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Abstract Periodically driven quantum dots can act as counterparts of cyclic thermal machines at the
nanoscale. In the slow-driving regime of geometric pumping, such machines have been shown to operate
in analogy to a Carnot cycle. For larger driving frequencies, which are required to increase the cooling
power, the efficiency of the operation decreases. Up to which frequency a close-to-optimal performance
is still possible depends on the magnitude and sign of on-site electron–electron interaction. Extending
our previous detailed study on cyclic quantum-dot refrigerators [Phys. Rev. B 106, 035405 (2022)], we
here find that the optimal cooling power remains constant up to weak interaction strength compared to
the cold-bath temperature. By contrast, the work cost depends on the interaction via the dot’s charge
relaxation rate, as the latter sets the typical driving frequency for the onset of non-geometric pumping
contributions.

1 Introduction

Cyclic thermal machines have been widely studied
in nanoscale systems [1–6]. One possibility to design
such a thermal machine at the nanoscale is via peri-
odic driving—pumping—of quantum dots [7–9], see
Fig. 1(a) and (b). In these quantum-dot realizations
of heat engines, electron–electron interaction can play
an important role in the performance. This is true
for the standard repulsive Coulomb interaction, but
strong attractive interaction has also been analyzed in
pumping through quantum dots [10] and for steady-
state thermoelectric systems [11]. The most basic setup
allowing for such a nano-electronic implementation of
a cyclic thermal machine is a driven single-level quan-
tum dot coupled to two electronic baths. For this basic
setup, we have recently identified the key physical
effects and, in particular, the role of many-body on-site
interaction, on the thermodynamic performance [9]. We
showed that by periodically driving the couplings to the
hot and cold baths and the energy of level of the dot,
the system can be operated as a refrigerator or a heat
pump and the sign of the interaction, namely strong
attractive or strong repulsive electron–electron inter-
action, has an important impact on the machine per-
formance. However, this previous work focused on the
geometric approach arising from slow sinusoidal driving
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and small driving amplitudes which are not the most
typical conditions for cyclic heat engines.

The present work extends our previous study of
a cyclic quantum-dot refrigerator to a more tradi-
tional four-stroke thermodynamic cycle, as depicted
in Fig. 1(b), and to driving frequencies beyond the
adiabatic-response regime of the pump. The latter fre-
quencies are of interest to increase the cooling power
of the refrigerator, but at the same time, the effi-
ciency is known to be the largest when the frequency
is small (Carnot limit). We study in detail the role of
the many-body interaction (weak to strong repulsive or
attractive) on the upper limit of the driving frequency
that still allows for a close to Carnot performance. We
consider weak to strong repulsive and attractive elec-
tron–electron interaction.

2 Heat transport induced by a driven
quantum dot

We consider a thermal machine consisting of a single-
level spin-degenerate quantum dot as working sub-
stance, tunnel-coupled to two electronic baths (reser-
voirs), as depicted in Fig. 1(a). The quantum-dot
Hamiltonian reads H = εN + UN↑N↓, with ε the
energy of the dot level, U the interaction energy, Nσ

the number of electrons of spin σ =↑, ↓ in the dot
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Fig. 1 a Sketch of the quantum dot model, see text for
details about the parameters. b 4-stroke driving protocol:
ε and Λ as functions of time over one driving cycle, see
Eq. (1). The schematics indicate the state of the dot at the
start of each stroke for ε̄ = 0 and δε � T . c, d Evolution of
the populations, Pi, and currents, IR, JR during one cycle
for c ε̄ = 0 and d ε̄ = δε. Furthermore, U = 0, δε/T = 5,
Γ/T = 10−2, δT/T = 10−2, Ωε/Γ = 10−4 and ΩΛ = 5Ωε

and N = N↑ + N↓. Note that the two-particle inter-
action U is not treated perturbatively, and can take
on arbitrary positive (repulsive Coulomb interaction)
or negative (attractive interaction) values. The energy-
independent coupling strengths between the dot and
reservoirs are ΓL/R = Γ(1±Λ)/2, where Γ is a fixed tun-
nel coupling strength and Λ the left-right asymmetry.
Each reservoir α = L, R is assumed to be an effectively
non-interacting, spin-degenerate metallic lead in equi-
librium at temperature Tα and electrochemical poten-
tial μα. The average particle (+)/hole (−) occupation
number at energy E is given by the Fermi distribution
f±

α (E) = (1 + exp(±(E − μα)/kBTα))−1. In the follow-
ing, we adopt the convention � ≡ kB ≡ e ≡ 1 and use
the temperature T as our reference energy scale.

We are interested in operating this quantum dot as a
cyclic refrigerator. We, therefore, choose identical chem-
ical potentials for both reservoirs and use them as the
zero of the energy scale, namely μR = μL ≡ 0. We con-
sider the left reservoir to be hotter than the right one
and write TR ≡ T and TL ≡ T + δT , with δT > 0. The
thermal machine is operated with the following four-
stroke protocol: we alternatively modulate the level
energy ε and the tunneling asymmetry Λ with piecewise
cosine functions, see Fig. 1(b), at respective frequencies
Ωε = π/τε and ΩΛ = π/τΛ,

ε(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ε̄ + δε cos(Ωεt) (I)
ε̄ − δε (II)
ε̄ − δε cos(Ωε(t − t2)) (III)
ε̄ + δε (IV)

, (1a)

Λ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

−1 (I)
− cos(ΩΛ(t − t1)) (II)
1 (III)
cos(ΩΛ(t − t3)) (IV)

, (1b)

with t1 = τε, t2 = t1+τΛ, t3 = t2+τε and the total cycle
duration τ = 2τε + 2τΛ. The level energy is modulated
with amplitude δε around a chosen average value ε̄ while
the tunneling asymmetry is always modulated around
0 with amplitude 1 so that the dot is only in contact
with the cold bath during stroke (I) and only with the
hot bath during stroke (III). The bath couplings are
inverted during strokes (II) and (IV). This procedure
differs from our previous analysis [9], where we chose a
simple and continuous cosine-shaped driving both for
the level position and the coupling asymmetry.

We describe the dynamics of such a thermal machine
by a master equation [12–14] ∂tρ = Wρ for the reduced
density operator of the dot ρ; this is valid in the weak-
coupling regime, Γ � T , and for moderately slow driv-
ing, 0 < Ωεδε/T , ΩΛ � Γ. The kernel W acting on ρ
is here time dependent due to the modulation of ε and
Λ during the strokes. Furthermore, only the diagonal
elements of ρ, namely the probabilities Pi of the occu-
pation states i = 0, 1, 2 of the dot, are of relevance. The
kernel W gives the transition rates between those occu-
pation states and can be split into the separate contri-
butions of each reservoir, W = WL + WR. The charge
and heat currents from reservoir α into the dot read
Iα(t) = Tr[N(Wαρ(t))] and Jα(t) = Tr[H(Wαρ(t))]
[15]. The transition rates can be computed from Fermi’s
golden rule and are proportional to Γα times a Fermi
function. See Ref. [9] for details about the model and
its solution, exploiting a dissipative symmetry of the
master equation kernel, coined fermionic duality .

To quantify the performance of the driven dot as
refrigerator, like in Ref. [9], we are specifically inter-
ested in the heat extracted from the cold bath, i.e., the
right reservoir, per cycle as well as the work W supplied
by the driving,

QR =
∫ τ

0

dtJR(t), W =
∫ τ

0

dtTr
[
dH

dt
ρ

]

. (2)

Indeed, since μR = 0, the heat current is equal to
the energy current and, in the weak-coupling regime,
the modulation of the tunnel barriers does not cost
any work. Finally, we define the coefficient of perfor-
mance η = QR/W. In the corresponding ideal Carnot
cycle, that is for Ωε → 0 and ΩΛ → ∞, there is
no heat exchanged during strokes (II) and (IV), while
the second law of thermodynamics for strokes (I) and
(III) gives QC

R = TΔS(I) and QC
L = (T + δT )ΔS(III).

ΔS(X) denotes the change in the von Neumann entropy
of the dot, S(ρ) = −Tr[ρ log ρ], during stroke (X).
Finally, applying the first law to the full cycle and
using ΔS(III) = −ΔS(I), we obtain the work cost of the
Carnot cycle WC = δTΔS(I) and the expected Carnot
efficiency ηC = T/δT .
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Table 1 Reference numerical values for different interaction strengths, from strongly attractive to strongly repulsive. The
parameters are the same as in Fig. 2

U /T − 10 − 0.5 0 0.5 10

ε̄opt/T 10.0 5.25 5.00 4.75 5.00

QC
R/T 0.733 1.378 1.385 1.377 1.098

max. Ωε/Γ s.t. QR/QC
R > 90% 6.47 × 10−4 4.66 × 10−2 4.85 × 10−2 4.90 × 10−2 6.15 × 10−2

max. Ωε/Γ s.t. η/ηC > 90% 3.41 × 10−6 2.40 × 10−4 2.52 × 10−4 2.56 × 10−4 3.18 × 10−4

3 Optimal operation constrained
by interaction

The goal of the refrigerator is to perform heat extrac-
tion from the cold bath during stroke (I), while avoid-
ing to have unwanted heat flows during strokes (II)
and (IV). To highlight the impact of interaction on the
optimal performance, we first introduce the operation
principle for a non-interacting quantum dot, U = 0,
modulated with an amplitude δε that is large compared
to temperature. The system dynamics during a driving
cycle—here always chosen as depicted in Fig. 1(b)—are
shown in Fig. 1(c) for driving around ε̄ = 0 and for
ε̄ = δε in panel (d). In the former case, the dot occu-
pation increases from 0 to 2 when lowering ε during
stroke (I) since the transition energy ε(0) = δε � T is
way above the cold reservoir electrochemical potential,
and ε(t1) = −δε � −T way below. This cycle is not
favorable since the desired heat flow during stroke (I)
averages to zero, giving a total QR < 0. The evolution is
different for ε̄ = δε since at the end of stroke (I), the dot
level is exactly at resonance with the reservoir, leading
to QR > 0. This shows that it is favorable if the addition
energies approach, but do not cross the common elec-
trochemical potential of the two reservoirs, such that
transport during the whole stroke is due to electrons
only (respectively, due to holes only for a cycle start-
ing below the Fermi energy). Furthermore, there is no
leakage heat current when the coupling to the baths is
modified, if the addition energy is exactly at resonance
during one of the strokes (II) or (IV).

Importantly, in the case ε̄ = δε, a small repulsive
interaction, U > 0, would give a similar evolution but
with a smaller probability of double occupation, leading
to a reduced dot filling during the cycle. Conversely, a
small attractive interaction, U < 0, gives a larger prob-
ability of double occupation, concomitant with a slight
crossing of one of the addition energies with the zero
electrochemical potentials. In other words, the optimal
refrigerator level working point ε̄ in terms of cooling
power is generally shifted away from ε̄ = δε for sizable
local interaction strength. Then, for U � T , only one
of the two addition energies is involved in the cycle, so
the reasoning for U = 0 still applies to either the 0 → 1
or 1 → 2 transition. Conversely, the case −U � T is
special because the optimal working point relies on the
pair resonance ε ≈ −U/2—induced by strong attrac-
tive interaction—to coincide with the electrochemical
potential at the end of stroke (I).

The following analysis will always assume a ε̄ = ε̄opt

maximizing QC
R = TΔS(I) by, ideally, inducing a tran-

sition from a pure to a maximally mixed dot state
during stroke (I). For U � T , ε̄opt = δε − U/2 but,
for U � T , the two addition energies can be sepa-
rated and ε̄opt 
 δε, see the first row in Table 1. The
Carnot limit QC

R of the extracted heat at these optimal
points is the largest for the non-interacting quantum
dot as described above; attractive interaction reduces
the value more strongly than repulsive because the
0 → 1 transition can only be thermally activated at
the pair resonance.

As clear from Fig. 1(c,d), it is important not only
to maximize the heat extraction during stroke (I), but
also to avoid heat leakage during strokes (II) and (IV).
Apart from an optimal working point, this leakage
is reduced by shorter stroke durations. Since strokes
(II) and (IV) are not dissipative in the weak-coupling
regime, we, thus, set a relatively large frequency ΩΛ =
2Γ, compatible with the master equation as ΩΛ � T
[16].

While the Carnot values for heat extraction and effi-
ciencies can be obtained for infinitely small driving fre-
quencies, reasonably large frequencies are required to
reach measurable cooling power (heat extracted per
unit of time). It is, therefore, important to identify
up to which driving frequency Ωε the refrigerator sup-
ports either large heat extraction, e.g., QR/QC

R > 90%,
and/or large efficiencies, e.g., η/ηC > 90%. These oper-
ation frequency bounds are directly tied to the magni-
tude and sign of on-site electron–electron interaction,
as shown in the third and fourth row of Table 1, and in
Fig. 2, and as we will discuss in the following.

Figure 2 shows the extracted heat per cycle QR, the
work cost W and the efficiency η as function of Ωε for
interaction strengths ranging from strongly attractive
to strongly repulsive. All cases converge towards the
ideal Carnot cycle values for infinitely slow Ωε → 0,
and all the curves are very similar for strong repul-
sion, U = 10T , up to weak attraction, U = −0.5T .
The convergence towards the Carnot limit is slightly
faster for strongly repulsive interaction. On the con-
trary, QR(Ωε) varies substantially in shape as a function
of U approaching strong attraction (U = −10T ), with
significantly slower convergence towards the Carnot
limit. This is because the relevant rate to compare to
Ωε is the interaction-dependent charge rate [9, 17]

γc
α = Γ[f+

α (ε(t)) + f−
α (ε(t) + U)], (3)
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Fig. 2 Extracted heat per cycle QR, work cost W and
efficiency η divided by the corresponding quantities in
the Carnot limit as functions of Ωε for different interac-
tion strengths U . The other parameters are Γ/T = 10−2,
δT/T = 10−2, δε/T = 5, ε̄ = ε̄opt and ΩΛ = 2Γ

with α = R during stroke (I) and α = L during
stroke (III). While this charge rate is bounded by
Γα ≤ γc

α ≤ 2Γ for U ≥ 0 [18], it approaches 2Γ in the
single-occupation regime enabled by repulsive interac-
tion. This allows for faster driving frequencies in proto-
cols ending up in precisely this singly occupied state.
However, attractive interaction U < 0 can suppress
γc

α below Γα. Namely, while γc
α ≈ Γα still holds dur-

ing the whole stroke for weak U ∼ −T , this is not the
case in the strongly attractive regime: around ε̄opt − δε,
that is, for a tendentially singly occupied dot at the
end of stroke (I) and the beginning of stroke (III), γc

α
becomes vanishingly small for −U � T . This, in turn,
strongly bounds the frequency at which the refrigerator
can operate close to the Carnot limit. The modulation-
frequency dependence of the work spent for the refrig-
erator operation in the strongly attractive regime also
reflects this, as already small frequencies Ω ≤ 10−1Γ no
longer allow the dot to be fully charged and discharged
during the cycle. In contrast, repulsive interaction may,
thereby, in fact benefit η, as the larger charge relaxation
rate can result in a lower W.

Complementary to Fig. 2, we plot the different ther-
modynamic quantities as functions of the interaction
strength U in Fig. 3 for different driving frequencies Ωε.
Again, while the performance does not strongly depend
on interaction as long as U > 0, the deviation from the
ideal Carnot cycle gets stronger the more negative U
becomes.

Additionally, we observe a feature in all three plot-
ted quantities of Fig. 3 around U/T 
 2.6. It appears
at the point where U becomes sufficiently large com-
pared to temperature to separate the two addition ener-
gies ε and ε + U ; note that the broadening of the
Fermi function is given by 4kBT . This separation of
addition energies influences the amount of accessible
states (degeneracy) at different times during the strokes
and thereby directly affects the dot entropy S(ρ). This
in turn impacts the extracted heat [7]: concretely, for
our choice of δε and ε̄, we have QC

R 
 S(ρ(t1)). The
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C

Fig. 3 Extracted heat per cycle QR, work cost W and effi-
ciency η as functions of the interaction strength U for dif-
ferent driving frequency Ωε. The other parameters are the
same as in Fig. 2. The black dotted lines correspond to the
case of the ideal Carnot cycle

impact of the degeneracy on thermodynamic observ-
ables has previously been shown in quantum-dot exper-
iments [19–21], and we here show its features in the
operation of a cyclic thermal machine.

4 Conclusion

This manuscript has complemented the detailed anal-
ysis [9] of a driven quantum dot operated as a cyclic
refrigerator with a study of how the dot-local inter-
action impacts the performance of such a refrigerator
when operated close to a standard Carnot cycle. We
have, therefore, chosen a convenient four-stroke modu-
lation, alternating between a driven quantum dot level
and system–bath coupling. Generally, the Carnot limit
of performance requires adiabatic engine strokes. Here,
we have quantified how the interaction bounds the
highest frequency still allowing the system to operate
close to this limit. We have furthermore identified sig-
nificant differences between repulsive and (effectively)
attractive interaction. These differences primarily orig-
inate from the fact that while the charge relaxation
rate of the dot is always of the order of the tunnel
barrier transparency Γ for repulsive interaction, the
charge rate may almost vanish for effective on-site elec-
tron–electron attraction. Also, the Carnot value of the
heat extracted by the refrigerator is reduced in the case
of strong attractive interaction, since thermal activa-
tion of tunneling processes is required in the optimal
operation regime. Finally, we have discussed degeneracy
effects—visible only in the presence of electron–electron
interaction—that manifest as a distinct feature in the
extracted heat, work cost, and the efficiency of the cycli-
cally operated quantum-dot refrigerator.
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