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Abstract The current study’s aim is to evaluate the dynamics of a Hepatitis B virus (HBV) model with the
class of asymptomatic carriers using two different numerical algorithms and various values of the fractional-
order parameter. We considered the model with two different fractional-order derivatives, namely the
Caputo derivative and Atangana–Baleanu derivative in the Caputo sense (ABC). The considered deriva-
tives are the most widely used fractional operators in modeling. We present some mathematical analysis
of the fractional ABC model. The fixed-point theory is used to determine the existence and uniqueness
of the solutions to the considered fractional model. For numerical results, we show a generalized Adams–
Bashforth–Moulton (ABM) method for Caputo derivative and an Adams type predictor-corrector (PC)
algorithm for Atangana–Baleanu derivatives. Finally, the models are numerically solved using computa-
tional techniques and obtained results graphically illustrated with a wide range of fractional-order val-
ues. We compare the numerical results for Caputo and ABC derivatives graphically. In addition, a new
variable-order fractional network of the HBV model is proposed. Considering the fact that most communi-
ties interact with each other, and the rate of disease spread is affected by this factor, the proposed network
can provide more accurate insight for the modeling of the disease.

1 Introduction

Hepatitis B virus is an infectious disease that infects
a large number of people globally. The virus causes
liver damage as well as other diseases that are harm-
ful to human health. Hepatitis B epidemiology indi-
cates two transmission routes in humans: horizontal and
vertical. Horizontal transmission occurs when people
share blades, needles, unprotected intercourse, and so
on, while vertical transmission occurs when an infected
mother passes the virus on to her kid. In 2015, many
HBV cases of liver infection and death were registered
and still, several countries around the world, includ-
ing China, are dealing with this problem with many
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cases and deaths. Acute HBV clinical information is
age-specific. HBV infection is normally asymptomatic
in newborns, young children (under the age of 10) and
immunocompromised adults. Adults and older children
with 30–50% infection are symptomatic. Sometimes the
hepatitis B-infected person who does not show symp-
toms for more than 6 months may be prone to liver
damage or even death, although some research shows
that an HBV-infected individual without having symp-
toms has the potential to infect another individual and
could lose their life [1–3].

Many mathematical models have been developed to
study HBV and its characteristics by researchers from
all over the world. For instance, HBV with control
strategies and analysis with different age structures
with population of New Zealand presented in Refs.
[4,5], control study of hepatitis B via vaccination [6],
vaccination effects on HBV transmission presented in
Ref. [7], for HBV disease a multi-group model presented
in Ref. [8], HBV model with cost-effective analysis pre-
sented in Ref. [9], significance of vaccination on HBV
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transmission analyzed via a mathematical model in Ref.
[10], HBV model with diffusion and delay studied in
Ref. [11] and model with time delay studied in Ref.
[12], the HBV transmission dynamics and its control
via a mathematical model studied in Ref. [13], migra-
tion effect on HBV transmission presented in Ref. [14],
and an HBV model with three controls discussed in
Ref. [15]. The above-described HBV models are in the
frame of integer-order derivative. As the models with
ordinary order do not provide the memory and the
genetic properties involved in the fractional-order mod-
els. Therefore, in recent years, researchers have given
more attention to fractional-order derivatives for math-
ematical modeling in mathematical biology because the
fractional derivatives reflect memory effects and genetic
properties in models.

Fractional Calculus (FC) is developing as a robust
tool in applied mathematics to solve real-world issues.
The fractional-order (FO) models are very suitable
for understanding the memory effect and inherited
properties than integer-order models. In addition, the
integer-order derivative does not examine the dynamics
between two different points in the real-world descrip-
tion. Several non-local FO differentiation concepts have
been proposed in the existing article to address the
limitations of classical local differentiation. The frac-
tional derivatives such as Caputo [16], Caputo-Fabrizio
[17] and Atangana–Baleanu (AB) [18] are receiving
much attention from the researchers. Because of its
Mittag-Leffler (ML) memory and crossover proper-
ties for mean-square displacement, the ABC deriva-
tive offers an excellent description. In recent years,
the Atangana–Baleanu derivative has been applied to
the epidemiological model extensively [19–25]. Several
other recent research on application of fractional deriva-
tives to the non-linear models from different engineering
and science fields have been studied in Refs. [26–32].
A novel coronavirus model is investigated with ABC
fractional derivative in Ref. [26]. The transmission of
Hookworm infection is studied via the Caputo operator
in Ref. [28]. In Ref. [33], COVID-19 model is inves-
tigated through Caputo fractional derivative. A pine
wilt disease model is examined under the Caputo frac-
tional operator in Ref. [34]. In Ref. [35], the authors
studied a combined co-infection model of HIV-COVID-
19 through ABC fractional derivative. In Ref. [36],
wastewater treatment model is examined with Caputo
fractional derivative. Some fractional models regarding
HBV can be found in the existing literature. A FO HBV
model with optimal control is investigated in Ref. [37],
and optimal control on HBV model with vaccination,
treatment is discussed in Ref. [38]. Using the ABC oper-
ator, the HBV model with hospitalized class is studied
in Ref. [39] and HBV model with treatment is studied in
Ref. [40]. HBV model with hospitalization using Caputo
derivative is studied in Ref. [41]. A FO HBV model with
antibody immune response is discussed in Ref. [42].
Recently, an HBV model with asymptomatic carriers
was studied using Caputo derivative in Ref. [43].

Thus, inspired by recent studies, we consider a FO
HBV model [43] with Caputo and ABC derivatives.

We study the dynamics of the proposed model using
two different numerical techniques. The proposed work
is divided as follows: some basic preliminaries of FC
are presented in Sect. 2. The FO HBV model in the
frame of Caputo and ABC derivatives along with some
mathematical results are presented in Sect. 3. The exis-
tence and uniqueness of solutions of FO model are pre-
sented in Sect. 4. The numerical schemes and obtained
numerical results are shown in Sect. 5. A variable-order
fractional network of the HBV model is proposed in
Sect. 6, also the numerical simulation is presented for
the model. Lastly, the outcomes are discussed in Sect. 7.

2 Basic preliminaries of FC

Here, we present a quick glance of some basic concept
of FC [16,18].

Definition 2.1 The Caputo derivative of a function
χ(t) for order p is given by

C
0D

p
t χ(t) =

1
Γ(1 − θ)

∫ t

0

(t − υ)−pχ′(υ)dυ, 0 < p < 1.

(2.1)

Definition 2.2 The Atangana–Baleanu derivative in
Caputo sense of a function χ(t) is given by

ABC
0 Dp

t χ(t) =
J(p)
1 − p

∫ t

0

Ep

[
−p

(t − υ)p

1 − p

]
χ′(υ)dυ, (2.2)

where J(p) is the normalization function satisfying
J(0) = J(1) = 1, and Ep is ML function

Ep(z) =
∞∑

k=0

zk

Γ(pk + 1)
, p > 0. (2.3)

The corresponding fractional integral of ABC derivative
is given by

AB
0 Ip

t χ(t) =
1 − p

J(p)
χ(t)+

p

J(p)Γ(p)

∫ t

0

χ(υ)(t−υ)p−1dυ.

(2.4)

Definition 2.3 The Laplace transform of the AB frac-
tional derivative in the Caputo sense ABC

0 Dp
t χ(t) has the

form

L{ABC
0 Dp

t χ(t)}(s) =
J(p)
1 − p

spL{χ(t)}(s) − sp−1χ(0)
sp + p

1−p

.

(2.5)

3 Fractional HBV model

Here, we have considered an HBV model with class of
asymptomatic carriers [43]. In the model, total popula-
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tion represented by N (t) divided into six classes, sus-
ceptible individuals (S(t)), exposed population (E(t)),
acute infected population (A(t)), asymptomatic car-
rier (Ac(t)), chronic infected individuals (C(t)) and the
recovered population (R(t)), so N (t) = S(t) + E(t) +
A(t) + Ac(t) + C(t) + R(t). Initially, the HBV model in
frame of Caputo derivative is given as follows:

C
0D

p
t S(t) =Λ1 − β1(A + φ1Ac + ε1C)S − μ1S,

C
0D

p
t E(t) =β1(A + φ1Ac + ε1C)S − (μ1 + ψ1)E,

C
0D

p
t A(t) =ψ1θ1E − (μ1 + γ1 + η1 + κ1)A,

C
0D

p
t Ac(t) =ψ1(1 − θ1)E − (μ1 + τ1 + ν1)Ac,

C
0D

p
t C(t) =η1A + τ1Ac − (μ1 + ε1 + σ1)C,

C
0D

p
t R(t) =κ1A + σ1C + ν1Ac − μ1R.

(3.1)

Further, the HBV model in frame of ABC derivative is
given as follows:

ABC
0 Dp

t S(t) =Λ1 − β1(A + φ1Ac + ε1C)S − μ1S,
ABC
0 Dp

t E(t) =β1(A + φ1Ac + ε1C)S − (μ1 + ψ1)E,
ABC
0 Dp

t A(t) =ψ1θ1E − (μ1 + γ1 + η1 + κ1)A,
ABC
0 Dp

t Ac(t) =ψ1(1 − θ1)E − (μ1 + τ1 + ν1)Ac,
ABC
0 Dp

t C(t) =η1A + τ1Ac − (μ1 + ε1 + σ1)C,
ABC
0 Dp

t R(t) =κ1A + σ1C + ν1Ac − μ1R,

(3.2)

where the initial conditions S(0) ≥ 0, E(0) ≥ 0, A(0) ≥
0, Ac(0) ≥ 0, C(0) ≥ 0 and R(0) ≥ 0, and the parameter
Λ1 is birth rate of the susceptible individuals. The effec-
tive contact rate and natural fatality rate are described
by the parameters β1 and μ1, respectively. The exposed
individuals are infected at the speed ψ1(1 − θ1), where
the number of individual move to class A at the rate
of ψ1θ1 while a portion of ψ1(1 − θ1) enters Ac and
become asymptomatically infected. Individuals in acute
and asymptomatic classes become carriers at rates of η1

and τ1, respectively. The recovery rate of acute, asymp-
tomatic and the carriers individuals are denoted by
κ1, ν1 and σ1, respectively. The death rate because of
disease at acute and chronic classes are represented by
γ1 and ε1 respectively. The coefficient of asymptomatic
and carriers individuals are shown by φ1 (the infectious-
ness of asymptomatic relative to acute infections) and
ε1 (the infectiousness of carriers relative to acute infec-
tions), respectively.

3.1 Invariant region

Lemma 3.1 The closed set

Θ =
{(

S(t), E(t), A(t), Ac(t), C(t), R(t)
)

∈ R6
+ : S(t)

+ E(t) + A(t) + Ac(t) + C(t) + R(t) ≤ Λ1

μ1

}
, (3.3)

is positively invariant for the ABC fractional model
(3.2).

Proof The dynamics of the total population is obtained
by summing all equations of the model (3.2)

ABCDp
t N (t) = ABCDp

t S(t) + ABCDp
t E(t) + ABCDp

t A(t)

+ABCDp
t Ac(t) + ABCDp

t C(t) + ABCDp
t R(t). (3.4)

Hence,

ABCDp
t N (t) = Λ1 − μ1N (t)

−γ1A − ε1C ≤ Λ1 − μ1N (t), (3.5)

employing the Laplace transform on Eq. (3.5), we have

L[ABCDp
t N (t) + μ1N (t)] ≤ L[Λ1],

after simplification we get

N (t) ≤
( J(p)
J(p) + (1 − p)μ1

N (0)

+
(1 − p)Λ1

J(p) + (1 − p)μ1

)
Ep,1(−β∗tp)

+
pΛ1

J(p) + (1 − p)μ1
Ep,p+1(−β∗tp),

(3.6)

where β∗ = pμ1
J(p)+(1−p)μ1

and Ep,q is two-parameter ML
function and describe as

Ep,q(z) =
∞∑

k=0

zk

Γ(kp + q)
.

Due to asymptotic nature of ML function, we obtain

lim
t→∞ N (t) ≤ Λ1

μ1
,∀ t > 0. (3.7)

Thus, the entire solutions of the proposed model for the
initial conditions belonging to Θ stay in Θ for every
t > 0. Hence, Θ is a positively invariant region and will
attract all the solutions in R+

6 . ��

3.2 Equilibrium point and basic reproduction
number

For the model (3.2), there exist two equilibrium points,
disease free equilibrium point (DFE) ξ̄0 and the endemic
equilibrium (EE) ξ̄1. The DFE point is given as

ξ̄0 = (S0, E0, A0, Ac0, C0, R0) =
(

Λ1

μ1
, 0, 0, 0, 0, 0

)
.

The basic reproduction number R0 of the proposed
model (3.2) is achieved using next-generation matrix
technique [44]. For the reproduction number R0, we
use [44] and obtain the matrices F and V as follows:
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F =

⎛
⎜⎜⎝

0 β1Λ1
μ1

β1φ1Λ1
μ1

β1ε1Λ1
μ1

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

V =

⎛
⎜⎝

m1 0 0 0
−θ1ψ1 m2 0 0

−(1 − θ1)ψ1 0 m3 0
0 −η1 −τ1 m4

⎞
⎟⎠ . (3.8)

Therefore, using the ρ(FV −1), we obtained the basic
reproduction number for the model (3.2)

R0 =
β1θ1Λ1ψ1

μ1m1m2
+

β1(1 − θ1)Λ1φ1ψ1

μ1m1m3

+
β1η1θ1Λ1ψ1ε1
μ1m1m2m4

+
β1(1 − θ1)Λ1τ1ψ1ε1

μ1m1m3m4
,

(3.9)

where m1 = (μ1 + ψ1),m2 = (μ1 + γ1 + η1 + κ1),m3 =
(μ1 + τ1 + ν1),m4 = (μ1 + ε1 + σ1).

3.3 Endemic equilibria

The EE point of the model (3.2) is given by ξ̄1 =
(S∗, E∗, A∗, A∗

c , C
∗, R∗), where

S∗ =
m1E∗

β1(A∗ + φ1A∗
c + ε1C∗)

,

E∗ =
m2A∗

θ1ψ1
,

A∗
c =

E∗(1 − θ1)ψ1

m3
,

C∗ =
η1A∗ + τ1A∗

c

m4
,

R∗ =
κ1A∗ + σ1C∗ + ν1A∗

c

μ1
,

using these in first equation of model (3.2), we get

a0A
∗ + a1 = 0,

where

a0 =β1m1m2(θ1m3(m4 + η1ε1)
+ (1 − θ1)m2(m4φ1 + τ1ε1)),

a1 =μ1m1m2m3m4θ1(1 − R0).
(3.10)

Lemma 3.2 The proposed HBV model (3.2) has a
unique positive EE provided R0 > 1.

4 Existence and uniqueness of the solution

Here, we will examine the existence of unique solution
of fractional-order model (3.2). Assume that H (J) is a

Banach space containing real-valued continuous func-
tions defined on the interval J = [0, T ] with sup norm
and P = H (J) × H (J) × H (J) × H (J) × H (J) × H (J)
with the norm ‖(S, E, A, Ac, C, R)‖ = ‖S‖ + ‖E‖ + ‖A‖ +
‖Ac‖ + ‖C‖ + ‖R‖, where ‖S‖ = supt∈J |S(t)|, ‖E‖ =
supt∈J |E(t)|, ‖A‖ = supt∈J |A(t)|, ‖Ac‖ = supt∈J |Ac(t)|,
‖C‖ = supt∈J |C(t)|, ‖R‖ = supt∈J |R(t)|. Employing the
AB fractional integral on both-sides of Eq. (3.2), we
have

S(t) − S(0) = AB
0 Ip

t {Λ1 − β1(A + φ1Ac + ε1C)S − μ1S},

E(t) − E(0) = AB
0 Ip

t {β1(A + φ1Ac + ε1C)S − (μ1 + ψ1)E},

A(t) − A(0) = AB
0 Ip

t {ψ1θ1E − (μ1 + γ1 + η1 + κ1)A},

Ac(t) − Ac(0) = AB
0 Ip

t {ψ1(1 − θ1)E − (μ1 + τ1 + ν1)Ac},

C(t) − C(0) = AB
0 Ip

t {η1A + τAc − (μ1 + ε1 + σ1)C},

R(t) − R(0) = AB
0 Ip

t {κ1A + σ1C + ν1Ac − μ1R}.
(4.1)

Now, using the definition (2.4) on above equation, we
get

S(t) − S(0) =
1 − p

J(p)
Ξ1(t, S(t))

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1Ξ1(υ, S(υ))dυ,

E(t) − E(0) =
1 − p

J(p)
Ξ2(t, E(t))

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1Ξ2(υ, E(υ))dυ,

A(t) − A(0) =
1 − p

J(p)
Ξ3(t, A(t))

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1Ξ3(υ, A(υ))dυ,

Ac(t) − Ac(0) =
1 − p

J(p)
Ξ4(t, Ac(t))

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1Ξ4(υ, Ac(υ))dυ,

C(t) − C(0) =
1 − p

J(p)
Ξ5(t, C(t))

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1Ξ5(υ, C(υ))dυ,

R(t) − R(0) =
1 − p

J(p)
Ξ6(t, R(t))

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1Ξ6(υ, R(υ))dυ,

(4.2)
where

Ξ1(t, S(t)) = Λ1 − β1(A(t) + φ1Ac(t)
+ ε1C(t))S(t) − μ1S(t),

Ξ2(t, E(t)) =β1(A(t) + φ1Ac(t)
+ ε1C(t))S(t) − (μ1 + ψ1)E(t),
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Ξ3(t, A(t)) = ψ1θ1E(t) − (μ1 + γ1 + η1 + κ1)A(t),
Ξ4(t, Ac(t)) = ψ1(1 − θ1)E(t) − (μ1 + τ1 + ν1)Ac(t),
Ξ5(t, C(t)) = η1A(t) + τ1Ac(t) − (μ1 + ε1 + σ1)C(t),
Ξ6(t, R(t)) = κ1A(t) + σ1C(t) + ν1Ac(t) − μ1R(t).

(4.3)

The expressions Ξ1(t, S(t)), Ξ2(t, E(t)), Ξ3(t, A(t)), Ξ4(t,
Ac(t)), Ξ5(t, C(t)) and Ξ6(t, R(t)) are said to satisfy the
Lipschitz condition if and only if S(t), E(t), A(t), Ac(t), C(t)
and R(t) have an upper bound. Let S(t) and S1(t) be
two functions, then we get

‖Ξ1(t, S) − Ξ1(t, S1)‖
= ‖ − β1(A + φ1Ac + ε1C)(S − S1) − μ1(S − S1)‖,

= ‖ − (β1(A + φ1Ac + ε1C) + μ1)(S − S1)‖,

≤ ‖ − (β1(A + φ1Ac + ε1C) + μ1)‖‖S − S1‖
≤ �1‖S − S1‖,

(4.4)
where �1 = ‖ − (β1(A + φ1Ac + ε1C) + μ1)‖. Therefore,
we have

‖Ξ1(t, S) − Ξ1(t, S1)‖ ≤ �1‖S(t) − S1(t)‖. (4.5)

In a similar manner, one can obtain

‖Ξ2(t, E) − Ξ2(t, E1)‖ ≤ �2‖E(t) − E1(t)‖,

‖Ξ3(t, A) − Ξ3(t, A1)‖ ≤ �3‖A(t) − A1(t)‖,

‖Ξ4(t, Ac) − Ξ4(t, Ac1)‖ ≤ �4‖Ac(t) − Ac1(t)‖,

‖Ξ5(t, C) − Ξ5(t, C1)‖ ≤ �5‖C(t) − C1(t)‖,

‖Ξ6(t, R) − Ξ6(t, R1)‖ ≤ �6‖R(t) − R1(t)‖.

(4.6)

Thus, the Lipschitz condition is satisfied for all the six
functions Ξ1, Ξ2, Ξ3, Ξ4, Ξ5 and Ξ6 where �1, �2, �3, �4, �5

and �6 are the corresponding Lipschitz constants. Using
the recursive principle, the Eq. (4.2) becomes

Sn(t) =
1 − p

J(p)
Ξ1(t, Sn−1)

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1Ξ1(υ, Sn−1)dυ + S(0),

En(t) =
1 − p

J(p)
Ξ2(t, En−1)

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1Ξ2(υ, En−1)dυ + E(0),

An(t) =
1 − p

J(p)
Ξ3(t, An−1)

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1Ξ3(υ, An−1)dυ + A(0),

Acn(t) =
1 − p

J(p)
Ξ4(t, Acn−1)

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1Ξ4(υ, Acn−1)dυ + Ac(0),

Cn(t)G =
1 − p

J(p)
Ξ5(t, Cn−1)

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1Ξ5(υ, Cn−1)dυ + C(0),

Rn(t) =
1 − p

J(p)
Ξ6(t, Rn−1)

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1Ξ6(υ, Rn−1)dυ + R(0),

(4.7)

where the initial conditions are defined as follows:

S0(t) = S(0), E0(t) = E(0), A0(t) = A(0),
Ac0(t) = Ac(0), C0(t) = C(0), R0(t) = R(0).

Taking the difference of successive terms, we obtained
the following expression:

ΨS,n(t) = Sn(t) − Sn−1(t)

=
1 − p

J(p)
(Ξ1(t, Sn−1) − Ξ1(t, Sn−2))

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1

(
Ξ1(υ, Sn−1) − Ξ1(υ, Sn−2)

)
dυ,

ΨE,n(t) = En(t) − En−1(t)

=
1 − p

J(p)
(Ξ2(t, En−1) − Ξ2(t, En−2))

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1

(
Ξ2(υ, En−1) − Ξ2(υ, En−2)

)
dυ,

ΨA,n(t) = An(t) − An−1(t)

=
1 − p

J(p)
(Ξ3(t, An−1) − Ξ3(t, An−2))

+
p

J(p)Γ(p)

∫ t

0

((t − υ)p−1

(
Ξ3(υ, An−1) − Ξ3(υ, An−2)

)
dυ,

ΨAc,n(t) = Acn(t) − Acn−1(t)

=
1 − p

J(p)
(Ξ4(t, Acn−1) − Ξ4(t, Acn−2))

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1

(
Ξ4(υ, Acn−1) − Ξ4(υ, Acn−2)

)
dυ,

ΨC,n(t) = Cn(t) − Cn−1(t)

=
1 − p

J(p)
(Ξ5(t, Cn−1) − Ξ5(t, Cn−2))

+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1

(
Ξ5(υ, Cn−1) − Ξ5(υ, Cn−2)

)
dυ,

ΨR,n(t) = Rn(t) − Rn−1(t)

=
1 − p

J(p)
(Ξ6(t, Rn−1) − Ξ6(t, Rn−2))
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+
p

J(p)Γ(p)

∫ t

0

(t − υ)p−1

(
Ξ6(υ, Rn−1) − Ξ6(υ, Rn−2)

)
dυ. (4.8)

It is worth to be notice that Sn(t) =
∑n

i=0 ΨS,i(t), En(t)
=

∑n
i=0 ΨE,i(t), An(t) =

∑n
i=0 ΨA,i(t), Acn(t) =

∑n
i=0

ΨAc,i(t), Cn(t) =
∑n

i=0 ΨC,i(t), and Rn(t) =
∑n

i=0 ΨR,i(t).
In addition, using Eqs. (4.5)–(4.6) and taking into con-
sideration that ΨS,n−1(t) = Sn−1(t)−Sn−2(t), ΨE,n−1(t)
= En−1(t) − En−2(t), ΨA,n−1(t) = An−1(t) − An−2(t),
ΨAc,n−1(t) = Acn−1(t)−Acn−2(t), ΨC,n−1(t) = Cn−1(t)−
Cn−2(t), ΨR,n−1(t) = Rn−1(t)−Rn−2(t), we have the fol-
lowing:

‖ΨS,n(t)‖ ≤ 1 − p

J(p)
�1‖ΨS,n−1(t)‖

+
p

J(p)Γ(p)
�1

∫ t

0

(t − υ)p−1‖ΨS,n−1(υ)‖dυ,

‖ΨE,n(t)‖ ≤ 1 − p

J(p)
�2‖ΨE,n−1(t)‖

+
p

J(p)Γ(p)
�2

∫ t

0

(t − υ)p−1‖ΨE,n−1(υ)‖dυ,

‖ΨA,n(t)‖ ≤ 1 − p

J(p)
�3‖ΨA,n−1(t)‖

+
p

J(p)Γ(p)
�3

∫ t

0

(t − υ)p−1‖ΨA,n−1(υ)‖dυ,

‖ΨAc,n(t)‖ ≤ 1 − p

J(p)
�4‖ΨAc,n−1(t)‖

+
p

J(p)Γ(p)
�4

∫ t

0

(t − υ)p−1‖ΨAc,n−1(υ)‖dυ,

‖ΨC,n(t)‖ ≤ 1 − p

J(p)
�5‖ΨC,n−1(t)‖

+
p

J(p)Γ(p)
�5

∫ t

0

(t − υ)p−1‖ΨC,n−1(υ)‖dυ,

‖ΨR,n(t)‖ ≤ 1 − p

J(p)
�6‖ΨR,n−1(t)‖

+
p

J(p)Γ(p)
�6

∫ t

0

(t − υ)p−1‖ΨR,n−1(υ)‖dυ.

(4.9)

Theorem 4.1 The HBV model (3.2) has a unique
solution for t ∈ [0, T ], if the following condition holds:

1 − p

J(p)
�i +

1
J(p)Γ(p)

�ib
p < 1, i = 1, 2, · · · , 6. (4.10)

Proof It is evident that S(t), E(t), A(t), Ac(t), C(t) and
R(t) are the bounded functions. Furthermore, we can
identify from Eqs. (4.5)–(4.6), the expressions Ξ1, Ξ2, Ξ3,
Ξ4, Ξ5 and Ξ6 satisfy the Lipschitz condition. Thus,
utilizing Eq. (4.9) along with a recursive formula, we
arrive at

‖ΨS,n(t)‖ ≤ ‖S(0)‖
[1 − p

J(p)
�1 +

bp

J(p)Γ(p)
�1

]n

,

‖ΨE,n(t)‖ ≤ ‖E(0)‖
[1 − ν

J(p)
�2 +

bp

J(p)Γ(p)
�2

]n

,

‖ΨA,n(t)‖ ≤ ‖A(0)‖
[1 − ν

J(ν)
�3 +

bp

J(p)Γ(p)
�3

]n

,

‖ΨAc,n(t)‖ ≤ ‖Ac(0)‖
[1 − p

J(p)
�4 +

bp

J(p)Γ(p)
�4

]n

,

‖ΨC,n(t)‖ ≤ ‖C(0)‖
[1 − p

J(p)
�5 +

bp

J(p)Γ(p)
�5

]n

,

‖ΨR,n(t)‖ ≤ ‖R(0)‖
[1 − p

J(p)
�6 +

bp

J(p)Γ(p)
�6

]n

.

(4.11)

Therefore, the above specified sequences exist and
satisfy ‖ΨS,n(t)‖ → 0, ‖ΨE,n(t)‖ → 0, ‖ΨA,n(t)‖ →
0, ‖ΨAc,n(t)‖ → 0, ‖ΨC,n(t)‖ → 0, ‖ΨR,n(t)‖ → 0, as
n → ∞. Moreover, from Eq. (4.11) and using the tri-
angle inequality for any m, we get

‖Sn+m(t) − Sn(t)‖ ≤
n+m∑

j=n+1

T j
1 =

T n+1
1 − T n+m+1

1

1 − T1
,

‖En+m(t) − En(t)‖ ≤
n+m∑

j=n+1

T j
2 =

T n+1
2 − T n+m+1

2

1 − T2
,

‖An+m(t) − An(t)‖ ≤
n+m∑

j=n+1

T j
3 =

T n+1
3 − T n+m+1

3

1 − T3
,

‖Acn+m(t) − Acn(t)‖ ≤
n+m∑

j=n+1

T j
4 =

T n+1
4 − T n+m+1

4

1 − T4
,

‖Cn+m(t) − Cn(t)‖ ≤
n+m∑

j=n+1

T j
5 =

T n+1
5 − T n+m+1

5

1 − T5
,

‖Rn+m(t) − Rn(t)‖ ≤
n+m∑

j=n+1

T j
6 =

T n+1
6 − T n+m+1

6

1 − T6
,

(4.12)

where Ti = 1−p
J(p)�i + bp

J(p)Γ(p)�i < 1 by hypothe-
sis. Therefore Sn, En, An, Acn, Cn, Rn are described as
Cauchy sequences in the Banach space H (J). There-
fore, they are uniformly convergent as mentioned in
[45]. Applying the limit theorem on Eq. (4.7) when
n → ∞ indicates that the limit of these sequences is the
unique solution of the model (3.2). Finally, the existence
of a unique solution for model (3.2) has been achieved
under the condition (4.10). ��

5 Numerical techniques

It is familiar that biological models are generally non-
linear and difficult to solve exactly. Hence, researchers
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are constantly looking for a suitable numerical approach
to solve them. Now, we will present the solution of the
mentioned fractional-order HBV model.

5.1 Numerical solution of the Caputo HBV model

Here, we present ABM method (see Diethelm & Ford
[46–48] for more details on the ABM scheme and its con-
vergence) to the approximate solution of the proposed
Caputo HBV model. Following from Refs. [46–48], set-
ting h = T

N , tn = nh, n = 0, 1, 2, . . . ,N, the model solu-
tion can be written as follows:

Sn+1 = S(0) +
hp

Γ(p + 2)

G1(tn+1, S
P
n+1, E

P
n+1, A

P
n+1, Ac

P
n+1, C

P
n+1, R

P
n+1)

+
hp

Γ(p + 2)

n∑
j=0

d̂j,n+1G1(tj , Sj , Ej , Aj , Acj , Cj , Rj),

En+1 = E(0) +
hp

Γ(p + 2)

G2(tn+1, S
P
n+1, E

P
n+1, A

P
n+1, Ac

P
n+1, C

P
n+1, R

P
n+1)

+
hp

Γ(p + 2)

n∑
j=0

d̂j,n+1G2(tj , Sj , Ej , Aj , Acj , Cj , Rj),

An+1 = A(0) +
hp

Γ(p + 2)

G3(tn+1, S
P
n+1, E

P
n+1, A

P
n+1, Ac

P
n+1, C

P
n+1, R

P
n+1)

+
hp

Γ(p + 2)

n∑
j=0

d̂j,n+1G3(tj , Sj , Ej , Aj , Acj , Cj , Rj),

Acn+1 = Ac(0) +
hp

Γ(p + 2)

G4(tn+1, S
P
n+1, E

P
n+1, A

P
n+1, Ac

P
n+1, C

P
n+1, R

P
n+1)

+
hp

Γ(p + 2)

n∑
j=0

d̂j,n+1G4(tj , Sj , Ej , Aj , Acj , Cj , Rj),

Cn+1 = C(0) +
hp

Γ(p + 2)

G5(tn+1, S
P
n+1, E

P
n+1, A

P
n+1, Ac

P
n+1, C

P
n+1, R

P
n+1)

+
hp

Γ(p + 2)

n∑
j=0

d̂j,n+1G5(tj , Sj , Ej , Aj , Acj , Cj , Rj),

Rn+1 = R(0) +
hp

Γ(p + 2)

G6(tn+1, S
P
n+1, E

P
n+1, A

P
n+1, Ac

P
n+1, C

P
n+1, R

P
n+1)

+
hp

Γ(p + 2)

n∑
j=0

d̂j,n+1G6(tj , Sj , Ej , Aj , Acj , Cj , Rj).

(5.1)

where

S
P
n+1 = S(0) +

1

Γ(p)

n∑

j=0

b̂j,n+1G1(tj , Sj , Ej , Aj , Acj , Cj , Rj),

Table 1 CPU time in seconds for Δt = 0.01

t Caputo ABC

5 1.32 1.35
10 5.06 5.15
20 19.33 19.60
30 43.43 43.63

Table 2 CPU time in seconds for Δt = 0.05

t Caputo ABC

5 0.13 0.16
10 0.29 0.34
20 0.90 0.97
30 1.85 1.99

E
P
n+1 = E(0) +

1

Γ(p)

n∑

j=0

b̂j,n+1G2(tj , Sj , Ej , Aj , Acj , Cj , Rj),

A
P
n+1 = A(0) +

1

Γ(p)

n∑

j=0

b̂j,n+1G3(tj , Sj , Ej , Aj , Acj , Cj , Rj),

Ac
P
n+1 = Ac(0) +

1

Γ(p)

n∑

j=0

b̂j,n+1G4(tj , Sj , Ej , Aj , Acj , Cj , Rj),

C
P
n+1 = C(0) +

1

Γ(p)

n∑

j=0

b̂j,n+1G5(tj , Sj , Ej , Aj , Acj , Cj , Rj),

R
P
n+1 = R(0) +

1

Γ(p)

n∑

j=0

b̂j,n+1G6(tj , Sj , Ej , Aj , Acj , Cj , Rj).

(5.2)

and

d̂j,n+1 =

⎧⎪⎨
⎪⎩

np+1 − (n − p)(n + 1)p ifj = 0,
(n − j + 2)p+1 + (n − j)p+1 1 ≤ j ≤ n,

−2(n − j + 1)p+1

1 j = n + 1.

and

b̂j,n+1 =
hp

p
((n + 1 − j)p − (n − j)p), 0 ≤ j ≤ n.

5.2 Numerical solution of the ABC HBV model

Here, we will show a Adams type PC numerical tech-
nique [49] with Atangana–Baleanu fractional integral
operator for numerical results of the proposed HBV
model (3.2). For the sake of simplicity, the model (3.2)
is given as

ABC
0 Dp

t S(t) = G1(t, S, E, A, Ac, C, R),
ABC
0 Dp

t E(t) = G2(t, S, E, A, Ac, C, R),
ABC
0 Dp

t A(t) = G3(t, S, E, A, Ac, C, R),
ABC
0 Dp

t Ac(t) = G4(t, S, E, A, Ac, C, R),
ABC
0 Dp

t C(t) = G5(t, S, E, A, Ac, C, R),
ABC
0 Dp

t R(t) = G6(t, S, E, A, Ac, C, R).

(5.3)
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Numerical simulation for the HBV model (3.2) for p = 1, when R0 > 1

Now, we consider the system (5.3) with Atangana–
Balenau (AB) integral and get the following:

S(t) = S0(t) +
(1 − p)

J(p)
G1(t, S, E, A, Ac, C, R)

+
p

J(p)Γ(p)

∫ t

0

G1(υ, S, E, A, Ac, C, R)(t − υ)p−1dυ,

E(t) = E0(t) +
(1 − p)

J(p)
G2(t, S, E, A, Ac, C, R)

+
p

J(p)Γ(p)

∫ t

0

G2(υ, S, E, A, Ac, C, R)(t − υ)p−1dυ,

A(t) = A0(t) +
(1 − p)

J(p)
G3(t, S, E, A, Ac, C, R)
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Numerical simulation for the HBV model (3.2) for p = 0.9, when R0 > 1

+
p

J(p)Γ(p)

∫ t

0

G3(υ, S, E, A, Ac, C, R)(t − υ)p−1dυ,

Ac(t) = Ac0(t) +
(1 − p)

J(p)
G4(t, S, E, A, Ac, C, R)

+
p

J(p)Γ(p)

∫ t

0

G4(υ, S, E, A, Ac, C, R)(t − υ)p−1dυ,

C(t) = C0(t) +
(1 − p)

J(p)
G5(t, S, E, A, Ac, C, R)

+
p

J(p)Γ(p)

∫ t

0

G5(υ, S, E, A, Ac, C, R)(t − υ)p−1dυ,
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Numerical simulation for the HBV model (3.2) for p = 0.8, when R0 > 1

R(t) = R0(t) +
(1 − p)

J(p)
G6(t, S, E, A, Ac, C, R)

+
p

J(p)Γ(p)

∫ t

0

G6(υ, S, E, A, Ac, C, R)(t − υ)p−1dυ.

(5.4)

We need now a numerical approximation technique for
AB fractional integral. For this, we utilize the Adams

type PC numerical approach for AB fractional integral.
Therefore, we have

AB
0 I p

t χ(t) =
1 − p

J(p)
χ(t)+

p

J(p)Γ(p)

∫ t

0

χ(υ)(t−υ)p−1dυ,

(5.5)
and h = T

N , tk = hk, (k = 0, 1, 2, · · · ,N), where T is
upper bound of the interval. Then, the corrector for-
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Numerical simulation for the HBV model (3.2) for p = 1, when R0 < 1

mula of integral form of derivative is provided as fol-
lows:

χh(tn+1) = χ0(tn+1) +
(1 − p)hp

J(p)Γ(p + 2)
g(tn+1, χ

P
h (tn+1))

+
php

J(p)Γ(p + 2)

n∑
j=0

ϕj,n+1g(tj , χh(tj)),(5.6)

where

ϕj,n+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

np+1 − (n − p)(n + 1)p, ifj = 0,

(n − j + 2)p+1 + (n − j)p+1 1 ≤ j ≤ n,

−2(n − j + 1)p+1,

1, j = n + 1.

123



1896 Eur. Phys. J. Spec. Top. (2022) 231:1885–1904

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Numerical simulation for the HBV model (3.2) for p = 0.9, when R0 < 1

The predictor value χP
h (tn+1) is defined by following:

χP
h (tn+1) = χ0 +

1 − p

J(p)
g(tn, χh(tn))

+
p

J(p)Γ2(p)

n∑
j=0

δj,n+1g(tj , χh(tj)),

(5.7)

where,

δj,n+1 =
hp

p
((n + 1 − j)p − (n − j)p), 0 ≤ j ≤ n.

Operating above Adams type PC technique on the HBV
model (3.2), we get the following iterative formula:
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Numerical simulation for the HBV model (3.2) for p = 0.8, when R0 < 1

Sn+1 = S(0) +
(1 − p)hp

J(p)Γ(p + 2)

G1(tn+1, SPn+1, EPn+1, APn+1, Ac
P
n+1, CPn+1, RPn+1)

+
php

J(p)Γ(p + 2)

n∑

j=0

ϕj,n+1G1(tj , Sj , Ej , Aj , Acj , Cj , Rj),

En+1 = E(0) +
(1 − p)hp

J(p)Γ(p + 2)

G2(tn+1, SPn+1, EPn+1, APn+1, Ac
P
n+1, CPn+1, RPn+1)

+
php

J(p)Γ(p + 2)

n∑

j=0

ϕj,n+1G2(tj , Sj , Ej , Aj , Acj , Cj , Rj),

An+1 = A(0) + array
(1 − p)hp

J(p)Γ(p + 2)

G3(tn+1, SPn+1, EPn+1, APn+1, Ac
P
n+1, CPn+1, RPn+1)
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Comparison of numerical result for the HBV model for p = 1, when R0 > 1

+
php

J(p)Γ(p + 2)

n∑

j=0

ϕj,n+1G3(tj , Sj , Ej , Aj , Acj , Cj , Rj),

Acn+1 = Ac(0) +
(1 − p)hp

J(p)Γ(p + 2)

G4(tn+1, SPn+1, EPn+1, APn+1, Ac
P
n+1, CPn+1, RPn+1)

+
php

J(p)Γ(p + 2)

n∑

j=0

ϕj,n+1G4(tj , Sj , Ej , Aj , Acj , Cj , Rj),

Cn+1 = C(0) +
(1 − p)hp

J(p)Γ(p + 2)

G5(tn+1, SPn+1, EPn+1, APn+1, Ac
P
n+1, CPn+1, RPn+1)
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Comparison of numerical result for the HBV model for p = 0.9, when R0 > 1

+
php

J(p)Γ(p + 2)

n∑

j=0

ϕj,n+1G5(tj , Sj , Ej , Aj , Acj , Cj , Rj),

Rn+1 = R(0) +
(1 − p)hp

J(p)Γ(p + 2)

G6(tn+1, SPn+1, EPn+1, APn+1, Ac
P
n+1, CPn+1, RPn+1)

+
php

J(p)Γ(p + 2)

n∑

j=0

ϕj,n+1G6(tj , Sj , Ej , Aj , Acj , Cj , Rj).

(5.8)

The predictor terms SP
n+1, E

P
n+1, A

P
n+1, Ac

P
n+1, C

P
n+1, R

P
n+1

are given as
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(a) (b)

(c) (d)

(e) (f)

Fig. 9 Comparison of numerical result for the HBV model for p = 0.8, when R0 > 1

S
P
n+1 = S(0) +

(1 − p)

J(p)
G1(tn, Sn, En, An, Acn, Cn, Rn)

+
p

Γ2(p)J(p)

n∑

j=0

δj,n+1G1(tj , Sj , Ej , Aj , Acj , Cj , Rj),

E
P
n+1 = E(0) +

(1 − p)

J(p)
G2(tn, Sn, En, An, Acn, Cn, Rn)

+
p

Γ2(p)J(p)

n∑

j=0

δj,n+1G2(tj , Sj , Ej , Aj , Acj , Cj , Rj),

A
P
n+1 = A(0) +

(1 − p)

J(p)
G3(tn, Sn, En, An, Acn, Cn, Rn)

+
p

Γ2(p)J(p)

n∑

j=0

δj,n+1G3(tj , Sj , Ej , Aj , Acj , Cj , Rj),
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(a) (b)

(c)

Fig. 10 Infected class of the HBV model (3.2) for different η1 when p = 0.95

Ac
P
n+1 = Ac(0) +

(1 − p)

J(p)
G4(tn, Sn, En, An, Acn, Cn, Rn)

+
p

Γ2(p)J(p)

n∑

j=0

δj,n+1G4(tj , Sj , Ej , Aj , Acj , Cj , Rj),

C
P
n+1 = C(0) +

(1 − p)

J(p)
G5(tn, Sn, En, An, Acn, Cn, Rn)

+
p

Γ2(p)J(p)

n∑

j=0

δj,n+1G5(tj , Sj , Ej , Aj , Acj , Cj , Rj),

R
P
n+1 = R(0) +

(1 − p)

J(p)
G6(tn, Sn, En, An, Acn, Cn, Rn)

+
p

Γ2(p)J(p)

n∑

j=0

δj,n+1G6(tj , Sj , Ej , Aj , Acj , Cj , Rj).

(5.9)

5.3 Numerical solution and discussion

In the present subsection, we have discussed the
obtained numerical results for the Caputo model (3.1)
and ABC model (3.2) with unit of time per year through
the above suggested numerical techniques. The values
of model parameter used in the numerical simulations

are Λ1 = 2, μ1 = 1/67.7, β1 = 0.042, φ1 = 0.002, ε1 =
0.002, ψ1 = 0.004, θ1 = 0.6, γ1 = 0.001, η1 =
0.02, κ1 = 0.02, τ1 = 0.02, ν1 = 0.1, ε1 = 0.003, σ1 =
0.2. Using the above given parameter values except
β1 = 0.042, we show the numerical simulation for the
model (3.2) in Figs. 1, 2, and 3, when R0 > 1. From
the presented graphics, we observe that the suscepti-
ble population decrease while the exposed individuals
increase, the infected classes, acute, asymptomatic and
chronic population increase, the increase is slower for
the smaller values of FO parameter. Making the param-
eter β1 = 0.00042 too small, we get R0 < 1 and the
graphical results are shown for this in Figs. 4, 5, and 6.
The graphical solutions display that by decreasing the
value of the non-integer-order parameter p, the number
of individuals in the infected compartment decreases. In
Figs. 7, 8, and 9, the comparison of numerical result for
Caputo and ABC operators are presented graphically.
We observe that ABC provide better results for the
smaller fractional order. In Fig. 10, taking distinct val-
ues of parameter η1 with p = 0.95, we show the behav-
ior of the infected compartments, acute, asymptomatic
and chronic individuals. In addition, we provided the
CPU output time in Tables 1 and 2.
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Fig. 11 Numerical simulation for the third neuron of proposed variable-order HBV network

6 Variable-order fractional network

In this section, we propose a new mathematical model
that considers the interaction of different communities
in modeling the disease. Since the relationships and
travels between two countries will definitely affect the
rate of diseases in both of them, by embedding the inter-
action between different communities in the modeling
of the disease, more realistic results will be obtained.

The mathematical model of the disease is consid-
ered as neurons affected by each other in a network.
To construct a network of HBV model, using the near-
est neighbor method some models are joined. We sup-
pose that the interactions between neurons are through
the susceptible as well as asymptomatic carrier compo-
nents, i.e., the coupling is made on the variable S and Ac.
Consequently, the governing equation of the proposed
network is given by
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ABCDp(t)
t Si(t) = Λ1 − β1(A + φ1Ac + ε1C)Si

−μ1Si +
l

2q

i+q∑
j=i−q

(Sj − Si),

ABCDp(t)
t Ei(t) = β1(A + φ1Ac + ε1C)Si − (μ1 + ψ1)Ei,

ABCDp(t)
t Ai(t) = ψ1θ1Ei − (μ1 + γ1 + η1 + κ1)Ai,

ABCDp(t)
t Aci(t) = ψ1(1 − θ1)Ei − (μ1 + τ1 + ν1)Aci

+
l

2q

i+q∑
j=i−q

(Acj − Aci),

ABCDp(t)
t Ci(t) = η1Ai + τ1Aci − (μ1 + ε1 + σ1)Ci,

ABCDp(t)
t Ri(t) = κ1Ai + σ1Ci + ν1Aci − μ1Ri, (6.1)

where p(t) stands for the time-varying fractional-order
derivative; also, q is the number of nearest neighbors on
each side, and l denotes the coupling strength.

Figure 11 demonstrates the numerical results of the
third neuron of the proposed network. In this case, the
number of communities that are in the network is con-
sidered to be NS = 4. In addition, q = 2 and l = 1. The
fractional-order derivative is considered to be a function
of time as p(t) = 0.95+ 0.01 cos( t

20 ). By comparing the
results of the HBV model in the network and the case
that there is a sole community, it can be found out that
the neighborhood communities play important roles in
the spread of the disease.

7 Conclusion

In the present work, we explored the dynamics of the
HBV model with the asymptomatic carrier-class using
two different fractional operators. For the arbitrary
order fractional HBV model, we considered the Caputo
and ABC fractional derivatives and presented some
mathematical analysis for the FO ABC model, such as
invariant region and basic reproduction number. Fur-
thermore, with fixed-point results, the existence and
uniqueness of system solutions to the arbitrary order
HBV model were investigated. The numerical solution
was obtained via the presented numerical schemes and
the numerical outcomes were explored graphically for
different choices of FO parameter. The importance of
arbitrarily chosen fractional order can be observed from
our presented results. Thus, from the analysis given in
this work, we can conclude that the models formulated
in FO demonstrate some interesting results and sev-
eral characteristics that cannot be recognized in inte-
ger order. Finally, a network of the HBV model was
introduced to consider the effects of different societies
on each other. In the proposed model, it is supposed
that the value of the fractional derivative is changing
with respect to time, and the populations are jointed
through the nearest neighbor method. In a future study,
we will investigate the control of the proposed variable-
order network through an artificial intelligence-based

approach. This model can also be studied with other
fractional derivatives, such as generalized Caputo and
conformable derivatives.
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