, the rescaled long time velocity 〈v〉/v0 of
the Brownian particle, is averaged over the ensemble of
216 trajectories each starting from various initial con-
ditions for the particle coordinate x (0) distributed uni-
formly [0, L] over the spatial period L of the potential
U (x ).

We start our investigation with the map of rescaled
velocity 〈v〉/v0 versus the spiking rate λ of active fluc-
tuations η(t) and the periodic potential barrier height
ε; see Fig. 1. Please note that along with λ, the mean
amplitude ζ is varied to satisfy the condition 〈η(t)〉 =
v0 = λζ = 1. The barrier height ε is related to the
mean relaxation time τR ∝ 1/ε of the particle towards

Fig. 1 The rescaled velocity 〈v〉/v0 (color-coded) of the
Brownian particle versus the spiking rate λ of active fluctua-
tions and the periodic potential barrier height ε is depicted
for the fixed mean 〈η(t)〉 = v0 = λζ = 1 with variance
σ2 = 3.1, skewness χ = 0.99, and thermal noise intensity
DT = 0.01
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its minimum [2, 3]. On the other hand, the spiking rate
λ determines the average time τP = 1/λ between two
successive δ-impulses of active fluctuations. A careful
inspection of Fig. 1 allows us to observe that the rela-
tion between these two characteristic time scales τR and
τP is a decisive factor for magnitude of the rescaled
velocity 〈v〉/v0. It turns out that for the fixed statisti-
cal bias 〈η(t)〉 = v0 = const the optimal amplification
〈v〉/v0 > 1 of the particle transport occurs in the res-
onance regime in which τR ≈ τP [2, 3]. On average,
after each δ-impulse, the particle relaxes by the poten-
tial gradient to the vicinity of its minimum and next due
to optimized Poisson jumps it overcomes the potential
barrier relaxing to the nearest minimum. Therefore, the
particle is able to fully exploit the potential to enhance
its velocity. As we can see the larger the barrier height
ε, the greater the magnitude of transport enhancement
as well as the interval of λ in which this effect emerges.
On the other hand, if the spiking rate λ is increased,
the minimal barrier height ε needed for the free parti-
cle transport amplification grows as well. This finding
follows from the resonance condition τR ≈ τP for which
the transport boost is optimal. If the barrier height ε is
too small, this effect does not survive; since then, the
statistical bias 〈η(t)〉 > ε and impact of the periodic
potential becomes negligible.

Although the Fokker–Planck Eq. (12) cannot be
solved in an analytic way, a phenomenological expres-
sion can be inferred to describe the spatial coupling
between nonequilibrium noise amplitude distribution
ρ(z) and the periodic potential U (x ). Let us consider a
process presented in Fig. 2: a particle at the initial posi-
tion x0 in the potential minimum in the absence of ther-
mal fluctuations. To simplify the forthcoming formulas,
we can safely assume that x0 = 0. At the minimum, the

Fig. 2 Schematic representation of the jump-relaxation
process as a phenomenological description of the system
dynamics in the absence of thermal fluctuations and with
the exemplary amplitude distribution ρ(z) of mean ampli-
tude ζ = 1/30, variance σ2 = 3.1, and skewness χ = 0.99.
Green areas under the amplitude distribution correspond to
the relaxation in the right direction ΔxR(τ , ΔxP ) > 0 and
the red one to the left direction ΔxR(τ , ΔxP ) < 0

particle experiences a kick induced by the Poisson pro-
cess η(t) and moves in the right direction over the dis-
tance ΔxP . Next, it relaxes towards the potential min-
imum and travels the distance ΔxR = ΔxR(τ , ΔxP ).
Here, τ is a random time interval between two consecu-
tive δ-impulses whose probability density function ϕ(τ)
reads

ϕ(τ) = θ(τ)λe−λτ , (13)

where θ(τ) is the Heaviside step function.
The expression for ΔxR(τ , ΔxP ) can be obtained by

solving the noiseless, deterministic differential equation
ẋ = −U ′(x). It reads

(14)

ΔxR(τ , ΔxP ) = 2 arctan
[
tan

(
y(ΔxP )

2

)
e−ετ

]

− y(ΔxP ).

To invert the function tan(x), we have repositioned
ΔxP to the interval (−π, π) by making use of the trans-
formation y(ΔxP ) = [(π + ΔxP ) mod 2π] − π. The
average velocity of the particle is

〈v〉 =
〈Δx〉
τP

=
〈ΔxP + ΔxR〉

τP
= λ(〈ΔxP 〉 + 〈ΔxR〉).

(15)

Consequently, the rescaled version reads

〈v〉
v0

=
λ(ζ + 〈ΔxR〉)

λζ
= 1 +

〈ΔxR〉
ζ

. (16)

Here, 〈ΔxP 〉 is just the mean amplitude 〈zi〉 = ζ
distributed according to the probability density ρ(z).
On the other hand, 〈ΔxR〉 can be represented as the

Fig. 3 The rescaled velocity 〈v〉/v0 of the Brownian parti-
cle versus the periodic potential barrier height ε is depicted
for different mean amplitudes ζ with fixed mean bias
〈η(t)〉 = v0 = λζ = 1, variance σ2 = 3.1, skewness χ = 0.99,
and thermal noise intensity DT = 0.01. Solid lines repre-
sent values obtained from precise numerical simulations of
Eq. (4), whereas the dashed ones are calculated using the
phenomenological expression in Eq. (16)
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particle displacement ΔxR(τ , ΔxP ) due to the relax-
ation towards the potential minimum averaged over
the corresponding distributions for the random time τ
between two consecutive δ-spikes of Poisson noise and
their amplitudes, namely

〈ΔxR〉 =
∫ ∞

−∞

∫ ∞

0

ϕ(τ)ρ(z)ΔxR(τ , z)dτdz. (17)

From Eq. (16), we can infer that when 〈ΔxR〉 → 0,
e.g., when spiking rate is very high, the rescaled veloc-
ity 〈v〉/v0 tends to unity. It is because the particle does
not have sufficient time to exploit the relaxation pro-
cess before another δ-spike strikes it. This limit is also
satisfied when the potential barrier height is very small.
In Fig. 3, we compare the results obtained from precise
numerical simulations of Eq. (4) and those derived from
Eqs. (16)–(17). The latter is correct in two extreme
regimes of small and large potential barrier ε. In the
first case, τP � τR and enhancement does not emerge
due to the fact that 〈ΔxR〉 → 0, whereas in the second
situation, τP � τR and the particle always relaxes to
the vicinity of the potential minimum. The proposed
expression is not accurate for the regime of the mod-
erate potential barrier corresponding to the resonance
condition τP ≈ τR. It is a consequence of the assump-
tion that initially the particle resides at the potential
minimum; see Fig. 2. This condition in such a regime is
only satisfied on average, while full dynamics of the sys-
tem is still random. In particular, nonequilibrium noise
impulses arriving far from the potential minimum dis-
rupt our phenomenological description and the average
velocity calculated from the precise numerical simula-
tions of the full dynamics is lower than the one from
the jump-relaxation process. Since a detailed discus-
sion on the mechanism of the studied effect is presented
elsewhere [3], we now turn to the main goal of our
work which is a complementary analysis of the influence
of parameters characterizing the skew-normal statistics
ρ(z) of active fluctuation amplitudes on the directed
transport.

In Fig. 4, we show the rescaled velocity 〈v〉/v0 as a
function of mean amplitude ζ and variance σ2 of the
distribution ρ(z) for the positive χ = 0.99 and nega-
tive χ = −0.99 skewness. The reader can immediately
notice that the most radical change in the particle veloc-
ity occurs for small mean ζ � 1 and for variance σ2 of
the order of the potential period σ2 ≈ L. There are
two reasons for this behavior. The first is the relation
τR ≈ τP between the characteristic time scales of the
particle relaxation τR and the average interval τP sep-
arating two successive impulses of active fluctuations.
The periodic potential can significantly boost the force-
free particle transport when its impact is meaningful,
i.e., magnitude of the barrier ε is considerable. It implies
that to maintain the resonance regime τR ≈ τP , the
spiking rate λ must increase as well. This in turn means
that the mean amplitude ζ has to decrease to satisfy the
condition 〈η(t)〉 = v0 = λζ = const.. The second reason
is the spatial coupling between the amplitude statistics

Fig. 4 The rescaled velocity 〈v〉/v0 (color-coded) as a func-
tion of mean amplitude ζ and variance σ2 of active fluctu-
ations η(t) with fixed bias 〈η(t)〉 = v0 = 1. Other param-
eters are: skewness χ = 0.99 [panel (a)], χ = −0.99 [panel
(b)], the barrier height ε = 40, and thermal noise intensity
DT = 0.01

ρ(z) and the periodic potential U (x ). The former can-
not be too extended, and when the particle is kicked
by the δ-spike, it should promote the barrier crossing
events in the direction indicated by the statistical bias
〈η(t)〉 = v0 rather than in the opposite one. If the first
case takes place the free particle transport velocity is
boosted 〈v〉 > v0, whereas the second scenario leads to
reversal of the current 〈v〉 < 0.

The above-mentioned spatial coupling between the
amplitude statistics ρ(z) and the periodic structure
U (x ) is also visible in two oscillatory regimes where the
average velocity 〈v〉 oscillates around the free particle
transport v0 which we present in Fig. 5. The first one is
shown in panel (a) where we depict the rescaled veloc-
ity 〈v〉/v0 as a function of the mean amplitude ζ for
different values of variance σ2 and skewness χ = 0.99.
It is the most pronounced for small variance, see the
case σ2 = 0.1, when the amplitude distribution is very
compact. As the mean amplitude ζ is increased and
crosses multiples of the distance L/2 between the poten-
tial minimum and maximum, transport is alternately
greater and lesser than the free particle velocity. When
it is boosted δ-spikes move the particle over the poten-
tial barrier on average and it relaxes forward towards
the next minimum. If it is hampered, they are not
able to achieve this goal statistically and the particle
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Fig. 5 The rescaled
velocity 〈v〉/v0 as a
function of different
parameters characterizing
active fluctuations
amplitude statistics ρ(z):
panel a mean amplitude ζ,
b variance σ2, and
c skewness χ. The
statistical bias is fixed to
〈η(t)〉 = v0 = 1. Other
parameters are the barrier
height ε = 40, the spiking
frequency λ = 30, and
thermal noise intensity
DT = 0.01. In panel (a) and
(b), the skewness reads
χ = 0.99

relaxes backward towards the minimum where it waits
for the arrival of δ-spike. Nevertheless, this regime is not
very interesting, since impulses with small variance, i.e.,
almost constant amplitude, are not a very good model
for active fluctuations. The second type of oscillations
occurs when ζ is small and variance σ2 is increased; see
panel (b) of the same figure. The mechanism of oscilla-
tions is similar, since the only difference is that in such a
case, the amplitude distribution ρ(z) covers more than
one spatial period of the potential. If the variance σ2 is
sufficiently large, the impact of the periodic substrate
becomes negligible and transport tends to the free par-
ticle velocity.

To get the full picture of how amplitude statistics
parameters influence this effect, in panel (c), we present
the rescaled velocity 〈v〉/v0 as a function of the skew-
ness χ for selected values of variance σ2. The reader
can observe that change in the distribution asymmetry
χ can reverse the direction of particle current and the
latter is still boosted in comparison to the free particle
transport. Moreover, the relation between the rescaled
velocity 〈v〉/v0 and skewness χ is almost linear for mod-
erate variance σ2.

4 Conclusions

In summary, in this work, we introduced the phe-
nomenological approximate expression for velocity and
investigated the impact of parameters characterizing
statistical properties of the amplitude distribution of
active fluctuations on transport of an overdamped
Brownian particle in the periodic potential. We have
demonstrated that within tailored parameter regimes
of the mean amplitude ζ, variance σ2 and skewness
χ, the force-free directed transport can be significantly

boosted when the particle is subjected to the periodic
potential. In particular, it turns out that this effect is
most pronounced for small ζ, moderate σ2, and large
χ. Moreover, we have detected intriguing oscillations of
the particle rescaled velocity as a function of the vari-
ance of active fluctuations amplitude which is related to
forward and backward relaxation in the periodic poten-
tial. Our findings can be corroborated experimentally in
both biological systems [23, 24] immersed in situ in sea
of thermal and active fluctuations or in artificial micro-
scopic setups, e.g., Josephson junctions [25] or colloidal
particles in optical potentials [26, 27].
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