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Abstract A new coronavirus mathematical with hospitalization is considered with the consideration of the
real cases from March 06, 2021 till the end of April 30, 2021. The essential mathematical results for the
model are presented. We show the model stability when R0 < 1 in the absence of infection. We show
that the system is stable locally asymptotically when R0 < 1 at infection free state. We also show that
the system is globally asymptotically stable in the disease absence when R0 < 1. Data have been used
to fit accurately to the model and found the estimated basic reproduction number to be R0 = 1.2036.
Some graphical results for the effective parameters are drawn for the disease elimination. In addition, a
variable-order model is introduced, and so as to handle the outbreak effectively and efficiently, a genetic
algorithm is used to produce high-quality control. Numerical simulations clearly show that decision-makers
may develop helpful and practical strategies to manage future waves by implementing optimum policies.

1 Introduction

The corona virus affected and effecting the populations
throughput the world by providing severe infection and
death. The early and effective strategy to overcome this
infection needed to follow the rule and regulations sug-
gested by the World health organization to prevent the
people from further reinfection. It is well known that
every researchers from their respective field of research
provided great efforts for the elimination of this infec-
tion. Many countries were the infection provided many
deaths with so many waves of infection. Pakistan is one
of among those where there are some waves occurred
for this COVID-19 infection from which the population
suffered. It has been reported the number of reported
cases and deaths in each wave and seems the increase
in the cases. There has been reported the number of
death percentage in wave 1 and 2 to be 1 %.

The formulation of mathematical models in epidemi-
ology and engineering areas has proven his role to be
important; see [1–3]. Many researchers in different per-
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spective studied the coronavirus infection. While the
mathematicians and biologists who worked on the mod-
eling of the COVID-19 infection studied and formulated
the mathematical models with real cases of different
countries and presented about the peak of the infec-
tion and its eliminations of infection. In this regard,
some mathematical models are highlighted here that
formulated for this infection are [4–10]. The initial cases
reported in China for the COVID-19 infection have
been investigated in [4] through a mathematical model.
The real cases from Spain and Italy are considered in
the modeling of infection in the form of an SEIR model
which has been studied in [5]. The COVID-19 infec-
tion dynamics and its prediction through a mathemat-
ical model of an SEIR have been investigated in [6].
The data from Italy are considered, and a mathemati-
cal model is formulated for the COVID-19 infection and
its analysis has been considered in [7]. The impact of
social distancing and other features that can be consid-
ered essential for the decrease in the COVID-19 infec-
tion has been studied by the authors in [8]. They for-
mulated a mathematical model for the South African
infected cases. A comparison study for the dynamics
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of coronavirus infection has been discussed in [9]. The
number of real cases from Mexico population through
a mathematical model is considered in [10]. The real
infected cases from KSA are considered by the authors
using mathematical modeling approach and obtained
the results regarding the disease eliminations in the
country [11]. The modeling and the contrail measure
of infection of COVID-19 have been discussed in [12].
The disease eliminations and its control through opti-
mal control theory are suggested by the authors in [13].
Addressing the model with lockdown measure for the
COVID-19 infection is discussed in [14]. Some other
interesting work related to the modeling of COVID-
19 and related results regarding the disease are sug-
gested in [15–17]. Moreover, the authors in [18–22] con-
sidered the COVID-19 infection models in fractional
derivatives and some recommendations regarding the
minimization of infection are given in the form of lock-
down and control strategies. Moreover, the applications
of fractional calculus and the numerical methods for
the physical and biological problems have been dis-
cussed in [23–26,29–39]. For example, the HIV infec-
tion model with antiviral drug therapy is considered in
[23]. A fractional SEIR model using wavelet method has
been proposed in [24]. Some biological models with ana-
lytical and numerical techniques are discussed in [25].
A fractional model in ABC operator in astrophysics is
discussed in [26]. A recent study is conducted for the
understanding of coronavirus infection and its controls
[27]. A mathematical model in non-singular order to
investigate the coronavirus infection is considered in
[28]. Nonetheless, some studies show that in some con-
ditions, time-varying fractional-order models are able to
better demonstrate behavior of systems [40–47]. How-
ever, now, there are few studies on time-varying frac-
tion diseases dynamics, and it demands more studies in
this field. Motivated by this in the current research, we
propose and study a variable-order fractional model of
SARS-CoV-2 dynamic.

In this work, a new mathematical model in the pres-
ence of hospitalization class is considered to better
understand the COVID-19 infection in the presence of
hospitalization and then using the concept of variable
fractional order to study its dynamics. First, we will
study the model in integer order and study the detailed
mathematical results, and then, we extend the proposed
model to have the results for the variable fractional-
order model. We discuss in details the formulation of
the model in Sect. 2. The stability results and the model
endemic equilibria have been shown in Sect. 3. Estima-
tions of the model parameters and its numerical results
are discussed briefly in Sect. 4 and 5, respectively. In
Sect. 6, using the approach of variable order and its
related results are discussed. All the results are sum-
marized and concluded in Sect. 7.

2 Model formulation

Due to the COVID infection and its emerging in the
society that producing many cases again and again

in the society and creates a lot of difficulties for the
humans as well as the government. Therefore, the erad-
ications of the infections and to prevent the populations
further, government present policies in light to World
health organization. Therefore, here, our aims by for-
mulating a novel mathematical model in the presence
of hospitalization infection to understand in an effective
way the dynamics of the COVID-19 infection with real
cases reported from Pakistan. We denote the population
of humans by N(t) and split into it further into six com-
partments: The susceptible S(t), exposed E(t), infected
with visible symptoms I(t), infected with no visible
symptoms A(t), the individuals that are hospitalized/
quarantined H(t) and those recovered from infection is
R(t). We present the model below in the form of differ-
ential equations based on the above discussions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = Π − ρ(I + σA) S

N − ωS,

dE
dt = ρ(I + σA) S

N − (ψ + ω + ω0)E,

dI
dt = ψ(1 − τ)E − (ω + ω1 + γ1 + ν)I,

dA
dt = ψτE − (ω + ω2 + γ2)A,

dH
dt = νI − γ3H − ω3H − ωH,

dR
dt = γ1I + γ2A + γ3H − ωR,

(1)

subject to the initial conditions that are non-negative.
The parameters given in the model (1) are defined as:
The populations of healthy people that are susceptible
to get corona virus infection are generated through the
birth rate Π, while the natural death rate for each com-
partment in the model is shown by ω. The contact rate
that generates the infection is given by ρ, while the
infection that generated through the individuals with
no clinical symptoms is given by the parameter σ. The
death due to disease in the compartments of E, I, A,
and H is shown by ω0, ω1, ω2, and ω3. The parameters
ψ and τ distribute the infection in symptomatic and
asymptomatic. The infected people are hospitalized at
the rate ν. The recovery rate from the infected, infected
with no clinical symptoms, and hospitalized people is
shown by γi for i = 1, 2, 3, respectively. We write the
model (2) in the absence of the last equation, given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = Π − ρ(I + σA) S

N − ωS,

dE
dt = ρ(I + σA) S

N − (ψ + ω + ω0)E,

dI
dt = ψ(1 − τ)E − (ω + ω1 + γ1 + ν)I,

dA
dt = ψτE − (ω + ω2 + γ2)A,

dH
dt = νI − (γ3 + ω3 + ω)H.

(2)

We have the total dynamics for the system (2) shown
by

dN

dt
= Π − ωN − ω0E − ω1I − ω2A − ω3H ≤ Π − ωN.

(3)
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Thus

dN

dt
≤ Π − ωN, (4)

and further

N(t) ≤ Π
ω

whenever t −→ ∞. (5)

We consider the region given below for the system (2)

Γ =
{

(S,E, I,A,H) ∈ R
5
+ : N(t) ≤ Π

ω

}
, (6)

which is feasible biologically and all the solutions con-
tained in it.

2.1 Equilibria

The equilibria for the system (2) in case if there is no
infection in the population denoted by E0 are shown
below

D0 =
(
S0, 0, 0, 0, 0

)
=

(Π
ω

, 0, 0, 0, 0
)
.

Next, we compute the basic reproduction number R0,
using analysis given in [48], and present the results
given by

F =

⎛

⎜
⎝

0 ρ τρ 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎠ , V =

⎛

⎜
⎝

l1 0 0 0
−ψ(1 − τ) l2 0 0

−ψτ 0 l3 0
0 −ν 0 l4

⎞

⎟
⎠ ,

(7)

where l1 = (ψ + ω + ω0), l2 = (ω + ω1 + γ1 + ν), l3 =
(ω + ω2 + γ2), and l4 = (γ3 + ω3 + ω). The following
expression is the required basic reproduction number
for our considered system and is given by

R0 =
l2ρστψ + l3ρ(1 − τ)ψ

l1l2l3
.

3 Stability results

In the following, the stability analysis for the considered
system (2) at the disease-free equilibrium E0 is carried
out.

Theorem 1 The system (2) at the disease-free case E0

is locally asymptotically stable whenever R0 < 1.

Proof Computing the Jacobian at the disease-free case
E0 is given by

J(E0) =

⎛

⎜
⎜
⎜
⎝

−ω 0 −ρ −ρσ 0
0 −l1 ρ ρσ 0
0 (1 − τ)ψ −l2 0 0
0 τψ 0 −l3 0
0 0 ν 0 −l4

⎞

⎟
⎟
⎟
⎠

.

We get easily the two roots −ω and −l4. The remain-
ing eigenvalues containing negative real parts can be
determined through the equations given by

λ3 + f1λ
2 + f2λ + f3 = 0, (8)

where

f1 = l1 + l2 + l3,

f2 = l2l3 + l1 (l2 + l3) + ρψ(−στ + τ − 1),

f3 = l1l2l3(1 − R0).

It can be observed that fi for i = 1, 2, 3 are positive
whenever R0 < 1, and furthermore, it can be obtained
easily the conditions of Routh–Hurtwiz criteria, fi > 0
and f1f2 − f3 > 0, for i = 1, 2, 3. Therefore, it can
be concluded that the system given in (2) at E0 when
R0 < 1 is locally asymptotically stable. ��

We state and prove the following theorem to show
that the system (2) at E0 is globally asymptotically
stable.

Theorem 2 The system (2) at E0 is locally asymptot-
ically if R0 ≤ 1.

Proof Define the Lyapunov function given by

L(t) = ξ1E(t) + ξ2I(t) + ξ3A(t), (9)

where ξm > 0 for m = 1, 2, 3, 4, that can be adjusted
their values at later stage. Taking d

dt of L, we have

L′(t) = ξ1E
′ + ξ2I

′ + ξ3A
′. (10)

Using the equations from (2) and making some setting,
we have

L′(t) = ξ1[ρ(I + σA)
S

N
− l1E]

+ξ2[ψ(1 − τ)E − l2I] + ξ3[ψτE − l3A],

= [ξ2ψ(1 − τ) + ξ3ψτ − l1ξ1]E + [l1ρ − l2ξ2]I
+[ξ1σρ − l3ξ3]A.

(11)

Let us consider the values for the constants ξ1, ξ2, and
ξ3. We choose as follows: ξ1 = l2, ξ3 = ρ, and ξ3 =
ρσl2/l3. Then, we have the following results finally:
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L′(t) = −l1l2

[
1 − R0

]
E. (12)

Here, R0 < 1, and so, we have L′(t) is negative
and so the model (2) is globally asymptotically stable
at E0. ��

3.1 Endemic equilibria

Here, we present and obtain the endemic equilibria of
the system (2) by describing its endemic equilibrium by
E1 = (S∗, E∗, I∗, A∗,H∗), and so, we have the below

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = Π
λ∗+ω

E∗ = λ∗S∗
l1

I∗ = (1−τ)ψE∗

l2

A∗ = eτψ
l3

,

R∗ = νI∗
l4

.

Consider the above values in the following equation:

λ∗ =
ρ(I∗ + τA∗)

N∗ , (13)

getting the following:

Φ1I
∗ + Φ2 = 0,

where

Φ1 = l3(1 − τ)ψ (l4 + ν) + l2l4 (l3 + τψ) ,

Φ2 = l1l2l3l4(1 − R0).

We can see that Φ1 > 0, while Φ2 can be positive
depending on the value of R0. When R0 < 1, so we
getting I∗ = −Φ2/Φ1, and thus, there is no equilibria.
The requirements for the positive endemic equilibria are

to have R0 > 1, and hence, for the system (2), a unique
positive endemic equilibrium exists.

4 Estimations of the parameters

To understand effectively the dynamics of an epidemic
model, it is necessary or useful to have the real data to
demonstrate the model parameters and to obtain rea-
sonable results for the epidemic model. In this regard,
we consider the cases from March 06, 2021, till April
30, 2021 for the finding of parameter values; we can
refer the readers for the real data [49]. The popula-
tion of Pakistan considered here is N(0) = 220000000,
and we estimate the parameters Π and ω as follows:
Π ≈ 8903 per day using the expression N(0) = Π/ω,
and ω = 1/(67.7 × 365), where ω = 1/(67.7) is the
average life span in Pakistan. The parameters other
than these can be obtained through the model data
fitting. The data considered in this paper from March
06, 2021to April 30, 2021. We use the curve fitting tech-
nique to get the values of the parameters, as shown in
Table 1, and the possible fitting of the model to the
data is shown in Fig. 1a with the estimated basic repro-
duction number R0 ≈ 1.2036. Figure 1b describes the
behavior of the model versus data for long time level.
It follows from Fig. 1(a) that the model behaves good
to the real cases. Thus, the model parameters consid-
ered in Table 1 are realistic and can better study the
dynamics of the COVID-19 infection.

5 Numerical results

Here, we consider the system (2) with the consideration
of the cases reported from March to the end of April
in Pakistan to understand the parameters impact on
the model. The cases consider here are in daily basis,
so the time unit is to be per day. In numerical results,
we consider the parameters values shown in Table 1. We

Table 1 Estimated parameters

Symbol Definition Value/per day Source

Π Recruitment rate ω × N(0) Estimated
ω Natural death rate 1

67.7×365
[50]

ρ Disease contact rate 0.9549 [51]
σ Disease contact of A 0.9635 [51]
ψ Incubation period 0.7961 Fitted
ω0 Disease death rate of exposed people 0.0126 [51]
ω3 Death due to infection at H 0.04 Fitted
τ Progress to asymptomatic infection 0.9635 Fitted
ω1 Death due to infection at I 0.0010 [51]
γ1 Recovery of symptomatic people 0.1456 [51]
ω2 Disease death of asymptomatic people 0.0069 [51]
γ2 Recovery of asymptomatic people 0.8666 [51]
ν Hospitalization rate of symptomatic people 0.021 Fitted
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(a) (b)

Fig. 1 a Reported cases versus model prediction. b Long time behavior of model versus cases

(a) (b)

Fig. 2 a ρ with different values; b σ with different values

estimate the initial values of the model (2) is as follows:
S(0) = 219698286, E(0) = 300000, I(0) = 1714, while
assuming that that there is no recovery from the infec-
tion yet and so R(0) = 0, and no enough information
about the asymptomatic and hospitalized data, so we
consider A(0) = H(0) = 0. We consider the disease con-
tact rate ρ and σ with different values on the dynamics
of infected people shown in Fig. 2. In Fig. 2a, we see
when decreasing the value of ρ, the number of infected
people decreases faster. It can concluded that the pre-
vention from the infection using the instructions sug-
gested by World Health organization should be follows
to decrease the disease burden from the populations.
Washing hands, social distances, using masks, avoid
gathering, self-quarantine, and restrictions to home can
better reduce the infection. In Fig. 2b, one can see that

the infection decreases when decreasing the value of σ.
The parameter σ that denote the contacts of healthy
people with asymptomatic infected people (individuals
do now show clinical symptoms) can decrease the infec-
tion risk in the population. It should be noted that
asymptomatic infected does not show visible disease
symptoms and can increase the infection. It is doc-
umented that the number of infected individuals due
to COVID-19 has high percentage of infection due to
asymptomatic infection. Therefore, it is important for
the government to make increase the testing facility to
identify the number of asymptomatic infected people.
The impact of the parameters ψ , τ and ν has been
shown graphically in Fig. 3. Decreasing the values of
these parameters, we have decrease in the number of
infected people.
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(a) (b)

(c)

Fig. 3 a ψ with different values, b τ with different values, and c τ with different values

6 Variable-order fractional model of
SARS-CoV-2 dynamic

It has been shown in the literature that fractional calcu-
lus is able to produce more accurate results in modeling
natural systems and processes. As a result, in this part,
we present a novel variable-order fractional model of
SARS-CoV-2 dynamics in Pakistan. Also, we consider
an additional component, namely, hospitalized people
(H). The fractional model with variable order is given
as follows:

c
0D

q(t)
t S = Π − ρ(I + σA)

S

N
− ωS

c
0D

q(t)
t E = ρ(I + σA)

S

N
− (ψ + ω + ω0)E

c
0D

q(t)
t I = ψ(1 − τ)E − (ω + ω1 + γ1 + ν)I (14)

c
0D

q(t)
t A = ψτE − (ω + ω2 + γ2)A

c
0D

q(t)
t H = νI − (γ3 + ω3 + ω)H

c
0D

q(t)
t H = γ1I + γ2A + γ3H − ωR.

γH is the recovery rate of quarantined infected individ-
uals and δI is the rate of symptomatic infected individ-
ual’s transition to the quarantined infected component.
Also, q(t) indicates the time-varying fractional-order
derivative. In this study, the Caputo fractional deriva-
tive based on the predictor–corrector method is applied
for numerical calculations of the fractional model. It
is one of the most widely used methods for analyz-
ing fractional differential equations in a chaotic manner
(see [52,53] for more details on the predictor–corrector
method). To investigate the effects of the time-varying
fractional derivative, we present the results of the model
with two different fractional derivatives. Figure 4 shows
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Fig. 4 The number of
individuals when
q1(t) = 0.9 and
q(t) = 0.9 + 0.1

1+exp(−t)

Table 2 Parameters of genetic algorithm

Parameter Value

Crossover fraction 0.75
Population size 90
Selection function Tournament
Mutation function Constraint-dependent
Crossover function Intermediate
Migration direction Forward
Migration fraction 0.3
Migration interval 30
Stopping criteria 40000

the number of individuals when q1(t) = 0.9 and q(t) =
0.9 + 0.1

1+exp(−t) . As it is evident from this figure, when
the value of fractional derivative varies by time, the
results are different, and it can dramatically affect the
behavior of the model.

6.1 Optimal decision rules

Herein, we propose a genetic optimization approach to
find optimal decision rules. Genetic optimization is an
appropriate technique to handle such problems, since
there is a trade-off between all possible values. Table 3
lists the parameters and configuration of the applied
multi-objective genetic algorithm.The fractional-order
derivative is considered to vary over time as q(t) = 0.9+
0.1
t+1 .

We consider δI as the decision variable. The following
is the cost functions that have been chosen:

J =
∑

E(t) + I(t) + A(t). (15)

We have chosen this cost function to reduce the accu-
mulated infected people. In what follows the results of
the optimization are provided.

Figure 5 shows the value of the cost function from the
genetic algorithm optimization. As it is shown in this
figure, we could choose the optimal controllers, which

Fig. 5 Objective function

effectively reduce both cost functions. Herein, we chose
δI = 0.18 as the optimal value for the control pur-
pose. The time histories of individuals are illustrated in
Fig. 6. As can be seen, the maximum number of infected
people has decreased when compared to the case where
no optimal control effort was made. Also, the decreasing
rate of infectious people is noticeably quicker.

7 Conclusion

Here, in the present investigation, a attempt has been
made to study a new mathematical model for the
dynamics of novel coronavirus. We first formulated a
new mathematical model for the better understand-
ing of the virus by considering the hospitalized class.
After formulation the model, we presented in details the
model analysis for the integer-order case and obtained
the stability results in detailed. We found the local and
global asymptotical stability of the model when R0 < 1.
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Fig. 6 The number of
individuals with optimal
control

Furthermore, we estimated the parameters using the
real cases of coronavirus from Pakistan and obtained
the results for the data fitting. The realistic parame-
ters for the considered data gave the basic reproduc-
tion number R0 = 1.2036. Using further parameter
values, some graphical results are obtained that indi-
cate the infection can be minimized by following the
reduction in contact rate, asymptomatic contact, rapid
testing of individuals to isolate the individuals with no
clinical symptoms. The numerical results for the inte-
ger cases can be useful for the minimization of infec-
tion by following the suggestions given in figures in
numerical results section. Finally, a variable-order frac-
tional model of SARS-CoV-2 in Pakistan was intro-
duced. Then, through an evolutionary algorithm, the
control of the variable-order fraction model was studied.
Through numerical simulations, it was shown that using
the proposed optimal strategy, the number of infected
people has decreased significantly, and the third wave
is controlled more efficiently.
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López, S. Lahmiri, H. Jahanshahi, A.A. Aly, Artifi-
cial macro-economics: a chaotic discrete-time fractional-
order laboratory model. Chaos Solitons Fractals 145,
110776 (2021)

34. P.Y. Xiong, H. Jahanshahi, R. Alcaraz, Y.M. Chu, J.F.
Gómez-Aguilar, F.E. Alsaadi, Spectral entropy anal-
ysis and synchronization of a multi-stable fractional-
order chaotic system using a novel neural network-based
chattering-free sliding mode technique. Chaos Solitons
Fractals 144, 110576 (2021)

35. K. Rajagopal, H. Jahanshahi, S. Jafari, R. Weldegiorgis,
A. Karthikeyan, P. Duraisamy, Coexisting attractors in
a fractional order hydro turbine governing system and
fuzzy PID based chaos control. Asian J Control 23(2),
894–907 (2021)
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