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Abstract In this contribution, the nonlinear dynamics of a non-autonomous model of two neurons based
on the Hopfield neural network is considered. Using activation gradients as bifurcation control parameters,
the properties of the model include dissipation with the existence of attractors and equilibrium points
with their stability. Using traditional nonlinear analysis tools such as bifurcation diagrams, the graph
of the maximum Lyapunov exponent, phase portraits, two-parameter diagrams, and attraction basins,
the complex behaviour of the two-dimensional Hopfield neural network has been investigated and several
windows of multistability involving the coexistence of up to four coexisting attractors have been found.
Besides, the results of our numerical simulation of the multistability have been further supported using
some Pspice simulation. The effect of the fractional-order derivative is also explored, and it is found
that the route toward chaos is completely different when the order q of the HNN is varied between 0 <
q < 1. Finally, a compressive sensing approach is used to compress and encrypt color images based on
the sequences of the above-mentioned system. The plain color image is decomposed into Red, Green,
and Blue components. The Discrete Wavelet Transform (DWT) is applied to each component to obtain
the corresponding sparse components. Confusion keys are obtained from the proposed chaotic system to
scramble each sparse component. The measurement matrices obtained from the chaotic sequence are used
to compress the confused sparse matrices corresponding to the Red, Green, and Blue components. Each
component is quantified and a diffusion step is then applied to improve the randomness and, consequently,
the information entropy. Experimental analysis of the proposed method yields a running time (t) of 6.85
ms, a maximum entropy value of 7.9996 for global and 7.9153 for local, an encryption throughput (ET)
value of 114.80, and a number of cycles (NC) of 20.90. Analysis of these metrics indicates that the proposed
scheme is competitive with some recent literature.

1 Introduction

The artificial Hopfield neural network (AHNN) is a
model of artificial neural network that tends to mimic
the memory function of the biological brain. It is a par-
ticularly intriguing model in that it attempts to repli-
cate the critical mnemonic function in language mastery
and the learning process. A significant number of artifi-
cial neural network models inspired by the initial model
designed by Hopfield in 1984 have been developed to
date. Despite its consideration of a large number of neu-
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rons, this model has this singularity in that it remains
relatively simple. The studies carried out on AHNNs
have the advantage that they would allow an under-
standing of a certain number of pathologies affecting
memory function and provide a starting point for their
resolution. As a result, dynamic behaviors such as chaos
[1–3], hyperchaos [4–6], multistability [7–9], and hidden
attractors [4,5] have piqued the interest of researchers.
Recent interesting works published in the literature,
such as those of [10–16], can attest to the interest in the
study of systems exhibiting such behaviors. For exam-
ple, in [10], they investigated a chaotic Lorenz system
modified by artificial neural networks, which allowed
them to transform its chaotic behavior into motion,
then create a chaotic motion video. The authors [11–13]
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applied an adaptive sliding mode control strategy, the
passive control technique, and the indirect field control
strategy to control the chaotic behavior of the dynam-
ics of a fractional-order Hopfield neural network with
memristor, a chaotic system, and a 3-phase induction
motor, respectively. [14–16] proposed Jerk, memristive,
and hyperjerk circuits, whose studies of the systems
describing them presented chaotic attractors, periodic
attractors, the coexistence of multiple attractors, bub-
bles of bifurcations, and many other phenomena. [15]
has realized a chaos-based random number generator
from the new memristive chaotic system they proposed
and performed an algorithm for touchless fingerprint
encryption has been established.

To facilitate theoretical analysis and experimental
implementation, many small HNNs have been inten-
sively studied [1,3,5,17–22]. Complex dynamic behav-
iors such as periodic, chaotic, or coexisting attrac-
tors, crisis scenarios [1,3,5,17–20,22], hyperchaos [5,6],
relaxation oscillations [21], and hidden attractors [5],
to name a few, have generally been revealed in these
small HNNs. Most of these small HNNs listed are at
least three-order autonomous [1,3,5,17–20], but there
are still other smaller non-autonomous and autonomous
second-order ones that have been recently developed.
As such, we can list the works of [23–26] who stud-
ied in-depth HNNs models with two neurons and high-
lighted complex dynamic behaviors. For example, the
model investigated in [23] was able to exhibit in its non-
autonomous model of HNN with two neurons a certain
number of behaviors due to the stimulus. These include
limit cycles, chaotic attractors, a bifurcation doubling
the period, coexisting modes of bifurcations, and twin
attractors. The latter is very useful for applications
based on HNN in associative memory [27], image pro-
cessing, and pattern recognition [28]. [24] subsequently
considered a memristor as a synapse of self-connection
of the previous non-autonomous model of two-neuron-
based HNN studied in [23]. The memristor can remem-
ber the total electrical charge that passes through it
over time [29]. This unique ability makes it behave like
an electrical synapse in neural networks [30–33]. Sev-
eral behaviors such as bursting and Hopf busters have
been revealed by considering the memristor. [25,26]
constructed autonomous HNNs with ideal and non-
ideal memristors, respectively, to emulate the effect of
electromagnetic induction between two neurons. In [34],
have recently proposed a fuzzy integral sliding mode
technique for the synchronization and control of mem-
ristive neural networks. This control method combines a
fuzzy logic controller with integral sliding mode control
to provide fast and smooth results. In recent years, frac-
tional calculus has provided reliable tools for the easy
modeling of natural phenomena by the lightest possi-
ble equations. Moreover, the form of any real system is
fractional. Precision in model formulation and sensitiv-
ity in design, require the need to treat neural systems as
fractional-order differential equations. For this purpose,
the dynamics of fractional order neural networks of
Hopfield type have been studied by addressing notions
such as stability and multi-stability (coexistence of sev-

eral different stable states), bifurcations, and chaos [35].
Based on the stability analysis, the authors identified
critical fractional-order values for which Hopf bifurca-
tions may occur. The control methods for synchronizing
a class of fractional-order neural networks have been
devised by [36,37]. [36] realized an adaptation mecha-
nism that adjusts the parameters of the controller using
an appropriate sliding surface, while [37] used the Lya-
punov stability theorem. The authors [37] also proposed
an algorithm for a new crypto-system based on the
designed adaptive method for encryption / decryption
of unmanned aerial vehicle color images.

The activation of neurons is most often ensured by a
differentiated limited monotonic function, which plays a
determining role in the appearance of complex dynamic
behaviors in HNN [38]. The hyperbolic tangent func-
tion has been used to perform non-linear activation
functions in small HNNs, previously named because
of its feasibility because of the execution of the cir-
cuit [39–41]. Recently, Bocheng Bao et al. [18] took
into account the effect of the activation gradient of
the activation functions of neurons on the dynamics
of a three-neuron-based HNN. The activation gradient,
also called the gain in scale parameter, somehow trans-
lates the response speed of the neuron. The authors
have thus demonstrated the implication of the activa-
tion gradient, which has hitherto been overlooked in the
appearance of complex phonemes in network dynam-
ics. Furthermore, phenomena such as coexisting limit
cycle oscillations, attractors coexisting in chaotic spi-
rals, chaotic double scrolls, and scenarios of crisis could
thus be exhibited by considering the effect of the acti-
vation gradient. But the authors considered that all the
activation gradients associated with the activation func-
tions of the different neurons of their HNN were iden-
tical and linked. This is closer to the ideal case than
the real. For example, a pathology that can consider-
ably affect the balance in the response of the network.
Furthermore, in their model, they did not analyze the
effect that consideration of activation gradients on the
network could have with the presence of a stimulus.
It will be interesting for us here to take into account
all these considerations in the model proposed by [23].
This model has the advantage that it is small because
it consists of two neurons and already involves a stim-
ulus. Therefore, it is extremely essential to study the
effects of different activation gradients on the dynamic
behavior of this small non-autonomous HNN. In this
article, a two-neuron-based non-autonomous HNN with
a sinusoidal stimulus involving different activation gra-
dients associated with the activation functions of neu-
rons is presented, in which the dynamic behaviours
are related to activation gradients and include limit
cycles, chaotic attractors, coexisting of twin attractors,
a period-doubling bifurcation, and coexisting bifurca-
tion modes. To get an idea of the effects of the frac-
tional order derivative on its dynamics, the fractional
version of the HNN is also considered.

The quick development of communications through
the internet and computers has encouraged the design
of secure encryption and decryption algorithms for
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transferred data. In this area of research, chaos-based
encryption has received great attention from the sci-
entific community [42]. Yu and collaborators are the
first team to demonstrate that chaotic sequences can
be exploited to generate a measurement matrix with
restricted isometry property [43]. From this work, many
authors have been attracted to the areas of chaos and
compressive sensing for image compression and encryp-
tion. Zhou and collaborators proposed an image encryp-
tion scheme using a 1-D chaotic map [44]. Performance
analysis indicated a secure algorithm able to withstand
various forms of attack, but the encryption time is not
acceptable. Ahmad et al. have designed a simple chaos-
based permutation substitution encryption method to
secure digital images in a cloud-based smart city envi-
ronment [45]. Experimental results indicated a simple
and secure algorithm. Hadi and co-workers proposed
and analyzed a new fractional-order hyperchaotic mem-
ristor oscillator [46]. The oscillator is then applied to
increase the key space of the voice encryption scheme.
The proposed algorithm is hardly robust to brute force
attacks, but it is observed that the encryption process is
solely based on a simple x-or operation. Consequently,
any type of attack except brute force attack can tackle
the algorithm. Additionally, most of these algorithms
are usually limited by the bandwidth saturation of the
transmission channel as the data is not compressed at
the sending end. Based on the above mentioned draw-
backs, it is clear that the field of compressive sensing
is not yet mature. Our work will try to solve some
of these problems. It is observed that more and more
huge data can be compressed and encrypted before
transmission at reduced bandwidth. One of the most
prominent compression encryption techniques has been
demonstrated to be compressive sensing [47]. Zhou and
co-workers used hyperchaotic sequences jointly with 2-
D compressive sensing to design and analyze a new
compression encryption algorithm. Chai and collabo-
rators combined chaotic sequences, cellular automata,
and ECA to design a block-based compressive sensing
algorithm to compress and encrypt images [48]. The
results indicated efficient and secured methods against
some current cryptanalysis techniques. However, the
key space of these algorithms is limited due to the use
of a low-dimensional chaotic system with reduced com-
plexity. Let us recall that in the compressive sensing
process, compression is usually exploited to reduce the
size of a given dataset with the aim of easing further
processing in general or reducing the encryption time
in this particular case [49]. In addition, it is well known
that the more the signal is sparse, the easier it is to
reconstruct. Strong sparse methods, such as local 2-D
sparsity in the space domain, nonlocal 3-D sparsity in
the transform domain, or a combination of local 2-D
sparsity in the space domain and nonlocal 3-D spar-
sity in the transform domain, have been used by some
authors [50]. These authors achieved good reconstruc-
tion performances, but the corresponding algorithms
usually consume time and power. To solve this difficulty
in this paper, we will apply a discrete wavelet trans-
form (DWT) to achieve the sparsity property. More-

over, in compressive sensing, we need to use a mea-
surement matrix that follows the restricted isometry
property (RIP) [51]. Many compressive sensing algo-
rithms have been proposed utilizing a variety of mea-
surement matrices, including Gaussian random matrix,
partial orthogonal matrix, Hadamard matrix, and cir-
cular matrix. These matrices are usually of a large size
and cannot be constructed on the receiver side. There-
fore, a problem with bandwidth is usual in these cases
during the transmission process. To solve this prob-
lem, in this work, the measurement matrix of the pro-
posed compressive sensing algorithm is designed using
the sequences of the proposed chaotic system. The main
contributions of this work can be summarized as:

1. Introduce a two-neuron model based on HNN with
variable gradient under the influence of an external
alternating current.

2. Use nonlinear analysis tools to show that the intro-
duced HNN is able to exhibit more complex dynam-
ical behaviour compared to the previous model.

3. Use the compressive sensing approach with chaotic
sequences to compress and encrypt images. The
plain color image is decomposed into R, G, and B
components. The DWT is applied to each compo-
nent to obtain the corresponding sparse components.
Confusion keys are obtained from the proposed
chaotic system to scramble each sparse component.
The chaos-based measurement matrices are used to
compress the confused sparse matrices correspond-
ing to the R, G, and B components. Each compo-
nent is quantified and a diffusion step is then applied
to improve the randomness and, consequently, the
information entropy.

4. The measurement matrix of the proposed compres-
sive sensing is designed using the sequences of the
proposed chaotic system. This method is applied to
reduce bandwidth saturation given that most of the
methods in the literature use communication chan-
nels to send the huge measurement matrix to the
receiving/decryption end, thereby inducing satura-
tion of the bandwidth.

The next sections of this article will be organized as
follows: In Sect. 2, the connection topology considering
the activation gradients and the mathematical model
is described. The dissipative and symmetrical nature of
the network are detailed there, the equilibrium points
are illustrated graphically, and the determination of the
characteristic equation from the Jacobian matrix is also
presented. In Sect. 3, the dynamic behaviors associated
with an activation gradient under the presence of the
stimulus are revealed numerically by bifurcation dia-
grams and dynamic evolution in the parameter space
as well as phase portraits. In Sect. 4, analog analyses
are performed in Pspice to verify compliance with digi-
tal simulations. Section 5 presents compressive sensing-
based image compression and encryption. Finally, in
Sect. 6, the conclusions of this work are summarized
and future directions are provided.
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2 Model description

2.1 Proposed mathematical model involving neuron
activation gradients

The form of the HNN involving an activation gradient
for the two neurons is given in Eq. (1):

ẋ = −x + wtanh(βx) + I (1)

Where x = [x1, x2]
T is the state vector of neurons,

tanh(βx) = [tanh(β1x1), tanh(β2x2)]
T are the activa-

tion functions of hyperbolic tangent-type neurons with
adjustable gradients and w represents a synaptic weight
matrix 2 × 2 describing the strength of the connections
between the two neurons of the network and I is the
sinusoidal stimulusI = Imsin(2πFτ).

The new HNN model that we propose is given by Eq.
(1). The corresponding connection topology between
the two neurons is represented in Fig. 1a. Figure 1b
shows the internal connections of one neuron with
its neighboring neurons. These internal connections
involve the external connections coming from neigh-
boring neurons and the self-connection weights asso-
ciated with the activation function of the neuron, tak-
ing into account the gradient as well as the derivative
of the state variable of the neuron considered. In con-
trast to the model proposed by [18], in this architecture,
each neuron has an activation gradient independent of
those of the other neurons. This consideration makes
this model more flexible and allows the consideration
of different electrical activities of neurons. The model
considered by [23] can be found at any time, simply
by considering the activation gradients of Eq. (1) all
identical and equal to one.

w =
[

w11 w12

w21 w22

]
=

[−0.1 2.8
−k 4

]
(2)

The mathematical model corresponding to the configu-
ration of the synaptic weight matrix (2) is given by the
following Eq. (3): {

ẋ1 = −x1 − 0.1 tanh(β1x1) + 2.8 tanh(β2x2) + Imsin(2πFτ)
ẋ2 = −x2 − k tanh(β1x1) + 4 tanh(β2x2)

(3)

2.2 Dissipation and symmetry

The evaluation of the dissipative nature of a system is
based on the computation of the rate of contraction of
the volume of this system over time [52,53]. The system
(3) can be written in the following vector form:

ẋ = f(x, τ) = [f1(x1, x2, τ), f2(x1, x2)]
T (4)

With

⎧
⎪⎨

⎪⎩

f1(x1, x2, τ) = −x1 − 0.1 tanh(β1x1)

+2.8 tanh(β2x2) + Imsin(2πFτ)

f2(x1, x2) = −x2 − k tanh(β1x1)+4 tanh(β2x2)

(5)

(a)

(b)

Fig. 1 Topological connection of a two-neuron-based Hop-
field neural network (HNN) in (a); the detail diagram of a
neuron to the involving gradient in (b)

The divergence of the vector field f is given by the
expression (6):

∇.f =
∂f1
∂x1

+
∂f2
∂x2

(6)

The divergence f measures how the volume changes
rapidly under the flow φt of f . Let V be a volume of
the phase space and V (t) = φt (V ), the image of V by
φt (V ). Liouville’s theorem or the divergence theorem
states that:

dV (t)
dt

=
∫

V (t)

(∇.f).dx1.dx2 (7)

With

∇.f = −2 − 0.1β1

(
1 − tanh2(β1x1)

)
+4β2

(
1 − tanh2(β2x2)

)
(8)

For all βjxj(j = 1, 2), 0 ≤ (
1 − tanh2(βjxj)

) ≤ 1,
as −1 ≤ tanh(βjxj) ≤ 1 with an appropriate choice of
gains β1 and β2in (8) the divergence ∇.f can be neg-
ative, thus the system can be also dissipative. Besides,
the volume elements contract after a unit of time,
which reduces a volume V0by one factor exp(∇.f.t).
As a result, all orbits in the system are eventually
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limited to a specific subset with a zero volume and
the asymptotic movement settles on an attractor [54].
The system (3) is invariant at the change of coordi-
nate (x1, x2, τ) ↔ (−x1,−x2,−τ), it means that it
is symmetric. This symmetry will be at the origin of
the appearance of paired solutions in the network by a
change of sign of the initial conditions [55].

2.3 Equilibrium points and stability related to
gradient values

The equilibrium points of system (3) are obtained by
making its left-hand member equal to zero at τ = 0,
this amounts to solving the system of equations given
by expression (9):

{
0 = −x1e − 0.1 tanh(β1x1e) + 2.8 tanh(β2x2e)
0 = −x2e − k tanh(β1x1e) + 4 tanh(β2x2e)

(9)

After developments and arrangements of the sys-
tem given in (9), the equilibrium points (trivial and
non-trivial) are obtained by expression (10) referred to
as the graphical approach [18,23] applied using MAT-
LAB:

Pn =
(

xn
1e,

10
7

xn
1e +

(
1
7

− k

)
tanh(β1x

n
1e)

)
(10)

Where n ∈ N is the numbering index of equilibrium
points xn

1e, which corresponds to the graphical intersec-
tions with the abscissa of the solution curve represented
by Eq. (11):

S(x1e) = −x1e − 0.1 tanh(β1x1e)

+2.8 tanh

[
β2

(
10

7
x1e +

(
1

7
− k

)
tanh(β1x1e)

)]

(11)

Equations (10) and (11) depend on the activation
gradients (βj=1,2) of the neurons. The curves presented
in Fig. 2 represent different electrical activities of the
neurons, which are hyperbolic tangent functions. These
curves plotted in Fig. 2 imply a standard gradient for
βj = 1 (whose standard gain curve), weak fo r βj < 1
(whose flat sigmoid gain curve), and high for βj > 1
(whose step-like gain curve) which corresponds to elec-
trical activities of standard neurons, slow and fast,
respectively [18,56]. For standard gradients (βj=1,2 =
1), the solution curves are given in Fig. 3a which is in
accordance with those obtained by [18] forthree differ-

Fig. 2 The existence of three different nonlinearities in
hyperbolic tangent activation is due to low (in blue), stan-
dard (in red) and fast (in green) gradients

ent values of the parameter k. From that figure, there is
only one intersection point for k > 2.1896, five intersec-
tion points for k < 2.1896 and three intersections for a
critical value k = 2.1896 corresponding respectively to
one, five, and three equilibrium points. Now let’s con-
sider k = 2.385 that corresponding to only one trivial
equilibrium point. Figure 3b, c, show the influence of
the activation gradients of the first (β1) and second (β2)
neurons respectively on the solution curves. The results
provided in Fig. 3b, c show that the equilibrium points
change from only one to three, then to five when the
values of the activation gradients of the first and sec-
ond neurons are decreased and increased, respectively.
These changes are undergone by the solution curves
according to the values of the activation gradients of
the first and second neurons, which are favorable for
the transition from only one to three, then to five inter-
sections of the solution curve with abscissa. From this
observation, it is easy to choose which gradient to act on
to obtain consequent electrical activity in the network.

The Jacobian matrix derived from Eq. (3), for equi-
librium points Pn=0,1,2,3,4 is given in (12):

J =
[− 1 − 0.1β1g(β1x̄1) 2.8β2g(β2x̄2)

−kβ1g(β1x̄1) − 1 + 4β2g(β2x̄2)

]
(12)

The characteristic equation associated with (12),
specified in Eq. (13), is obtained from the MATLAB
software:

det(J − λI2) = a2λ
2 + a1λ

1 + a0 = 0 (13)

Where,

⎧⎪⎨
⎪⎩

a2 = 1
a1 = β1g(β1x̄1)/10 − 4β2g(β2x̄2) + 2
a0 = β1g(β1x̄1)/10 − 4β2g(β2x̄2) + (14k − 2) β1β2g(β1x̄1)g(β2x̄2)/5 + 1

(14)
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(a) (b)

(c)

Fig. 3 The function curve described by Eq. 11 and their intersection points with respect to gradients βj=1,2 = 1 in (b);
equilibrium points varying with respective gradients β1 and β2 in (c) and (d) respectively

With,

g(βj x̄j) = Sec(βj x̄j)2 = 1 − (tanh(βj x̄j))2j = 1, 2
(15)

The coefficients of the characteristic polynomial (14)
are all non-zero. The equilibrium points Pn=0,1,2,3,4 will
be stable if only if for all the values a1 > 0 and a0 >
0 according to the Routh-Hurwitz criterion. For the
specific case of the trivial equilibrium point P0 = (0, 0),
we have the stability if the conditions (16) are respect
if not P0 will unstable.

{
β1 > 10 (4β2 − 2)

k > 1
7 + (40β2−β1−10)

28β1β2

(16)

The activation gradients will be β2 = 1, β1 = tuneable
and k = 2.385, Im = 2.5, F = 0.1 in the rest of the
document unless otherwise indicated. For this configu-
ration, the trivial equilibrium point P0 will be unstable
for β1 < 20 and stable forβ1 > 20.

The computation of the corresponding eigenvalues is
carried out in Table 1 for some values of the gradient
β1. This table shows that the nature of stability of the

Table 1 Eigenvalues and stabilities concerning the trivial
equilibrium point P0 (0, 0) for some values of β1

β1 Eigen values λ1,2 Stabilities

0.6 λ1 = 1.3078λ2 = 0.6322 Unstable saddle-point
1.8 λ1,2 = 0.9100 ± 2.7663i Unstable saddle-focus
20 λ1,2 = 0.0000 ± 11.1606i Hopf bifurcation point
21 λ1,2 = −0.0500 ± 11.4427i Stable saddle focus

trivial equilibrium varies with respect to β1 and is of
type Hopf bifurcation point for β1 = 20 because the
eigenvalues are pure imaginary.

3 Numerical results

The numerical integrations are based on the 4th order
Runge-Kutta algorithm for the precision and speed of
convergence with an integration time step Δτ = 0.005.
The plot of the bifurcation diagram consists of taking
the local maxima of the variable during the variation of
the activation gradient of the first neuron, performed
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Fig. 4 Bifurcation diagrams (a) and corresponding largest Lyapunov exponent (b) show the local maximal of x2 as a
function of gradient β1

Table 2 Methods used to obtain coexisting bifurcation diagrams of Fig. 4 and its enlargements of Fig. 5

Figure Gradient range Color diagram Scanning direction Initial starting condition

Fig. 4 0.6 ≤ β1 ≤ 1.8 Red Downward (1.4, 0)
0.6 ≤ β1 ≤ 1.8 Blue Downward (−1, 0) fixed
0.6 ≤ β1 ≤ 1.8 Black Downward (−1.4, 0) fixed

Fig. 5 1.218 ≤ β1 ≤ 1.219 Red Downward (−1.4, 0)
1.231 ≤ β1 ≤ 1.233
1.218 ≤ β1 ≤ 1.219 Green Downward (−1, 0) fixed
1.231 ≤ β1 ≤ 1.233
1.218 ≤ β1 ≤ 1.219 Blue Downward (1.4, 0)
1.231 ≤ β1 ≤ 1.233
1.218 ≤ β1 ≤ 1.219 Magenta Downward (1, 0) fixed
1.231 ≤ β1 ≤ 1.233

on the integration time interval 1500 ≤ τ ≤ 2000 for a
time step Δτ = 0.005. The plot of the largest Lyapunov
exponent diagram is done using the Wolf method in the
time interval 9000 ≤ τ ≤ 10, 000 with the time step
Δτ = 0.005 [57].

3.1 Bifurcation diagrams and phase portraits

The superimposition of the bifurcation diagrams in
Fig. 4a shows the effect induced by the variation of
the first neuron gradient through electrical activities
on the dynamics of the model (3) in the range of
0.6 ≤ β1 ≤ 1.8. It is easy to see in this diagram the evo-
lution of the activation gradient (β1), the appearance of
the zones of periodic behaviours, followed by zones of
chaotic behaviours. The Wolf algorithm [57] was used
to generate the superimposed diagrams of the largest
Lyapunov exponents in Fig. 4b, which confirms the
observed bifurcations. The computational method used
for those bifurcation diagrams is provided in Table 2.
For different discrete values of the gradient, some phase
portraits can be represented concerning the limit cycles
and chaotic attractors in the (x1 − x2) plane.

An enlargement of two of the periodic windows of
the bifurcation diagram of Fig. 4a is shown in Fig. 5
for the activation gradient belonging to the ranges of

1.218 ≤ β1 ≤ 1.29 and 1.231 ≤ β1 ≤ 1.233. Figure 5a,
b depict the coexistence of four bifurcation diagrams
that differ in a variety of ways. These diagrams argue
for the existence of the phenomenon of multistability
in these ranges. The methods and initial conditions for
obtaining these diagrams are given in Table 2.

3.2 Coexistence of attractors and basins of
attraction

The notion of multistability, or coexistence of multiple
attractors, is a very important phenomenon in chaotic
dynamical systems because of the flexibility it offers
the system and its adapted applications in informa-
tion engineering [19,58,59]. Multistability has caught
the attention of many researchers in recent years [60–
64], because it encompasses a diversity of many sta-
ble states in a system. The study of the coexistence
of attractors in the HNNs would allow an understand-
ing in depth of its dynamic effect on the aspects of
the treatment of brain information and cognitive func-
tion [19]. We have highlighted through the HNN model
given in Eq.(3) the coexistences of periodic and chaotic
twin attractors, considering the activation gradient val-
ues β1 = 1.2182 and β1 = 1.232 respectively, as pre-
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Fig. 5 Enlargement of bifurcation diagram Fig. 4a, b exhibiting the coexistence of four different bifurcation diagrams

sented in Figs. 6 and 7. The basins of attraction that
enable us to obtain each of the coexisting attractors are
shown in Fig. 8. As it can be seen on these attraction
basins, four different colors enable us to further support
the coexisting attractors presented previously.

These basins of attraction correspond to those of the
self-excited attractors because they intercede with the
open neighborhood of other equilibrium points. This
is not the case for hidden attractors whose basins of
attraction do not cross the open neighborhood of the
other points of equilibrium. Let us note here that the
coexistence of more than two attractors in the small
models of HNNs with two neurons was raised with
the consideration of the memristor as weight, which
increases the complexity of the model. Therefore, the
consideration of the gradient makes this small model of
HNN with two neurons the simplest in the world, show-
ing on the one hand, the coexistence of more than two
attractors and, on the other hand, twin attractors. This
demonstrates to our satisfaction that taking unbalanced
gradients into account makes the model (3) in terms
of behavior more complex and interesting than those
already existing, considering gradients identical or not.
As a result, the model (3), which allows for the coex-
istence of two twin attractors (see Figs. 6 and 7), can
constitute a storage mechanism with a higher capacity
than existing similar small models.

3.3 Gradients in the parameter space

Figure 9 shows the effect of the variation of two different
activation gradients of the neurons on the dynamics of
the model of HNN (3) exposed in the parameter space
in the (β1, β2) plane. We can note from Fig. 9a that
the dynamics of the HNN (3) has two main distinct
regions, one chaotic in red and the other periodic in
blue, where the periodic region is dominant. The coded
colors contained in Fig. 9b correspond to values of the
maximum Lyapunov exponent (λmax). These values are
indicated on the graduations of the color bar of the cor-
responding figure. In this figure, we can appreciate the
effects of the electrical activities in the network (3) via
transitions of the zones of periodic behaviours (where

λmax < 0) towards areas of chaotic behaviours (where
λmax > 0) and vice versa during the variation of acti-
vation gradients.

4 Circuit design

In this section, the HNN (3) model will be studied in the
form of a circuit or an analog calculator in PSpice. The
analog calculator equivalent to the mathematical model
(3) is set up essentially by electronic components. This
rigorous and inexpensive strategy is employed because
it has been used for experimental studies of some exist-
ing systems [19,20] or to emulate other complex sys-
tems [1,65–67]. Furthermore, such a theoretical model
plays a significant role in practical chaos-based applica-
tions such as secure communications, the random num-
ber generator, and trajectory planning for autonomous
robots [68,69].

4.1 Analog circuit synthesis for neuron activation
function involving gradients

The nonlinear terms involving the two activation gra-
dients of each neuron involved in the model (3) are
realized by two hyperbolic tangent functions with
adjustable independent gains. The design of the HNN
(3) model must necessarily have gone through the set-
ting up of modules realizing the hyperbolic tangent
functions with activation gradients (see Eq. 3). Based
on the circuit diagram shown in [18], the modules allow-
ing the synthesis of these functions are obtained (see
Fig. 10a). This circuit uses a pair of differential tran-
sistors, two operational amplifiers, a voltage source, a
current source, and eight resistors.

tanh

(
Rβj

2RVT
Vin

)
= tanh (βjVin) (17)
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Fig. 6 Coexistence of two twin attractors at β1 = 1.2182: a, b shows period-9 twin attractors and chaotic twin attractors,
respectively. The initial-conditions for these attractors are (x1(0), x2(0)) = (0, +1.76/−2) and (0.1, +2/−1.76) respectively

Fig. 7 Coexistence of two twin attractors at β1 = 1.232: a, b shows period-7 twin attractors and chaotic twin attractors
respectively. The initial-conditions for these attractors are (x1(0), x2(0)) = (0, ±1.2) and (0, ±1.6) respectively

Fig. 8 Cross sections of
the basin of attraction
corresponding to the
coexisting of the twin
attractors of Figs. 6 and 7
with colors respectively

With

βj =
Rβj

2RVT
(18)

Where, Vin is the input voltage of the module, VT =
26mV is the thermal voltage of the transistors, Rβj

is a variable resistor to adjust the gain βj(j = 1, 2),

R = 10k Ω and RC = 1k Ω fixed resistors. The values
of the supply voltages and the constant currents of the
modules are +V cc = 15V and I0 = 1.1mA respectively
[39]. The resistance values for adjusting the gradients
are set in (19):

Rβ1 = 2RVT β1 = 520 × 1
= 520Ω and Rβ2 = tuneable (19)
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Fig. 9 Influence of the variation of two neuron activation gradients (β1, β2), to the dynamical behaviors

4.2 Analog circuit synthesis for the HNN-2 model
involving gradients

Referring to [18,23], the analog circuit of the HNN
model (3) consists of two integrators involving two
inverters in feedback loops and variable gain hyperbolic
tangent functions, as shown in Fig. 10b.

{
C1

dX1
dt = −X1

R − 1
R1

tanh(β1X1) + 1
R2

tanh(β2X2) + A
Rsin(2Pift)

C2
dX2
dt = −X2

R − 1
R3

tanh(β1X1) + 1
R4

tanh(β2X2)
(20)

Where X1 and X2 denote capacitor voltages C1 andC2

respectively; with C1 = C2 = C = 100nF and R =
10k Ω.

The system of Eq. (20) is equivalent to (3) consider-
ing the following equalities:

t = τRC,Xi = xi(i = 1, 2),

R1 =
R

|w11| = 100kΩ,

R2 =
R

|w12| = 3.571k Ω,

R3 =
R

|w21| = 4.193k Ω and

R4 =
R

|w22| = 2.5k Ω,

A = Im and f =
F

RC
= 100Hz (21)

4.3 Validation by PSpice analog simulation

The implementation of the analog circuits of Fig. 10 in
PSPICE has led to the results of Fig. 11. The coexis-
tence of two twin attractors of different types is shown
in this figure, in (a) a period-7 twin attractor and
in (b) chaotic twin attractors whose initial conditions
are V (X1(0),X2(0)) = (0.1,+0.1/−0.4) and (0.1,±4.1)
respectively. These coexisting attractors are similar to

the ones obtained following the numerical approach in
Fig. 7 [22,70,71]. All these results were obtained by
considering Final step: 680ms; No-Print Delay: 500ms;
Step Ceiling: 2µs and setting the variable resistor at
Rβ1 = 532.9Ω.

5 Fractional-order of the HNN model

Caputo’s derivative is one of the commonly used meth-
ods for solving fractional differential equations, [72]
which is defined as

C
t0D

α
t f (t) =

1
Γ (n − α)

∫ t

t0

f (n) (τ)
(t − τ)α−n+1 dτ ,

n − 1 < α < n (22)

Where Γ(•) is a gamma function with the form
of Γ (α) =

∫ +∞
0

tα−1e−tdt and the simple form of
Caputo’s derivative is expressed as follows when the
positive integer is n = 1 [73]

C
t0D

α
t f (t) =

1
Γ (1 − α)

∫ t

t0

(t − τ)−α
f (1) (τ) dτ

(23)

Using Caputo’s derivative, the fractional-order model
of HNN introduced in Eq. (3) is given in Eq.(24)
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Fig. 10 Synthesized
hyperbolic tangent
functions with adjustable
gradient by Rβj (a);
analog circuit of the
two-neuron-based Hopfield
Neural Network in (b)

(a)

(b)

{
Dqx1 = −x1 − 0.1 tanh(β1x1) + 2.8 tanh(β2x2) + Imsin(2πFτ)
Dqx2 = −x2 − k tanh(β1x1) + 4 tanh(β2x2)

(24)

When β2 = 1, β1 = 1 k = 2.385, Im = 2.5, F = 0.1,
and q = tuneable the effect of the variation of the order
is explore on the dynamics of the considered HNN as
presented in Fig. 12

In that figure, for the considered set of parameters,
the HNN model displays a symmetric chaotic attrac-
tor when q = 1. When q is reduced, the HNN model
moves from a symmetric chaotic attractor to an asym-
metric chaotic attractor. When that control parame-
ter is further reduced, the HNN model moves from an
asymmetric chaotic to a periodic attractor. This tran-
sition is further justified by the bifurcation diagram of
Fig. 13a.

When Comparing Fig. 13b with Fig. 4a, the modi-
fication of the order of the HNN (q = 0.998) allows to
change the transition toward chaos observed in the con-
sidered model when the order was considered at q = 1.

6 Application to compressive sensing based
image encryption

6.1 Compressive sensing

Compressive sensing is a prominent sampling-
reconstruction technique that achieves compression
during the sampling stage. This technique is used when
the data meets the sparsity property in some domains.
Generally, a given input signal is first represented on
an orthogonal basis to meet the sparsity property [74].
Then a measurement matrix is used to sample only the
components that best define the input signal. A recon-
struction technique is used to recover the original signal.
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(a) (a)

(b) (b)

Fig. 11 Coexistence of two twin attractors obtained in PSPICE with Rβ1 = 532.9Ω: a, b shows period-7 twin attractors
and chaotic twin attractors respectively. The initial-conditions for these attractors are V (X1(0), X2(0)) = (0.1, +0.1/−0.4)
and (0.1, ±4.1) respectively

Let us consider an orthogonal basis ψ = [ψ1, ψ2...ψn]
where a signal x can be represented as:

x =
n∑

j=1

αjψj = ψα (25)

Where α = ψT x is the representation of x in the orthog-
onal basisψ. If α contain k (k ≤ n) nonzero coefficients
then α is said to be k-sparse. For a sparse signal, the
compressive sensing approach is directly applied to the
signal. But if the signal is not sparse, a transforma-
tion can be applied to achieve the sparsity property.
Let us recall that compression is usually used to reduce
the size of a given dataset to ease further processing

in general or reduce the encryption time in this par-
ticular case [49]. In addition, it is well known that,
the more the signal is sparse, the easier its reconstruc-
tion. Strong sparse methods, such as local 2-D spar-
sity in the space domain, non-local 3-D sparsity in the
transform domain, or a combination of local 2-D spar-
sity in the space domain and non-local 3-D sparsity in
the transform domain, have been used by some authors
[50]. These authors achieved good reconstruction per-
formances, but the corresponding algorithms usually
consume time and power. In this paper, we will apply
the discrete wavelet transform (DWT) to achieve the
sparsity property. When this sparsity property is satis-
fied a vector y of size m × 1 is linearly obtained from x
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Fig. 12 Phase diagrams showing the evolution of the dynamical behavior of the considered HNN under the variation of
the order of the model

Fig. 13 Bifurcation diagram showing the general behavior of the system when q and β1 are varied. The diagram in a is
obtained for β1 = 1, with 0.98 ≤ q ≤ 1. while those in b are obtained for q = 0.998, with 0.6 ≤ β1 ≤ 1.8

as follows:

y = Φx = Φψα = Ωα (26)

Where Ω is the sensor matrix defined as the product of
the orthogonal basis ψ with the measurement matrix
Φ (of size m × n). Note that to recover the original x
the sensor matrix Φ must satisfy the restricted isom-
etry property as defined in [75]. The main problem of
compressive sensing is to recover x from y. to achieve
this goal the following optimization problem should be
solved:

min ‖α‖1 subjected to y = Φψα (27)

To solve the problem defined in Eq. (27) reconstruc-
tion algorithms are usual including matching pursuit
(MP) [76], orthogonal matching pursuit (OMP) [76],
subspace pursuit (SP), smooth l0 algorithm (SL0) [77],
Newton smoothed l0 norm (NSL0) [77]. In this work, we
selected orthogonal matching pursuit (OMP) to recover
the signal as it is one of the most efficient reconstruction
methods. The measurement matrix is designed using
a circular matrix based on the chaotic sequence. This

technique is used to avoid bandwidth saturation with
the measurement matrix and, consequently, to decrease
the overall computational complexity.

6.2 Compression-encryption method

In this section, we deal with the encryption method
based on compressive sensing. The plain color image
is decomposed into red (R), green (G), and blue (B)
components. The discrete wavelet transform is applied
to each component to obtain the corresponding sparse
components. Confusion keys are obtained from the
above proposed chaotic system to scramble each sparse
component. The measurement matrices obtained from
the chaotic sequence are used to compress the con-
fused sparse matrices corresponding to the R, G, and B
components. Each component is quantified and a diffu-
sion step is finally applied to improve the randomness
and, consequently, the information entropy. The follow-
ing steps describe the whole compression encryption
scheme. Note that as the proposed scheme is symmetric,
the decryption process is the reverse of the encryption
scheme.
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Fig. 14 Block diagram of
the compressive sensing
based encryption

Output compressed 
cipher

G component B componentR component

DWT DWTDWT

Measurement 
matrix

Confusion Confusion

Measuring MeasuringMeasuring

Chao�c sequences 
x1, x2

Quan�za�on and 
Diffusion (x2)

Quan�za�on and 
Diffusion (x1)

Quan�za�on and 
Diffusion (x1)

Input plain image

Confusion

Step 1: Read the plain color image of size (h × n) and
decompose to various R, G and B components. Then
apply DWT to these components to achieve the sparse
matrices RS , GS, and BS .
Step 2: Using initial seed and parameters as indicated
by Fig. 7b solve the system and store chaotic sequences
as X1i and X2i each with h × n elements then permute
the sparse matrices as follow:

(a) Sort the elements of sequences X1i and X2i in
ascending order respectively as S1i = sort(X1i)
and S2i = sort(X2i).

(b) Obtain the indexes of each element of sequence S1i

in sequence S2i as Ii = index(S1i in S2i).
(c) Apply swap function to scramble the positions of

pixels in the sparse matrices RS , GS, and BS as:

Rp = swap(Rs, I)
Gp = swap(Gs, I)
Bp = swap(Bs, I)

Step 3: Using initial seed and parameters as indi-
cated by Fig. 7b solve the system and store chaotic
sequences as X1i and X2i each with m×n elements
where m = floor(CR × h) and CR is the compres-
sion ratio. Then use these sequences to design the
measurement matrix as:

(a) Combine the chaotic sequences X1i and X2i to
achieve new random sequence Yi defined as:

Yi =
X1i + X2i

2
(28)

(b) Apply equidistant sampling on the random
sequence Yi to achieve new random sequence
Y

′
i as:

Y
′

i = 1 − 2Y2+is (29)

Where s is the sampling interval and i =
0, 1, 2, .......m × n.

(c) The final measurement matrix of size m × n is
obtained by quantifying the sequence Y

′
i as:

Φ =

√
2
h

⎛
⎜⎝

Y
′

11 · · · Y
′

1n
...

. . .
...

Y
′

m1 · · · Y
′

mn

⎞
⎟⎠ (30)

Where
√

2
h is used for normalization.

Step 4: Measure each permuted red (Rp), green (Gp)
and blue (Bp) components using the measurement
matrix to obtain the measured components Rm, Gm

and Bm as:

Rm = ΦRP

Gm = ΦGP

Bm = ΦBP (31)

Step 5: Apply quantization on each measured compo-
nent Rm, Gm and Bm as:
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Fig. 15 Result of
compression and
encryption of four different
images. The compression
ratio is CR= 0.5

Plain image 1 Cipher image 1 Reconstructed image 1

Plain image 2 Cipher image 2 Reconstructed image 2

Plain image 3 Cipher image 3 Reconstructed image 3

Plain image 4 Cipher image 4 Reconstructed image 4
Table 3 Peak Signal-to-Noise Ratio (PSNR) of some test images with respect to the variation of the compression ratio
(CR)

Test images CR (in decibels dB)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Image 1 33.8456 35.7260 36.0034 37.8570 38.0124 38.8542 39.4795 39.9401
Image 2 32.4164 34.0761 35.8510 36.0452 37.5630 38.1254 37.9750 38.5480
Image 3 31. 6402 32.8100 34.7562 35.5478 36.2154 37.7152 37.1425 37.8952
Image 4 31.2154 31.8964 33.0452 34.8945 35.4235 36.0254 36.7189 37.4235
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RQ = floor

[
255 × (Rm − min(Rm))
max(Rm) − min(Rm)

]

GQ = floor

[
255 × (Gm − min(Gm))
max(Gm) − min(Gm)

]

BQ = floor

[
255 × (Bm − min(Bm))
max(Bm) − min(Bm)

]
(32)

Step 6: After quantization the obtained matrices
present poor entropies values. To solve the problem the
matrices Rm, Gm and Bm are confused as:

Rc = RQ ⊕ I

Gc = GQ ⊕ I

Bc = BQ ⊕ I (33)

Step 7: Combine Rc, Gc and Bc to get the final cipher
image.

6.3 Results and analyses

Four different images are employed to evaluate the pro-
posed compression encryption technique. The working
environment is composed of 64 bits laptop equipped
with Intel CoreTM i7-3630QM, 16GB RAM, a 2.6GHz
CPU, and provided with MATLAB R2016b. The
chaotic system is solved with parameters and initial
conditions as in Fig. 7b. The results are presented in
Fig. 15.

6.3.1 Performances of compression

In order to evaluate the performance of compres-
sion and reconstruction in the compression-encryption
scheme under consideration, four different images are
considered and the tests are conducted with vari-
ous compression ratios (CR=0.2, CR=0.2, CR=0.3,
CR=0.4, CR=0.5, CR=0.6, CR=0.7, CR=0.8, CR=0.9).
Then the Peak Signal-to-Noise Ratio (PSNR) values
between the plain image and the reconstructed image
are computed in decibels as indicated by Eq. 34.

PSNR = 10 log
2552

(1/mn)
∑m

i=1

∑n
j=1 [P (i, j) − D(i, j)]

(34)

where P and D represent the pixel values of the plain
and the decrypted images, respectively. The results are
presented in Table 3 and Fig. 16. From these results,
the PSNR values are above 30 dB showing high recon-
struction performances. The PSNR value obtained in
this work in the particular case of Image 1 for CR=0.5
is compared to some recent works in the literature
(Table 4). The common base of comparison with the
selected references is the utilization of chaos/ hyper-
chaos based pseudorandom sequences in the process.
But the particularity of our case is that these sequences

0.2 0.4 0.6 0.8 1

32

34

36

38

40

CR

P
S

N
R

Image 1
Image 2
Image 3
Image 4

Fig. 16 Peak Signal-to-Noise Ratio (PSNR) of some test
images with respect to the variation of the compression ratio
(CR)

Table 4 Comparative analysis with respect to PSNR val-
ues at CR=0.5

Methods This work Ref. [78] Ref. [75] Ref. [79] Ref. [80]

PSNR (dB) 37.8570 37.5654 25.9997 32.5 26

are from the dynamics of an adjustable gradient HNN.
From this comparison, our algorithm is better than
those of Refs [75,78–80] in terms of reconstruction of
the compressed image.

6.3.2 Histogram

A histogram test is applied to evaluate the distribu-
tion of each pixel in the image [70,81]. Usually, the his-
togram of a given plain image is randomly distributed,
whereas the histogram of the corresponding cipher is
uniformly distributed. To evaluate the robustness of the
proposed encryption against histogram-based attacks,
one image is selected among the test data (Image 1).
The histogram of the said image is computed and rep-
resented in Fig. 17 with the corresponding cipher in the
red (R), green (G), and blue (B) planes. It is obvious
that the uniformly distributed histogram belongs to the
cipher image, and consequently, the proposed technique
can resist attacks based on histogram analysis. Let us
mention that this test can also be conducted for the
rest of the test data (Image 2, Image 3, and image 4).

6.3.3 Correlation coefficients

The correlation coefficient of adjacent pixelsCmn is one
of the major tools used to evaluate the distribution of
a given pixel with its neighbouring pixels in horizontal,
vertical, and/or diagonal directions [71,82]. Usually, the
values of the correlation coefficients of adjacent pixels
for a given plain image are close to unity in all direc-
tions. A good encryption algorithm should produce a
cipher image with correlation coefficients of adjacent
pixels close to zero in all directions. To evaluate the
correlation coefficientsCmn in this work, the following
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Fig. 17 Histogram of Image 1: The first row represents the plain image in the red (R), green (G) and blue (B) planes,
and the second row represents the corresponding cipher in the red (R), green (G) and blue (B) planes

formula is exploited:

Cmn =
∑A

x=1 (mx − m̄) (nx − n̄)√∑A
x=1 (mx − m̄)2

∑A
x=1 (nx − n̄)2

(35)

Here, mx, nx refers to the values of adjacent pixels and
A refers to the whole amount of nearby pixel pairs.
The distribution of correlation coefficients Cmn for red
(R) components is plotted in Fig. 18. The adjacent pix-
els are linearly related in the horizontal, vertical, and
diagonal directions for plain components, showing high
correlation between adjacent pixels. Whereas random
distributions are observed in the case of corresponding
ciphers, indicating that no correlation exists between
adjacent pixels. The same results have been observed in
the green (G) and blue (B) components. Consequently,
the proposed algorithm is able to resist attacks based
on histogram analysis.

6.3.4 Information entropy

Information entropy is usually applied to investigate
the level of randomness in an image [83,84]. The global
entropy of a given image Y is computed as:

E(Y ) = −
2b−1∑
a=1

p(ya) log2 (p(ya)) (36)

p(ya) is the probability of ya and b refers the pixel bit
level. Local entropy provides more sensitive values of
the entropy as the pixels are considered individually. It

is well known that a good encryption algorithm should
produce ciphers with entropy values near 8 for 8-bit
images. Table 5 presents the results of the global and
local entropy values of the considered test images and
the corresponding cipher. From these results, it is obvi-
ous that the proposed algorithm is robust to attacks
based on entropy analysis.

6.3.5 NPCR and UACI

The encryption algorithm can also be evaluated by
using NPCR (Number of Pixels Change Rate) and the
UACI (Unified Average Changing Intensity) computed
respectively by [85,86]:

NPCR =

∑
i;j E(i, j)
r × s

× 100%,

E(i, j) =
{

0 if P (i, j) = C(i, j)
1 if P (i, j) �= C(i, j) (37)

UACI =
100

r × s

r∑
1

s∑
1

|P (i, j) − C (i, j)|
255

(38)

Where P and C are two encrypted data achieved from
encrypted data different in just on pixel. r and s are the
size of the data image. For 8-bit images the threshold
values of NPCR and UACI are defined given by:

NPCRmax =
(
1 − 28

) × 100 = 99.609375% (39)
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Fig. 18 Correlation of plain red (R) component of Image 2 and the corresponding cipher in horizontal, vertical and
diagonal directions

Table 5 Results of global and local information entropy

Test data Original Cipher (Global entropy) Cipher (Local entropy)

Image 1 7.7749 7.99905 7.90205
Image 2 6.7256 7.99894 7.90242
Image 3 7.6698 7.99975 7.90381
Image 4 7.7621 7.99973 7.90230

Table 6 UACI and NPCR values of test images

Test images NPCR (%) UACI (%)

Image 1 99.6075 33.4807
Image 2 99.6142 33.4681
Image 3 99.6294 33.4713
Image 4 99.6090 33.4791

UACImax =

∑28−1
j=1 j(j+1)
28 (28 − 1)

×100=33.46354% (40)

Table 6 provides the results of NPCR and UACI for four
test images. It is obvious that the proposed algorithm
can resist any differential attack given the presented
values are above the threshold values.

6.3.6 Key space analysis

The key space of an encryption/decryption scheme is
the set of different keys that can be exploited to encrypt
and decrypt the information [87]. In order to resist

brute force attacks a well-designed algorithm is required
to have a very large key space. The threshold value is
2100 ≈ 1030. In this work the considered chaotic oscil-
lator can be rewritten as:

{
ẋ1 = −x1 − a tanh(β1x1) + b tanh(β2x2) + Imsin(2πFτ)

ẋ2 = −x2 − k tanh(β1x1) + c tanh(β2x2)

(41)

where the parameters and initial states β1, β2, Im,
k, a, b, c, x̃1, x̃2 are the main keys of the algorithm. If
we consider 1016 as the precision of calculations the
total key space of the proposed scheme is computed
as 1016×9 = 10144 > 1030 consequently the proposed
scheme is resistive to any form of brute force attacks.

6.3.7 Complexity and comparative analyses

One of the most important metrics for analyzing an
algorithm is to assess its complexity [87]. Some current
metrics of this evaluation include the running time (t)
or the Encryption Throughput (ET) and the Number
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Table 7 Comparative analysis of the proposed method with some recent literature shows the superiority of our method

Algorithms t (ms) ET (MBps) NC NPCR UACI Entropy

Global Local

Proposed 6.85 114.80 20.90 99.6294 33.4791 7.99975 7.90381
[88] 31.10 24.06 122.85 99.6240 33.5800 7.9994 7.9153
[89] 18.06 41.52 62.00 99.6093 33.4480 7.9996 7.9073
[90] 5070 0.14 94.60 99.6184 33.6157 7.9981 7.9027

of Cycles (NC). The encryption time (t) is computed
using the “tic-toc” MATLAB function, while ET and
NC are computed as:

ET =
Size of the image (Byte)
Encryption time (sec)

(42)

NC =
CPU speed (Hz)
ET (Byte/ sec)

(43)

A well-designed algorithm is required to consume less
encryption time, less NC, and high ET to ease the
implementation. The results of the computations are
summarized in Table 7 using test images of size
256*256*3. The working environment is characterized
by a 2.4GHz processor, Intel R©core TM i7-3630QM,
16 GB of RAM, and MATLAB R2016b software. It is
also important to report the comparative analysis of
the proposed methods with some recent literature. The
comparison tools include but are not limited to com-
plexity in terms of encryption and decryption time,
NPCR, UACI, entropy, and key sequence. This com-
parative analysis shows that the proposed cryptosys-
tem has high-security issues and is competitive with
the fastest chaos-based cryptosystems. This is mainly
due to pseudorandom sequences based on the dynam-
ics of an adjustable gradient HNN and the utilization
of lightweight techniques like DWT to sparse our input
images.

7 Conclusion

A novel compressive sensing image encryption scheme
using the dynamics of adjustable gradients HNN was
considered in this paper. Firstly, the effects of the acti-
vation gradients of neurons are explored. The graph-
ical representation of the solutions showed the influ-
ence of first and second neuron activation gradients
with respect values. The analysis of the stability reveals
that it depends on initial conditions that are associated
with the values of activation gradients. Using nonlin-
ear dynamics analysis tools with MATLAB, rich and
varied dynamics that depend on the activation gra-
dient of the first neuron have been highlighted. Phe-
nomena showing the complexity of the model, such
as the coexistence of two twin attractors, are exhib-
ited, and the representations of the different basins of
attraction have shown that they are all self-excited. For
engineering applications, it is implemented in PSpice

and yields results similar to those obtained from the
numerical approach [39,66–69,91,92]. From all of this,
it is clear that an imbalance of neuron gradients that
would lead to electrical activity in an HNN network
would increase its complexity, give rise to interesting
and different behaviors from those known. Finally, the
sequences of the chaotic system are applied to design
a strong measurement matrix for compressive sensing-
based image encryption. In the same line, the sequences
are employed in the confusion and diffusion steps. Secu-
rity analyses indicated a good encryption algorithm.
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