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Abstract The hierarchical equations of motion (HEOM) provide a numerically exact approach for sim-
ulating the dynamics of open quantum systems coupled to a harmonic bath. However, its applicability
has traditionally been limited to specific spectral forms and relatively high temperatures. Recently, an
extended version called Free-Pole HEOM (FP-HEOM) has been developed to overcome these limitations.
In this study, we demonstrate that the FP-HEOM method can be systematically employed to investigate
higher order master equations by truncating the FP-HEOM hierarchy at a desired tier. We focus on the
challenging scenario of the spin-boson problem with a sub-Ohmic spectral distribution at zero temperature
and analyze the performance of the corresponding master equations. Furthermore, we compare the memory
kernel for population dynamics obtained from the exact FP-HEOM dynamics with that of the approximate
Non-Interacting-Blip Approximation (NIBA).

1 Introduction

The second-order quantum master equation (QME) is
a fundamental tool for studying the dynamics of open
quantum systems and finds wide-ranging applications
in diverse fields, including quantum optics, condensed
matter physics, condensed phase chemistry, and biol-
ogy [1–6]. However, employing the QME in regimes
with strong non-Markovian behavior, characterized by
slow environmental evolution and significant retarda-
tion effects on the subsystem, presents substantial chal-
lenges. These challenges become even more pronounced
in low-temperature conditions and structured environ-
ments, where non-Markovian effects are amplified. A
notable example is the unconventional impact of sub-
Ohmic noise at zero temperature [7–11].

To address the limitations of the QME in han-
dling pronounced non-Markovian retardation effects,
incorporating higher order corrections that account
for system-bath correlations becomes essential [12–14].
However, direct calculations involving these terms
require computing high-dimensional time integrals,
which is a daunting task [15, 16]. To the best of our
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knowledge, analytical calculations of high-order pertur-
bations or kernels have only been achieved up to the
sixth order [17, 18]. Previous work has employed numer-
ical techniques such as hierarchical equations of motion
(HEOM) to compute higher order effects [13, 14]. How-
ever, these approaches have been primarily limited to
elevated-temperature regimes due to the exponential
increase in the number of auxiliary density operators
(ADOs) involved, a challenge commonly referred to
as the curse of dimensionality. This challenge becomes
even more severe as the temperature approaches zero,
making the analysis of memory kernels’ properties and
high-order perturbative master equations increasingly
demanding.

To investigate the effects of high-order kernels in
unconventional environments, we address key chal-
lenges such as zero-temperature calculations employ-
ing the widely used HEOM method [11, 13, 19–44].
The HEOM approach utilizes a set of ADOs to unravel
system-bath correlations within an extended state
space [26, 32, 33, 41, 45]. Conventionally, these ADOs
are constructed as high-dimensional arrays based on a
series of exponential functions derived from the decom-
position of the bath correlation function. The extended
space, expanded by ADOs, grows exponentially with
the number of modes, posing significant challenges in
scenarios involving low temperatures and structured
bath spectra. This is particularly relevant as standard
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analytical Matsubara frequencies (i.e., νk = 2kπ/β)
shift toward a continuum strip as temperatures decrease
(β = 1/T ). Therefore, developing an efficient method
for obtaining a limited number of well-behaved modes
becomes crucial for successfully implementing HEOM
in the study of quantum master equations.

Several decomposition schemes [11, 43, 46] have been
developed to address the limitations of HEOM in low-
temperature and general spectral density scenarios,
such as the frequency-domain barycentric spectrum
decomposition (BSD) [11]. The effectiveness of these
decomposition schemes has been demonstrated by their
ability to reproduce phenomena like the Kondo reso-
nance peak in Fermi baths [46] and the Shiba relation
in sub-Ohmic boson baths [11]. Notably, by optimizing
the properties of auxiliary modes under specific con-
straints, these schemes allow for the integration of a
minimal number of modes (poles) into various versions
of HEOM and other methods, such as the pseudomode
approach [47], the hierarchy of pure states (HOPS) [48],
and the nonequilibrium dynamical mean-field theory
(DMFT) [49], even in unconventional environments.

In this work, we employ the Free-Poles HEOM (FP-
HEOM) [11], which combines the optimized BSD and
a hierarchical structure, to showcase the performance
of higher order master equations in addressing uncon-
ventional environments. We also compare it with the
well-established Non-Interacting-Blip Approximation
(NIBA), a powerful but approximate scheme for non-
perturbative treatment of the system-bath coupling in
spin systems. The remainder of this paper is organized
as follows: In Sections II and III, we provide a brief
overview of the hierarchical equations of motion and
discuss their limitations in simulating dynamics of open
quantum systems. In Section IV, we present numeri-
cal simulation results to demonstrate the efficiency and
accuracy of our proposed method. Finally, we summa-
rize our findings and discuss potential avenues for future
research in the concluding section.

2 Model Hamiltonian

The spin-boson model, which describes a two-state
system interacting bilinearly with a harmonic bath,
has been extensively studied in open quantum system
dynamics [7]. In this work, we employ this model as a
prototypical example to benchmark our method, while
generalizations to more complex models are straightfor-
ward.

We consider a spin-boson model with the Hamilto-
nian

HT = εσz + Δσx +
∑

i

cixiσz

+
∑

i

p2i
2mi

+
1
2
miω

2
i x2

i +
1
2
μσ2

z ,
(1)

where the system degrees of freedom (DoF) are repre-
sented by dimensionless Pauli matrices σx and σz. Δ
and 2ε denote the tunneling energy and energy bias
between the two eigenstates of σz, i.e., |±〉. The ith
harmonic modes of the reservoir is characterized by its
mass, coordinate, momentum, and frequency, i.e., mi,
xi, pi, and ωi, respectively. The coupling between the
system and the ith bath mode is denoted by ci with
[mω2x] dimension.

The effective impact of the bath on the system is fully
described by the coupling-weighted spectral density

J(ω) =
π

2

∑

i

c2i
miωi

δ(ω − ωi) . (2)

In the following, we assume a generic spectral density
[50] of the form

J(ω) =
π

2
α ω1−s

c ωs e−ω/ωc , (3)

where α is the dimensionless Kondo parameter charac-
terizing the system-bath dissipation strength and ωc is
the characteristic frequency of the bath. For s = 1, this
spectral distribution describes an ohmic reservoir and it
is called sub-ohmic for s < 1. In the latter situation, the
interplay of the relatively large portion of low-frequency
modes with the internal two-level dynamics makes this
model extremely challenging to simulate, particularly
in the long time limit and close to or at T = 0.

3 Hierarchical equations of motion

We briefly describe the essence of the HEOM approach
and refer to the literature for further details. The
derivation assumes a factorized initial states of the
total density at time zero, i.e., W (0) = ρs(0) ⊗
e−βHb/Tr e−βHb . The generalization to correlated ini-
tial states can be found in Refs. [51, 52].

In path integral representation [53], a formally exact
expression for the reduced density is obtained by inte-
grating over the bath degrees of freedom. The effective
impact of the bath onto the system dynamics is cap-
tured by the Feynman–Vernon influence functional [53]
which reads

F [q+, q−] = −
∫ t

0

ds

∫ s

0

dτ [q+(s) − q−(s)]

× [
C(s − τ)q+(τ) − C∗(s − τ)q−(τ)

]
.
(4)

In the expression above, the forward and backward
paths of the subsystem, denoted by q±(τ), are defined
through the relation

q±(τ) = 〈q±(τ+)|σz|q±(τ)〉 , (5)
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where |q±〉 represent the eigenstates of σz, and τ+

signifies the moment immediately following the time
slice τ . The influence functional describes arbitrary
long-ranged self-interactions in time of the system
paths determined by the bath auto-correlation C(t) =
〈ξ(t)ξ(0)〉 with the collective degree of freedom ξ =∑

i cixi. Particularly at low temperatures, correlation
functions are known to decay algebraically, so that
direct simulations of the path integral, e.g., via path
integral Monte Carlo (PIMC) [10, 54], are plagued by
a degrading signal-to-noise ratio.

The hierarchical equations of motion (HEOM)
approach deals with this problem by converting the
time-non-local path integral into a set of time-local dif-
ferential equations through the introduction of auxil-
iary density operators (ADOs). The basic ingredient is
a decomposition of C (t) in a series of K exponential
modes, where K has to be sufficiently bounded for the
nested hierarchy to be practically solvable. To formu-
late a minimal set of modes is thus the prerequisite to
access low temperatures and long times. As a matter of
fact, this problem has been solved by us only recently
[11] by implementing the barycentric representation of
rational functions for the spectral noise power Sβ(ω),
i.e., the Fourier transform of C (t)

C(t) =
1
π

∫ +∞

−∞
dω Sβ(ω) e−iωt

=
K∑

k=1

dk e−zk t + δC(t) t ≥ 0
(6)

with complex-valued amplitudes dk and frequencies
zk = γk + iωk, γk > 0. Here, Sβ(−ω and Sβ(ω) are
related by the fluctuation dissipation theorem which
can be cast into the form Sβ(ω) = 2[nβ(ω) + 1]J(ω)
with the Bose distribution nβ(ω) = 1/[exp(βω) − 1].
The barycentric representation constructs a function
S̃β(z) in the complex plane, such that it is along the
real axis an approximant of Sβ(ω) (AAA algorithm, see
[55]). The poles and the residues of S̃β appear as {dk}
and {zk} in (6). For details of this Free-Pole HEOM, see
[11, 56]. One can show that the FP-HEOM thus oper-
ates with a minimal set of K modes with the correction
δC(t) below a chosen threshold.

The exponential function’s self-derivative property in
(6) then allows to ‘unravel’ the time non-locality of the
original Feynman–Vernon path integral by introducing
ADOs ρm,n(t) with multi-indices n = (n1, . . . , nK) and
m = (m1, . . . , mK). This then leads to a nested hier-
archy of time-local evolution equations for the ADOs,
that is

˙̂ρm,n = −
(

iLs +
K∑

k=1

mkzk +
K∑

k=1

nkz∗
k

)
ρ̂m,n

− i

K∑

k=1

√
(mk + 1) dk

[
q̂, ρ̂m+

k ,n

]

− i

K∑

k=1

√
(nk + 1) d∗

k

[
q̂, ρ̂m,n+

k

]

− i

K∑

k=1

√
mk dk q̂ ρ̂m−

k ,n

+ i
K∑

k=1

√
nk d∗

k ρ̂m,n−
k
q̂ . (7)

The subscript m±
k and n±

k denote {m1, . . . , mk ± 1,
. . . mK} and {n1, . . . , nk ± 1, . . . , nK}, respectively.
The bare system evolution is propagated by Lsρ = [Hs,
ρ]. Eventually, the physical reduced density matrix ρ̂s

corresponds to the multi-index m = n = 0. To boost
the numerical efficiency of the FP-HEOM (7), matrix
product state (MPS) representations can be conve-
niently implemented which allows to tackle also asymp-
totic times down to temperature zero [11].

Note that truncating the nested hierarchy of ADOs
after the Lth tier, as given by

∑

k

(nk + mk) ≤ L , (8)

implies the inclusion of system-bath coupling strengths
up to the order of α2L [57]. Indeed, as demonstrated
in previous works [58–60], truncating at L = 1 yields a
generalized Redfield equation.

4 Numerical results

In this section, we employ the non-perturbative Free-
Pole Hierarchical Equations of Motion (FP-HEOM)
method to study the dynamics of a two-level quan-
tum system coupled to a sub-Ohmic bosonic bath.
We consider bath temperatures ranging from T = 0
to finite T �= 0, with a spectral density J(ω) ∝ ωs

where 0 ≤ s ≤ 1. Our analysis focuses on three key
aspects: (i) The convergence properties of higher order
master equations concerning the system-bath coupling
strength α and spectral exponent s. (ii) The accu-
racy of the Redfield-plus equation (12) across diverse
temperature and bias regimes. (iii) The role of non-
perturbative memory kernels as effective generators for
system dynamics.

To ensure the accuracy of our results, we employed
a barycentric decomposition with a stringent toler-
ance threshold defined by δC(t) ≤ 10−6, where δC(t)
represents the time-dependent deviation of the com-
puted correlation function. The FP-HEOM equations
were propagated using the Time-Dependent Variational
Principle (TDVP) [61], represented using Matrix Prod-
uct States (MPS) [27]. It is noteworthy that the bond
dimension, χ of MPS exhibits an inverse relationship
with the parameter s. Through meticulous optimization
tests, we ascertained that for s = 0, a bond dimension
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of χ = 50 is optimal, whereas s = 1 is best repre-
sented with χ = 2. All simulations were executed on
a single core of an Intel Xeon Gold 6252 CPU clocked
at 2.1 GHz. The computational durations varied, span-
ning from mere minutes to several hours, contingent on
the specific scenario being analyzed.

4.1 Performance of truncated time-evolution
equations within FP-HEOM

A variety of approximate methods for open quantum
dynamics have been proposed, with the most notable
ones considering the system-reservoir coupling up to
the second order. When there is a clear separation in
time scales between the rapid decay of reservoir corre-
lations and the relaxation dynamics of the reduced den-
sity operator, these methods yield the Redfield master
equation [62]. As highlighted earlier, an extended ver-
sion of the Redfield equation, termed “Redfield-plus”,
emerges naturally when the FP-HEIOM is restricted
to ADOs satisfying

∑
k(nk + mk) ≤ 1. Specifically, in

the interaction picture, the ADOs of the zeroth tier
(reduced density matrix) are given by

˙̂ρI(t) = −i
∑

k

[q̂I(t),
√

dkρI
0+
k , 0

(t) +
√

d∗
kρI

0, 0+
k

(t)]

(9)

with the first-tier ADOs determined via

d
dt

ρ̂I
0+
k , 0

(t) = −zkρI
0+
k , 0

(t) − i
√

dk q̂I(t)ρ̂I
0,0(t) ;

(10a)
d
dt

ρ̂I
0,0+

k

(t) = −z∗
kρI

0, 0+
k

(t) − i
√

d∗
kρ̂I

0,0(t)q̂I(t) .

(10b)

Here, the index I indicates the interaction picture. It
is worth noting that the structure of Eqs. (9) and (10)
resembles the one known from generalized Floquet the-
ory for driven systems [63–65]. The factorized initial
state gives a boundary condition with ρ̂0,0(0) = ρ̂(0)
and all ADOs with L > 0 are set to zero.

The inhomogeneous differential equations in Eqs.
(10) can be formally solved

ρ̂I
0+
k , 0

(t) = −i
√

dk

∫ t

0

dτ e−zk(t−τ)q̂I(τ)ρ̂I
0,0(τ) ;

(11a)

ρ̂I
0, 0+

k

(t) = −i
√

d∗
k

∫ t

0

dτe−z∗
k(t−τ)ρ̂I

0,0(τ)q̂I(τ) .

(11b)

and then plugged in into Eq. (9). Summation over the
reservoir modes as in Eq. (6) then leads to the following
time-evolution equation in Born approximation:

d
dt

ρ̂I(t) = −
∫ t

0

dτ [q̂I(t), C(t − τ)q̂I(τ)ρI(τ)]

Fig. 1 Comparison of high-order perturbative time-
evolution equations at tier L of FP-HEOM with fully con-
verged simulations. The population dynamics of a sub-
Ohmic spin-boson model are shown. Simulation parameters:
ε = 0, Δ = 1, ωc = 20, T = 0, α = 0.1, and s = 0.5

− [q̂I(t), C∗(t − τ)ρI(τ)q̂I(τ)] . (12)

Note that no Markovian coarse-graining in time is done
here, not even on the level of the reduced density so
that the reservoir induced retardation is fully taken
into account in this order of system-bath coupling. One
regains the conventional Redfield equation by setting
ρI(τ) → ρI(t), thus leading to a time-local evolution
equation with time-dependent rates. Hence, we name
the above integro-differential equation (12) Redfield-
plus.

The FP-HEOM can be interpreted as an infinite-
order extension of the Redfield-plus/Redfield approx-
imation [57, 66]. Truncating at tier L results in a time-
evolution equation of order α2L that’s non-local in time.
This approach offers a systematic way to analyze the
influence of higher order system-reservoir correlations,
which can be intricate within a perturbative framework.

As illustrated in Fig. 1 for a coupling strength of
α = 0.1, numerically converged “exact” results are
attainable when truncating at tier L = 12. However,
the spin dynamics can be reasonably approximated at
the 6th order (L = 3). The Redfield-plus approximation
(L = 1) tends to diverge over extended time intervals.
It is worth noting that while the FP-HEOM can handle
strong system-bath couplings, in this context, we have
selected a relatively weak parameter α to align with the
perturbation series concept.

4.2 Redfield-plus: influence of low-frequency modes

Environment engineering in open quantum systems [67]
focuses on the deliberate design and manipulation of
a quantum system’s environment to induce specific
dynamics, ranging from Markovian to non-Markovian
or from delocalization to localization. Such strategies
are invaluable for counteracting the adverse effects of
decoherence and noise, two persistent challenges in
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Fig. 2 Comparison of Redfield-plus (dashed line) with
exact simulations (solid line) across varying spectral expo-
nents s for a sub-ohmic spin-boson model. The depicted
population dynamics utilize the following simulation param-
eters: ε = 0, Δ = 1, ωc = 20, T = 0, and α = 0.05

quantum systems. In this section, we investigate the
consequences of modulating the environmental spec-
trum through the parameter s on the dynamics of the
subsystem.

For a sub-ohmic bosonic bath, the mode distribu-
tion, characterized by the spectral exponent s, is instru-
mental in gauging the efficacy of the Redfield-plus per-
turbative expansion. With a fixed coupling strength
of α = 0.05, Fig. 2 showcases that the Redfield-plus
approximation closely mirrors the exact dynamics when
the spectral exponents s are at least 0.5. However, as
s diminishes, thereby accentuating the low-frequency
modes, the precision of the second-order approximation
wanes over incrementally shorter time intervals.

A decline in s within the sub-ohmic spectral density
augments the spectral prominence of the low-frequency
modes. This heightened influence of low-frequency
modes undermines coherence by instigating extended
temporal correlations, culminating in reservoir-dressed
equilibrium states. Such dynamics have been previously
observed, for example, in imaginary time path inte-
gral Monte Carlo simulations [9]. This intricate behav-
ior underscores the limitations of a purely perturbative
approach [7].

4.3 Redfield-plus: accuracy with respect
to temperature and bias

In the high-temperature regime, the behavior of the
effective noise spectral density at low frequencies
becomes especially relevant. As the inverse tempera-
ture β (with β = 1/(kT ), where k is the Boltzmann
constant, T is the temperature) approaches zero, and
the noise spectral density Sβ(ω) converges to

lim
β→0

Sβ(ω) = lim
β→0

π
2 α ω1−s

c ωs e−ω/ωc

1 − e−βω

=
πα

2β
ω1−s

c ωs−1 e−ω/ωc . (13)

This limit implies an increase in the effective system-
bath coupling as the temperature rises. This is a regime
where the Redfield-plus approximation may fail, as
illustrated in Fig. 3.

Figure 4 investigates the impact of bias on subsys-
tem dynamics. As the bias escalates, the system tran-
sitions from a coherent to a decoherent state. Remark-
ably, under these conditions, the Redfield-plus approx-
imation provides a reasonably accurate representation
of the dynamics, as depicted in Fig. 4.

Fig. 3 Comparison of Redfield-plus (dashed line) and exact
simulations (solid line) for a sub-ohmic spin-boson model at
finite temperature. The simulation parameters are set as
follows: ε = 0, Δ = 1, ωc = 20, and α = 0.05

Fig. 4 Comparison of Redfield-plus (dashed line) and exact
simulations (solid line) for a sub-ohmic biased spin-boson
model at finite temperature. The simulation parameters are
set as follows: Δ = 1, ωc = 20, α = 0.05, and β = 1
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Fig. 5 Comparison of NIBA (dashed line) and exact simu-
lations (solid line) for a sub-ohmic spin-boson model, illus-
trating the impact of varying the spectral exponent s on
the memory kernel. Parameters: ε = 0, Δ = 1, ωc = 20,
α = 0.05, and T = 0

4.4 Time-dependent memory kernel for populations:
NIBA versus FP-HEOM

For a spin system with no bias, i.e., ε = 0, immersed
in a bosonic bath, the expectation is that the steady-
state population is uniformly distributed between the
two spin states, i.e., P (t → ∞) = 〈σz(t → ∞)〉 → 0.
However, it is well known that at zero temperature, a
symmetry breaking can take place corresponding to a
quantum phase transition from a delocalized to local-
ized asymptotic state [10, 11]. Consequently, depend-
ing on the initial condition and reservoir parameters,
P (t) �= 0 over long timescales, which is a purely quan-
tum phenomenon due to the absence of thermal fluctu-
ations at zero temperature.

This behavior can be conveniently analyzed using the
time-dependent memory kernel K (t) which determines
the spin dynamics according to

Ṗσ(t) = −
∑

σ′=±

∫ t

0

dτKσ,σ′(t − τ)Pσ′(τ) . (14)

We mention here that a powerful perturbative treat-
ment to derive the kernel is the so-called Non-
interacting Blip Approximation (NIBA) [7, 68] and its
extensions. There, kernels in powers of the tunnel split-
ting Δ are obtained with the NIBA kernel being of
second order in the tunnel splitting Δ2. Accordingly,
the NIBA is not based on a series expansion in α
and thus accounts also for strong spin-bath coupling.
It neglects long-range quantum coherences though and
does not predict the correct equilibrium state for ε �= 0.
In Fig. 5 results for the NIBA memory kernel are
depicted. From these data, one would conclude a change
in the dynamical behavior (monotonous decay versus
oscillatory decay) to occur for values around s = 0.5.

For smaller exponents, strong oscillations emerge with
decreasing s.

In contrast, exact FP-HEOM data extracted from
the exact dynamics [14] are shown in Fig. 5. For the
chosen coupling strength, it is also observed that for
s > 0.5, the memory decays clearly monotonous over
time and remains always positive as also predicted by
NIBA. However, quantitatively the exact decay appears
to be much faster than within NIBA. For values of s
below this threshold oscillatory pattern are seen as well
for the FP-HEOM results, but with much smoother and
with less oscillations as the NIBA prediction. We can
thus conclude that while the NIBA provides qualita-
tively the correct physics, it is quantitatively in this
regime of parameter space not reliable.

Physically, the changeover in dynamical behavior in
K (t) can be attributed to a freezing of the population,
since the total weight of the kernel tends toward zero
when integrated over a time span where Pσ(t) does not
change considerably. More specifically, in this regime of
sufficiently small s, one may write for long times with
Pσ(τ) ≈ Pσ(t) in Eq. (14) that

lim
t→∞ Ṗσ(t) ≈ −

∑

σ′=±
kσ,σ′Pσ′(t) (15)

with rates

kσ,σ′ =
∫ ∞

0

dτ Kσ,σ′(τ) . (16)

Estimations from Fig. 5 allow to see that rates kσ,σ′

tend indeed to zero corresponding to a slowing down
of the relaxation dynamics up to the regime, where
kσ,σ′ = 0, so that the spin requires an infinitely long
time to reach a Gibbs equilibrium state and instead
displays localization. This property aligns with the fact
that hybridization between spin and reservoir induced
by slow modes occurs, thus freezing the spin dynamics.

5 Conclusion

Since conventional second-order master equations fail
in accurately capturing non-Markovian dynamics, this
limitation becomes markedly significant for unconven-
tional baths, particularly in conditions such as zero-
temperature structured environments. One approach
to circumvent this is to incorporate high-order cor-
rections. However, the numerical computation of high-
dimensional integrals in time poses considerable chal-
lenge as the accuracy of calculations become extremely
sensitive to numerical errors.

In this work, we have employed the Hierarchical
Equations of Motion (HEOM) approach to effectively
address these challenges. This methodology enables the
systematic unraveling of higher order master equations,
balancing numerical efficiency with high precision. Con-
sequently, our investigation has concentrated on the
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zero-temperature sub-Ohmic regimes, providing rele-
vant computations to underscore our approach.

Furthermore, it is significant to note that the exact
memory kernels in the quantum master equation can be
extracted from the FP-HEOM approach and then be
compared with those from perturbative schemes such
as the NIBA. The extraction further offers a useful tool
for the analysis of quantum phase transition dynamics,
establishing a comprehensive and reliable platform for
further explorations into open quantum system dynam-
ics.
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