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Abstract The Hierarchical Equations of Motion (HEOM) method has become one of the cornerstones
in the simulation of open quantum systems and their dynamics. It is commonly referred to as a non-
perturbative method. Yet, there are certain instances, where the necessary truncation of the hierarchy of
auxiliary density operators seems to introduce errors which are not fully controllable. We investigate the
nature and causes of this type of critical error both in the case of pure decoherence, where exact results
are available for comparison, and in the spin-boson system, a full system-reservoir model. We find that
truncating the hierarchy to any finite size can be problematic for strong coupling to a dissipative reservoir,
in particular when combined with an appreciable reservoir memory time.

1 Introduction

The dynamics of open quantum systems is a field in
which has seen the development of mature method-
ologies and powerful abstractions such as completely
positive maps [1], Lindblad generators [2], path inte-
gral methods [3] and stochastic approaches [4–8]. All
these approaches vary in their general applicability, in
particular, to non-Markovian dynamics, as well as their
potential as computationally feasible methods. Another
computational method which has attracted increasing
attention in recent years is the hierarchical equations
of motion method (HEOM) [9–13], which extends the
dynamics of the reduced density matrix by adding a
(potentially large) number of auxiliary density opera-
tors (ADOs). Through these, one obtains a time-local
version of the open-system dynamics without the usual
construction of a dissipation superoperator. The latter
approach typically requires application of Born, Markov
and secular approximations, yielding a superoperator
depending on both system and reservoir properties. The
HEOM approach, on the other hand, offers a structure
where the terms describing dissipation only depend on
the system-reservoir coupling. This means that Hamil-
tonians with non-trivial level structure or complicated
explicit time dependence can be adapted in the HEOM
formalism far more easily than in master equations.
This feature was leveraged in the application of HEOM
to multi-dimensional spectroscopy [14]. Recent devel-
opments greatly extending its utility in the regime of
ultralow temperature [13] raise the expectation that
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this advantage will also be leveraged in the simulation
of quantum devices.

All HEOM approaches rest on a multi-exponential
decomposition

C(t) =
K∑

j=1

dje
−zjt, t ≥ 0, (1)

of the two-time correlation function of the quantum
reservoir coupled to the system of interest. In the case of
a Gaussian reservoir, it provides all information needed
to determine the reduced dynamics. In a strict analytic
sense, all thermal (Matsubara) frequencies should be
among the zj of such a decomposition. This suggests
that the required number K of exponential terms will
rise when lower temperatures are considered, eventually
rendering the method infeasible in terms of computa-
tional cost. However, when requiring the sum on the
right-hand side of Eq. (1) only to be a close numerical
approximation, the number of terms can be drastically
lowered [13], allowing HEOM computations at arbitrary
temperature. In the resulting Free-Pole HEOM (FP-
HEOM) approach, the coupled dynamics of the reduced
density matrix ρ00(t) and ADOs ρm,n(t) reads

d
dt

ρ̂m,n = −
(

iLS +
K∑

k=1

mkzk +
K∑

k=1

nkz
∗
k

)
ρ̂m,n

− i

K∑
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√
(mk + 1)dk

[
q̂, ρ̂m+

k ,n

]

− i
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√
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k

[
q̂, ρ̂m,n+

k

]
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− i

K∑

k=1

√
mkdk q̂ ρ̂m−

k ,n

+ i

K∑

k=1

√
nkd∗

k ρ̂m,n−
k
q̂. (2)

Here, boldface indices m, n are multi-indices (m1,
. . . mK), and (n1, . . . nK), and the superscripts “+” and
“–” in conjunction with a subscript k mean that the
kth element of m or n is raised/lowered by 1. In FP-
HEOM, both the coefficients dj and the decay rates zj
can be complex numbers, however, the real part of each
zj must be positive for a decaying C (t).

Theoretically, an infinite number of ADOs is required
for any HEOM system to be exact, which is clearly
impractical. Computationally, equations like (2) are
truncated to systems of equations with a finite number
of ADOs. Typically, it is tacitly assumed that increasing
the number of ADOs will allow the result to converge.
This seems to be the case in the majority of applica-
tions. However, cases are reported [15–18], where con-
vergence seems to be very slow, and only pointwise with
respect to time. In a few examples, the limit of large
truncation level even appears to be divergent. The aim
of the following sections is to develop a better under-
standing of the convergence of HEOM dynamics with
respect to truncation depth and to point out potential
remedies to convergence problems.

2 Pure dephasing in the hierarchy
formalism

2.1 Analytic results

For pure dephasing, an analytic result in terms of
quadratures of the reservoir correlation function is
available:

〈q|ρ̂(t)|q′〉 = exp
(
−(q − q′)2φ(t)

)
〈q|ρ̂(0)|q′〉 (3)

with real function

φ(t) =

t∫

0

ds

s∫

0

ds′C(s − s′) =

t∫

0

dτ(t − τ)C(τ).

(4)

In the Markovian limit, φ(t) rises linearly with time,
the slope being given by the spectral noise power at
zero frequency.

Thus, the HEOM approach is not strictly needed in
this context. However, this compact analytic result pro-
vides the opportunity to compare the dynamics result-
ing from the HEOM approach with analytic results. In
the case of pure decoherence, a double multi-index is

not needed; the resulting hierarchy equation is

d
dt

ρ̂n = −
K∑

k=1

nkzkρ̂n

− i

K∑

k=1

√
(nk + 1)dk

[
q̂, ρ̂n+

k

]

− i

K∑

k=1

√
nkdk

[
q̂, ρ̂n−

k

]
. (5)

Initially, we consider the simple case of a real cor-
relation function with exponential time dependence,
C(t) = de−Γt. This can be realized as a limiting case
of an ohmic quantum reservoir with very weak cou-
pling and very high temperature, or by replacing the
reservoir with classical noise (Ornstein–Uhlenbeck pro-
cess). Within this section, we will assume Γ > 0. Real
C(τ) and positive noise power require d to be posi-
tive as well, but we will relax this constraint here, since
terms with negative or complex d typically appear for
low-temperature quantum reservoirs, described by more
than one exponential term. The corresponding HEOM
system

d
dt

ρ̂n = −nΓρ̂n − i
√

(n + 1)d[q̂, ρ̂n+1]

− i
√

nd[q̂, ρ̂n−1]
(6)

now has a single index, and we set ρ−1 ≡ 0. We consider
the time evolution of off-diagonal matrix elements of the
physical density matrix and the ADOs, setting yn(t) =
〈q|ρ̂n(t)|q′〉, which results in

d
dt

yn = −nΓyn − i
√

(n + 1)D yn+1 − i
√

nD yn−1,

(7)

with y−1 ≡ 0 and D = d(q − q′)2. For a factorizing
initial condition, yn(t = 0) = 0 for n > 0, this system
has the closed-form solution

yn(t) =
(−i)n√
Dnn!

Φ̇(t)n exp(−Φ(t))y0(0) (8)

with

Φ(t) =
D

Γ2

(
Γt − 1 + e−Γt

)
. (9)

All of the yn(t) behave as ∝ e−Dt/Γ in the long-
time limit. Their transient behavior, which becomes
markedly visible for |D|� Γ2, indicates the non-
Markovian nature of dephasing through colored noise.
In the opposite limit, the coupling between hierarchy
levels is a small perturbation, and hierarchy elements
with n > 1 are virtually negligible.
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The right-hand side of the linear dynamical equation
(7) defines a generator G equivalent to the Hamilto-
nian of an inverted quantum harmonic oscillator with
a complex shift:

G = −Γa†a − i
√

D
(
a† + a

)
. (10)

Without any truncation, the eigenvalues of this genera-
tor can be obtained in complete analogy to the quantum
mechanical oscillator; they are

λn = −nΓ − D/Γ. (11)

The analogy to the quantum oscillator is closest for the
case D < 0, where G becomes Hermitian with respect
to the natural scalar product of sequence spaces. More
generally, Eq. (11) is valid for arbitrary complex param-
eters Γ and D , although the corresponding eigenvectors
will generally be non-orthogonal. In particular, this is
the case when both D and Γ are positive.

2.2 Truncated HEOM dynamics

The procedure of first obtaining exact solutions yn(t),
then discussing which ones can be neglected is not
equivalent to the approach which is taken when apply-
ing HEOM as a numerical algorithm: There, Eq. (6)
must be truncated, typically by setting ρn = 0 for n
larger than some nmax. For a theoretical analysis, the
truncation could also be imagined as a rank-one modi-
fication of the generator G which makes it block diago-
nal, one block with n ∈ [0, nmax] and one (semi-infinite)
block with n > nmax.

It is to be noted that there are cases in which
the rank-one modification mentioned above is not a
small perturbation: The level spacing of G is Γ, and
the modification eliminates matrix elements propor-
tional to

√
nmaxD. The potential discrepancies between

exact and truncated dynamics are illustrated in Fig. 1,
where the quantities |yn(t)|exp(+Dt/Γ) are shown for
D = ±1.5Γ2 and D = ±2.5Γ2. Significant deviations
are observed for large positive D , where decoherence
effects are underestimated in HEOM. The different level
of error depending on the sign of D probably reflects
the different nature of the eigensystem of G for different
signs of D—orthogonal vs. non-orthogonal.

When using a multi-exponential representation of a
low-temperature quantum correlation function C (t),
one typically obtains one or more coefficients d with
negative real part, leading to rising exponentials e|D|t/Γ

in the resulting dynamics, which are compensated by
other terms in the multi-exponential representation.
Inaccuracies due to the hierarchy truncation can jeop-
ardize this cancellation, as is occasionally observed in
HEOM simulations [15–17]. In order to reproduce this
difficulty in a clean example, we consider the degenerate
case of a formal two-exponential representation:

C(t) = de−Γt − de−Γt = 0. (12)

The exact solution for y0(t) is obviously constant,
y0(t) = y0(0). Formally applying Eq. (5) with K = 2,
d1, 2 = ±d and zk = Γ results in a HEOM approxima-
tion of the exact result, the quality of which depends
on the truncation parameter nmax. The data in Fig. 2
shows that a high truncation parameter can ensure this
with a small relative error of approximately 8 × 10−5

for a relatively large parameter D = 10Γ2 (a), while
further raising D to the value 20Γ2 (b) breaks the can-
cellation, leading to an exponential divergence even for
extremely deep hierarchies.

3 Stability issues in full HEOM dynamics

3.1 Time-domain analysis

In practical HEOM computations, two slightly differ-
ent truncation schemes are used. In the so-called N
truncation scheme [19], all ADOs where any index
exceeds a given nmax are set to zero. In the L trun-
cation scheme [19], ADOs where the sum of all indices
exceeds a given nmax are neglected. For the dynamics
governed by Eq. (2), this yields n2K

max ADOs for N trun-

cation and
∑nmax−1

r=0

(
2K − 1 + r

r

)
ADOs for L trun-

cation, a significantly smaller number than the former.
Converging the dynamics in a numerical simulation is
simply a matter of increasing the truncation param-
eter nmax in either of the truncation methods until
the dynamics no longer changes. In the following we
investigate how this procedure succeeds or fails in the
context of a spin-boson system with strong coupling
and a sluggish, roughly resonant reservoir with Hamil-
tonian Ĥs = Δσ̂x and coupling operator q̂ = σ̂z. For
the influence of the reservoir a ohmic spectral density
J(ω) = αω/(1 + (ω/ωc)2) with Drude form cutoff was
used. For a given coupling parameter α, inverse temper-
ature β and cutoff frequency ωc a barycentric fit [13, 20]
with tolerance 10−2 was performed, yielding a correla-
tion function with a single (K = 1) complex exponential
mode C(t) = de−zt, which is more than adequate for
a high-temperature reservoir. The exploration of large
nmax is thus facilitated.

In Fig. 3, the dynamics of the population of the
exited state can be observed for the strong dissipa-
tion case α = 5. The truncation parameter nmax is
steadily increased in an attempt to achieve physical
dynamics for both the N- and L-Truncation. Within the
numerically accessible parameter range, there appears
to be pointwise convergence in the N-truncation up to a
threshold near nmax = 100, with convergence attainable
only on a finite time interval.

The population dynamics in the L-truncation dis-
plays somewhat different convergence properties. Low
truncation orders do not seem to be unstable, but due
to the strong dissipation also not yet converged. An
increase of the truncation parameter eventually causes
divergences instead of reaching a physical result; these
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Fig. 1 HEOM decoherence

functions yn(t) · eDt/Γ2
,

normalized to y0(0) = 1
with with and without
truncation. Sign and
strength of decoherence
vary as a D = 1.5Γ2,
b D = −1.5Γ2,
c D = 2.5Γ2,
d D = −2.5Γ2. The HEOM
indices 0 . . . 7 are color
coded as dark blue, red,
yellow, purple, green, light
blue, cardinal and blue.
Drawn lines represent
HEOM result for finite
truncation (nmax = 10);
dots represent the exact
result (8)
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Fig. 2 a cancellation of
opposing de- and
recoherence terms for
D = 10Γ2 and b divergent
error for D = 20Γ2. The
maximum hierarchy index
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blue, red, yellow, purple,
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Fig. 3 Heom example in the N-truncation a and the L-truncation b with problematic convergence properties for physical
parameters ωc = 1 s−1, α = 5, ωcβ = 0.1 and Δ = 4 s−1 for the spin-boson system with Hamiltonian Ĥs = Δσ̂x/2 and
coupling operator q̂ = σ̂z. The Barycentric-Fit, for an ohmic spectral density J(ω) = αω/(1 + (ω/ωc)

2) with Drude form
cutoff, results in the HEOM parameters d = 50.0 − 2.5 i and z = 1.0

Fig. 4 Boundary of
convergent and divergent
regime of the FP-HEOM.
Physical parameters of the
spin-boson system
Ĥs = Δσ̂x/2, q̂ = σ̂z were
chosen to be ωc = 1 s−1,
ωcβ = 0.1 and Δ = 2 s−1.
The barycentric fit was
performed for all coupling
parameters α

divergences appear to persist for arbitrarily deep hier-
archies.

3.2 Spectral features of extended-state-propagation

Since Eq. (2) is linear, HEOM instabilities can also be
analyzed through the eigenvalues of the generator of the
extended-state propagation. For this purpose, it is con-
venient to vectorize the set of ADOs ρ̂m,n → |ρm,n〉 and
to define a global state |ρ〉 = (. . . , |ρm,n〉, . . . )tm,n∈T ,
where T is the set of all multi-indices (m,n) allowed by
the truncation method. The FP-HEOM is now equiv-
alently expressed by a linear map characterized by a
Matrix M (t), d|ρ〉/dt = M(t)|ρ〉. M (t) is sparse, since
it changes ADO indices at most by one. When it comes
to investigating the long time stability, we will only
consider the case of a time independent Hamiltonian,

which allows the map to be expressed through a time-
independent matrix M . From

|ρ(t)〉 = eMt|ρ(0)〉, (13)

it is obvious that an exponential divergence occurs
when M has an eigenvalue with positive real part.
Without simulating the system in the time domain we
can simply inspect for such eigenvalues.

Determining the eigenvalues can be done either ana-
lytically or numerically [16]. We use the ARPACK
library [21] for its efficient iterative algorithm in the
search of eigenvalues with the largest real part for
sparse matrices.

For the numerical analysis of the instability we con-
sider the same spin-boson system from the time-domain
analysis. With stability thus defined, Fig. 4 shows a
phase diagram with stable and unstable regions in the
parameter plane spanned by nmax and α, with different
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Table 1 Most unstable
eigenvalue as a function of
truncation depth. See text
for details

max Reλ 16.94 13.55 9.23 5.21 5.12 5.25 5.10 5.22

nmax 50 75 100 125 150 200 300 500

Fig. 5 Full spectrum (left)
and magnification (right) of
the eigenvalues of the linear
FP-HEOM map. a,
b Correspond to the stable
example points in Fig. 4,
and c, d correspond to the
unstable example points
respectively

phase boundaries for L truncation and N truncation.
In both cases, instabilities arise for α above the bound-
ary. All α below the line will result in stable, but not
necessarily converged dynamics. In the L-truncation
the allowed maximum coupling initially decreases with
the depth of the hierarchy nmax and tends towards
some constant. For the N-truncation it seems to be the
other way around, where the maximum allowed damp-
ing increases linearly with nmax until some threshold
depth and becoming constant afterwards. From Fig. 4 it
appears that for high hierarchy depths there is a critical
coupling constant αc ≈ 3 which becomes independent
of nmax. Thus, merely increasing the hierarchy depth
nmax does not appear to be a viable strategy for curing
divergence problems.

In the case of L truncation, comparably high values
of α are allowed for smaller nmax, which however, may
be too small for numerical convergence of the dynamics.
Therefore, in the worst case scenario, it might be impos-
sible to converge the result without running into insta-
bilities. This behaviour is consistent with the dynamics
in Fig. 3.

Figure 5 shows the full eigenvalue spectrum of two
specific points for nmax = 50 in the N-truncation,

namely α = 1 and α = 5. In the moderate damping case
α = 1 both the N- and L-truncation are stable and con-
verged, whereas the strong damping case α = 5 does not
allow for stable dynamics. The spectrum for the stable
case α = 1 shows the absence of eigenvalues with pos-
itive real part and a eigenvalue with Re(λ) = 0 corre-
sponding to the steady state. In contrast, the spectrum
for α = 5 shows many eigenvalues with positive real
part much greater than zero corresponding to unsta-
ble dynamics. For increasing nmax, Table 1 shows the
largest real part of any eigenvalue of M . It appears that
these tend to a constant, again suggesting that a con-
vergent and correct result cannot be achieved.

Different remedies have been suggested against the
problem of divergent cases. Dunn et al. [16] proposed a
filtering algorithm which eliminates from M the eigen-
vectors corresponding to unstable eigenvalues, with
some success in the case where the modification of M
is of low rank. Considering the large number of eigen-
values with positive real part shown in Fig. 5d, with
most real parts large compared to system parameters,
the applicability of this procedure seems limited. Fur-
ther development of truncation strategies approximat-
ing the omitted ADOs by a function of the retained
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ADOs [10, 22] instead of setting them to zero might lead
to progress in solving this problem, possibly even allow-
ing the use of smaller nmax than with a “hard” trun-
cation. The reformulation of HEOM dynamics through
a bath coordinate mapping [23] also seems a promising
strategy in the case of a reservoir which is sluggish or
near-resonant to the system. Finally, the combination of
HEOM for fast reservoir components and an optimized
stochastic approach for slow reservoir components [24]
can provide a solution to the problem.

4 Conclusions

The appearance of divergent errors in some HEOM
computations is succinctly related to reservoir param-
eters and truncation depth. The simple, analytically
solvable case of pure dephasing reveals that a hard
truncation at some maximum index is not necessar-
ily a perturbative change of the dynamics, and it does
not become perturbative when the maximum index is
raised. A numerical study of the spin-boson system
clearly confirms this picture. Problems of this nature
seem mostly confined to the combined regime of strong
coupling and slow reservoir dynamics. Apart from this
regime, the HEOM method remains a valid and efficient
method, as evidenced by the vast majority of applica-
tions where divergences are not observed. For the prob-
lematic parameter regime, our work should stimulate
the development of alternative strategies for the finite
closure of HEOM equations or a HEOM mode structure
less susceptible to divergence problems.
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