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Abstract This paper aims at analyzing the dynamical behavior of a SIR hepatitis B epidemic stochastic
model via a novel approach by incorporating the effect of information interventions and random perturba-
tions. Initially, we demonstrate the positivity and global existence of the solutions. Afterward, we derive
the stochastic threshold parameter Rs, followed by the fact that this number concludes the transmission
of hepatitis B from the population. By increasing the intensity of noise, we get Rs less than one, inferring
that ultimately hepatitis B will lapse. While decreasing the intensity of noise to a sufficient level, we have
Rs > 1. For the case Rs > 1, adequate results for the presence of stationary distribution are achieved,
showing the prevalence of hepatitis B. The present study also involves the derivation of the necessary
conditions for the persistence of the epidemic. Finally, the main theoretical solutions are plotted through
simulations. Discussion on theoretical and numerical results shows that utilizing random perturbations
and information interventions have a pronounced impact on the syndrome’s dynamics. Furthermore, since
most communities interact with each other, and the disease spread rate is affected by this factor, a new
variable-order fractional network of the stochastic hepatitis B model is offered. Subsequently, this study
will provide a robust theoretical basis for comprehending worldwide SIR stochastic and variable-order
fractional network-related case studies.

1 Introduction

Human history reveals that infectious diseases are the
real source of threat and adversely affect an individual’s
health and socioeconmic status. Referring to the H7N9
bird flu (the first novel sub-type of influenza virus) orig-
inated from Anhui and Shanghai in 2013 [1,2]. The
H7N9 symptoms of the disease include high fever, par-
ticularly at the initial days of the infection. The disease
continues to spread, and till now, the disease caused
thousand of infections and hundreds of deaths. We also
know that the recent COVID-19 outbreak (announced
pandemic by the WHO) which almost affected the
entire world and caused millions of infections and more
than 1.17M deaths [2]. With the occurrence of infec-
tious diseases, people from all sectors start thinking of
treating and preventing the disease at the earliest. Gov-
ernment and policymakers are spending massive bud-
gets on the treatment and control of such infectious
diseases. To make mathematical or other strategies to
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control the disease [3–5], so the very first intervention of
the health officials is awareness about the disease [6,7].
With the help of high awareness and health education
through media coverage, the disease may be prevented
or at least one can delay its occurrence [8,9]. For exam-
ple, during the H7N9 flu, media played an active role
in reporting infections, deaths, symptoms, control mea-
sures, and many other features of the disease on daily
basis [10]. In the present COVID-19, media are play-
ing more active role and at every movement, people are
aware of the disease’ status both in and outside of the
country [11]. Researchers suggest that the majority of
the infectious disease could be significantly controlled
and the infection rate may be drastically reduced with
the help of information coverage. There are many dis-
eases which could be cured by imposing both pharma-
ceutical and non-pharmaceutical intervention strategies
[30]. Spread of some diseases can be controlled with psy-
chotherapy, because majority of infections are directly
connected with an individual mind [13]. It is observed
that psychological counseling in a positive sense will
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generate positive emotions which is important in reset-
ting health activities and controlling epidemics [13,14].
In conclusion, we can argue that information interven-
tions like health educations, psychological therapy, and
media coverage may be considered.

It is interesting that good psychological advice can
offer positive feelings to produce a negative impact of
negative feelings caused by the perception of a nega-
tive emotion on the disease [13,14,30]. Infectious dis-
ease control and the development of healthy lives are
ultimately boosted with the immediate effect of infor-
mation [15]. Therefore, the interference of information
(media reporting, wellbeing Psychological intervention,
education) as a type of non-drug treatment is really
relevant [9].

The mathematical formulation is a valuable method
for explaining the dynamics of different outbreaks. A
variety of ecologists, as well as mathematicians, have
investigated the spread of mutual transmissible diseases
with the help of different models describing the epi-
demics for understanding and monitoring. It is very
commonly used to figure out the transmission as well as
optimization of altered infectious diseases by models in
term of various mood, i.e., deterministic epidemic mod-
els [20–22], fractional epidemic models [16–19], stochas-
tic epidemic models [23–25], and age-structure models
[26,27]. Fractional epidemic models [28–30]. In the case
of infectious disease modeling, the more appropriating
one as the stochastic modeling [31–34], due to it offer
an extra degree of realistic comparable to its determin-
istic model compartments. It is also investigated that
the stochastic-based models provide more output rather
than deterministic ones as we may construct the divi-
sion of the predicted results by running a stochastic
model many times, while deterministic model, on the
other hand, will give only one predicted value [35–40]. It
has also been taken with keen interest that many stud-
ies are investigated by considering the intervention with
the help of the information in the infectious diseases
modeling. For example, Joshi [41] considered SIR as a
model for infectious diseases based on intervention with
information and found that information could decrease
infection rates. In addition, the influence of information
on vaccination has been studied by Buonomo et al. [42],
with the help of SEIR model. Similarly, another study
has been performed to investigate the effects of infor-
mation as well as to forecast the control of disease [43].
More recently, the extinction as well as the persistence
analysis of an epidemic model for hepatitis B have been
performed by Khan and their co-authors [44]. However,
to the best of our knowledge, no one incorporates HBV
epidemic model with information intervention as well as
variable-order fractional network. We formulate a new
stochastic system in mathematical form to discuss the
hepatitis B dynamics under the effect of information
with random perturbations. We study the qualitative
analysis of the global results and show that the solu-
tion satisfied the properties of uniqueness. We also per-
form the extinction analysis to obtain the conditions for
extinction. Moreover, the analysis of persistence will be
also investigated. Then, we will study the stationary

distribution for the proposed model and then simulate
the model to verify the analytical findings.

Also, in the current study, a new variable fractional-
order network is proposed for modeling of hepatitis
B. By studying the factional order [45–56] or variable
fractional-order network, we aim to consider the impact
of the interaction between different communities on the
disease rate in different societies. The relationships and
travels between two countries, for instance, will defi-
nitely affect the rate of diseases in both of them. Hence,
in this study, a network model is proposed. Also, to take
advantage of fractional calculous, the model on the net-
work is supposed to be fractional, which is the general-
ized form of integer model. In brief, by proposing this
fractional-order network model, we hope to obtain more
accurate results.

Organization of the paper: Sect. 2 is devoted to the
formulation with biological feasibility. We show that
the model preserves the properties of existence and
uniqueness in Sect. 3, during the extinction with suf-
ficient condition of stationary distribution as well as
for persistence shown in Sects. 4, 6 and 5, respectively.
Finally, the model results have been verified with the
help of numerical simulations in Sect. 7. In Sect. 8, we
show variable-order fractional network for the proposed
model. The work has been finished in Sect. 9 with a brief
conclusion.

2 Model formulation

Many authors and researchers have investigated by tak-
ing data about intervention into sequence infectious
endemic systems like SIR, TB, HBV, and SEIR [41–
43], and they realized that availability of data can min-
imize the level of infected cases. In our manuscript, we
proposed an SIR epidemic model corresponding to hep-
atitis B along with the effect of stochastic and informa-
tion intervention to investigate the dynamics of hepati-
tis B virus disease. Our newly formulated SIR hepatitis
B virus model consists of susceptible, infected, recov-
ered, as well as information intervention compartments.
The following is our proposed SIR hepatitis B epidemic
model:

dS(t)
dt

= Λ − βS(t)I(t) − μ2mZ(t)S(t) − (v + μ0)S(t),

dI(t)
dt

= βI(t)S(t) − (μ0 + γ1 + μ1)I(t),

dR(t)
dt

= γ1I(t) + μ2mZ(t)S(t) + vS(t) − μ0R(t),

dZ(t)
dt

=
dI(t)

(1 + hI(t))
− aZ(t),

(1)

where S(t), I(t), and R(t) symbolized by susceptible
class, infected class, and recovered class, and Z(t) rep-
resents the density of data availability in the of infected
classes in the society. While, the model included param-
eters are summarized in the following list and assumed
parameters will be positive:
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• Λ: Per capita new born susceptible individuals.
• μ0: Natural death rate.
• μ1: HBV disease death rate.
• β: The infected rate of susceptible.
• v: Vaccination rate of HBV.
• μ2: The intensity response rate.
• γ1: The rate of recovering.
• m: Intervention information rate through which the

behaviors of some individuals may changed their.
• d: Represents information rate.
• h:The constant of “Saturation”
• a: The decreasing rate of information.

We know the “basic reproduction number” R0 of model
(1) is R0 = βΛ

(μ0+γ1+μ1)(v+μ0)
. The model (1) has two

equilibrium points.

Disease-free equilibrium: If 1 < R0, then the model
(1) will have their free equilibrium point (DEE) is
denoted by E1 = (S1, I1, R1, Z1)=

(
Λ

v+μ0
, 0, vΛ

μ0(v+μ0)
, 0

)
,

and the E1 is asymptotically and globally stable.

Endemic equilibrium: If 1 < R0, then the system (1)
exists an endemic equilibrium (EE) which is denoted by
E2 = (S2, I2, R2, Z2), and the E2 is globally asymptot-
ically stable.

Many researchers have defined and provide vari-
ous random fluctuations for different diseases [57–59].
Among them is the well-known approach of fluctuating
parameter in the considered system around an average
value because of the consistent oscillation in the dif-
ferent environments [60,60,61]. It is clear that system
(1) has the properties of a deterministic situation of
modeling. Really, safe white noising will has a much
more affect on infected population [23,33,34,69], and
the scholars pointed out that stochastic noising will
bring changes in the basic number of reproduction for
such type of disease. For the effect of environment noise,
we may consider that the environment affect on differ-
ent individuals is studied by the perturbations due to
stochastic and it is related by proportionality to every
compartment S, I,R. We used the standard Brownian
motions is symbolized by B1(t), B2(t) and B3(t) along
with the intensities η1, η2 and η3. Obviously, the motion
due to Brownian will obey the fundamental postulates
of B1(0) = B2(0) = B3(0) = 0. Then, we can write the
the type of deterministic model (1) in stochastic style
is given as

dS(t) =
[
Λ − μ2mZ(t)S(t) − βS(t)I(t) − (v + μ0)S(t)

]
dt

+ η1S(t)dB1(t),

dI(t) =
[
βI(t)S(t) − (μ0 + γ1 + μ1)I(t)

]
dt

+ η2I(t)dB2(t),

dR(t) =
[
γ1I(t) + μ2mZ(t)S(t) + vS(t) − μ0R(t)

]
dt

+ η3R(t)dB3(t),

dZ(t) =

[
dI(t)

(1 + hI(t))
− aZ(t)

]
dt.

(2)

However, considering the influence of information inter-
vention and white noise with variable-order fractional
network on system (1), we have made an attempt to
raise and unfold the reasoning behind the following
major issues: A1:

A1 : To address the impact of environmental noise on
the HBV transmission.

A2 : To address which role does information interven-
tion play in the HBV transmission of the disease.

A3 : To find the necessary requirement for the existence
of stationary distribution.

A3 : In similarly way, what conditions are required for
the variable-order fractional network.

3 Qualitative analysis of positive solution

In the given part, we study the the properties of obtain
solution of the problem (2). Before discussion, we intro-
duce some basic concept related to our main study.
For this let (Ω, {Ft}t≥0, P ) i.e., completely probabilis-
tic space which may satisfy the condition of X(t) =
(S(t), I(t), R(t), Z(t)), |X(t)| = (S2(t) + I2(t) + R2(t)
+ Z2(t))

1
2 , and R

b
+ =

{
x ∈ R

b : χi > 0, i = 1, 2, . . . , b
}
,

where {Ft}t≥0 is the filtration. We also consider a dif-
ferential equation due to stochastic with b dimensions
as

dx(t) = f(t, x(t))dt + g(t, x(t))dB(t) t ≥ to, (3)

with x(t(0)) = x0, where x(0) ∈ R
d and B(t) is the

standard m-dimensional Brownian motion. The linear
operator L for the above equation is defined by

L =
∂

∂t
+

d∑
i=1

fi(x, t)
∂

∂xi

+
1
2

d∑
i,j=1

[
gT (x, t)g(x, t)

]
ij

∂2

∂xi∂xj
.

Similarly, if L applied on V , and V ∈ C2,1(Rd ×
[t0,∞);R+), then

LV = Vt + Vxf +
1
2
trace

[
gT Vxxg

]
.

Moreover

Vt =
∂V

∂t
, Vx =

(
∂V

∂x1
, . . . ,

∂V

∂xd

)T

,

Vxx =
(

∂2V

∂xi∂xj

)

d×d

.

By generalized formula of Itô, it can be written as

dV = LV dt + VxgdB(t).
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Now, with the help of above basic concepts, we are
going to discuss the main result related to the exis-
tence and uniqueness analysis. To get these result, we
have a bounded set Γ as given under

Γ =
{

(S, I,R, Z) ∈ R4
+ : Λ

μ0+μ1
≤ S + I

+R ≤ Λ
μ0

, 0 ≤ Z ≤ dΛ
a(μ0+hΛ)

}
. (4)

Theorem 1 The solution of system (2), i.e., (Z(t),
R(t), I(t), S(t)) will be one for any 0 ≤ t and for initial
value (Z(0), R(0), I(0), S(0), ) ∈ R4

+, it will remain in
R4

+ with probability 1, namely, (S(t), I(t), R(t), Z(t)) ∈
R4

+ ∀ 0 ≤ t.

Proof Clearly, the coefficient are continuous locally
locally lipschitz for (Z(0), R(0), I(0), S(0)) in R4

+, which
show that the solution (Z,R, I, S) is unique and local in
the interval [0, τe) at any t, where the explosion time is
symbolized by τe (see for more detail [23,31,63]). If we
can prove τe = ∞ implies that the output is of global
form. Take k0 is a constant and assume that is non-
negative, and be a large number, so that Z(0), R(0),
I(0) and S(0) lies in [k0,

1
k0

]. Then, define k0 ≤ k and

τk = {t ∈ [0, τe) : min{Z(t), R(t), I(t), S(t)}
≤ 1

k or max{Z(t), R(t), I(t), S(t) ≥ 0
}

. (5)

Now, define infΦ = ∞, as Φ is the empty set. Here, τk

is increasing as k tends to ∞. Assume that τ∞ is the
limiting value, i.e., limk→∞ with τ∞ ≤ τe a.s. Here, it
is enough to show that τ∞ = ∞ a.s., then τe = ∞,
which prove that (S(t), I(t), R(t), Z(0)) ∈ R4

+ a.s., for
every t ≥ 0. We verify that τe = ∞ a.s to alternately to
achieve the remaining derivation. If this not holds, then
there will be two constants T > 0 lies and ε ∈ (0, 1),
like

P{τ∞ ≤ T} > ε. (6)

Therefore, integer k0 ≤ k1 will be there as

P{τk ≤ T} ≥ ε, for all k ≥ k1.

Define the following Lyapunov function:

H =
(

−C + S − C
logS

C

)
+ (I − 1 − logI)

+(R − 1 − logR) + (Z − 1 − logZ). (7)

Applying Itô formula to H, and C will be determined
later

dH(S, I,R, Z)

=
[(

1 − C

S

)(
Λ − βSI − μ2mZS − (μ0 + v)S

)

+
1
2
Cη1

2

]
dt +

(
1 − C

S

)
η1SdB1(t)

+
[(

1 − 1
I

)(
βSI − (μ0 + γ1 + μ1)I

)
+

1
2
η2

2

]
dt

+
(

1 − 1
I

)
η2IdB2(t)

+
[(

1 − 1
R

)(
γ1I + μ2mZS + vS − μ0R

)

+
1
2
η3

2

]
dt +

(
1 − 1

R

)
η3RdB3(t)

+
[(

1 − 1
Z

)(
dI

1 + hI
− aZ

)]
dt,

= LH(S, I,R, Z)dt + η1(S − C)dB1(t)
+η2(I − 1)dB2(t) + η3(R − 1)dB3(t). (8)

In Eq. (8), we define the LH : R4
+ → R+ by the

assertion

LH =

(
1 − C

S

)(
Λ − βSI − μ2mZS − (μ0 + v)S

)

+

(
1 − 1

I

)(
βSI − (μ0 + γ1 + μ1)I

)

+

(
1 − 1

R

)(
γ1I + μ2mZS + vS − μ0R

)

+

(
1 − 1

Z

)(
dI

1 + hI
− aZ

)

+ +
1

2
Cη1

2 +
1

2
η2

2 +
1

2
η3

2,

= Λ − μ2mZS − (v + μ0)S − CΛ

S
+ Cμ2mZ + CβI

+ C(v + μ0) − (μ0 + γ1 + μ1) I − Sβ

+ (μ0 + γ1 + μ1) + γ1I + Sv − Rμ0

+ μ2mZS − γ1
I

R

− vS

R
+ μ0 − μ2mZS

R
+

dI

1 + hI

− aZ − dI

(1 + hI)Z
+ a +

Cη2
1 + η2

2 + η2
3

2

≤ Λ + CβI − (μ0 + μ1)I + Cμ2mZ + C(μ0 + v)

+ (μ0 + γ1 + μ1) + μ0 +
dI

1 + hI
+ a

+
Cη2

1 + η2
2 + η2

3

2

≤ Λ + (Cβ − (μ0 + μ1))I +
Cμ2mdΛ

a(μ0 + hΛ)

+ C(μ0 + v) + 2μ0 + γ1 +
d

h
+ a

+
Cη2

1 + η2
2 + η2

3

2
:= K.

(9)

Here, C = μ0+μ1
β , such that Cβ − (μ0 + μ1) = 0

LH(S, I,R, Z)

≤ Λ +
Cμ2mdΛ

a(μ0 + hΛ)
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+C(μ0 + v) + 2μ0 + γ1 +
d

h

+a +
μ0+μ1

β η2
1 + η2

2 + η2
3

2
:= K. (10)

Here, K is a positive constant, so accordingly

E

[
H(S,R, I)(τk ∧ T)

]

≤ H(Z(0), R(0), I(0), S(0))

+ E
[ ∫ τk∧T

0

Kdt

]
,

≤ H(Z(0), R(0), I(0), S(0)) + TK.

(11)

Putting Ωk = τk ≤ T , k ≥ k1. Also, from Eq. (6),
it could be noted that P (Ωk) ≥ ε. Consider ω ∈ Ωk,
at least one S(τk, ω), I(τk, ω), R(τk, ω), Z(τk, ω) exists,
which must be equal of k or 1

k .
Therefore, H(Z(τk), R(τk), I(τk), S(τk)) is greater than
−1 + k − logk or log + 1

k + (−1)k. Moreover

H(Z,R, I, S) ≥ E
(
k − 1 − log

) ∧
(

− 1 + logk +
1
k

)
.

(12)

Following Eqs. (6) and (11), we obtain:

H(Z(0), R(0), I(0), S(0)) + TK

≥ E
[
1Ω(ω)H

(
Z(τk), R(τk), I(τk), S(τk)

)]

≥ ε

[
(−1 + k − logk) ∧

(
− 1 + logk +

1
k

)]
.

(13)

Here, the function IΩ(ω) is called the indicating map-
ping of Ω. Assuming k → ∞ implies the results
contradiction, i.e., TM, which means that τ∞ = ∞
a.s. 	

Lemma 1 Let any of the starting values (S(0), I(0),
R(0), Z(0)) ∈ R4

+, have one solution of system (2) on
0 ≤ t will in Γ having probability of 1.

Proof We know that N(t) = S(t) + I(t) + R(t), so we
can obtain

dN(t) = (Λ − μ0N(t) − μ1I(t)) dt + η1B1(t)
+ η2B2(t) + η3B3(t),

≤ (Λ − μ0N(t))dt + η1B1(t)
+ η2B2(t) + η3B3(t).

(14)

Integrating Eq. (14) from 0 − t. Thus, we implies that
Λ

μ0+μ1
≤ dN(t)

dt ≤ Λ − μ0N(t); then, we have

Λ
μ0 + μ1

≤ lim inf
t→∞ N(t)

≤ lim sup
t→∞

N(t) ≤ Λ
μ0

.

(15)

It can be seen from the values of S, I, and R that the
proposed model (2) is bounded by Λ

μ0
. Last equation of

system (2) implies that I ≤ Λ
μ0

; we get lim supt→∞ Z ≤
dΛ

a(μ0+hΛ) . Therefore, we get Γ is the invariant, positive,
and having bounds. After this, all the solution curves
lying any where of R4

+ will lie in Γ and having full
probabilistic. 	


4 Extinction of the disease

The current section is devoted to discuss the extinction,
and therefore, first, we define the basic reproductive
parameter which is denoted by Rs for stochastic model
as stated by Eq. (2) and define by

Rs =
βΛ

μ0

(
μ0 + γ1 + μ1 + η2

2
2

) .

Theorem 2 Let (Zt, Rt, It, St) is the root of model (2)
with (Z0, R0, I0, S0) ∈ R4

+, if Rs < 1, After this, the
root of stochastic hepatitis B system (2) satisfies

lim
t→∞

〈
S(t)

〉
=

Λ
μ0 + v

a.s,

lim sup
t→∞

log It

t
< 0 a.s,

lim
t→∞

〈
R(t)

〉
=

vΛ
μ0(μ0 + v)

a.s,

lim
t→∞

〈
Z(t)

〉
= 0 a.s,

(16)

namely the disease extinct with probability one.

Proof By directly integrating the proposed system (2),
we could obtain the below system of equations

S(t) − S(0)
t

= Λ − β
〈
S(t)I(t)

〉 − μ2m
〈
S(t)Z(t)

〉

− (μ0 + v)
〈
S(t)

〉
+

η1

t

∫ t

0

SdB1(s),

I(t) − I(0)
t

= β
〈
S(t)I(t)

〉 − (μ0 + μ1 + γ1)
〈
I(t)

〉

+
η2

t

∫ t

0

IdB2(s),

R(t) − R(0)
t

= μ1

〈
I(t)

〉
+ μ2m

〈
S(t)Z(t)

〉 − μ0

〈
R(t)

〉

+ v
〈
S(t)

〉
+

η3

t

∫ t

0

RdB3(s).

(17)
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One can calculate by Eq. (17), such that

R(t) − R(0)
t

+
S(t) − S(0)

t
+

I(t) − I(0)
t

= −(μ0 + γ1)
〈
I(t)

〉
+ Λ − μ0

〈
S(t)

〉

− μ0

〈
R(t)

〉
+

η1

t

∫ t

0

SdB1(s)

+
η2

t

∫ t

0

IdB2(s) +
η3

t

∫ t

0

RdB3(s).

(18)

Calculation leads to

〈
S(t)

〉
=

Λ
μ0

− μ0 + γ1

μ0

〈
I(t)

〉 − 〈
R(t)

〉
+ φ(t), (19)

where

Φ(t) =
[

− R(t) − R(0)
t

− S(t) − S(0)
t

− I(t) − I(0)
t

+
η1

t

∫ t

0

SdB1(s) +
η2

t

∫ t

0

IdB2(s)

+
η3

t

∫ t

0

RdB3(s)
]

1
μ0

.

(20)

Utilizing Itô formula to the second equation of system
(2), then

dlogI(t) = 7
[
βS(t) − (μ0 + γ1 + μ1) − 1

2
η2
2

]
dt

+η2dB2(t). (21)

The integration leads to the following:

log It − log I0

t
=

1
t

∫ t

0

[
βS − (μ0 + μ1 + γ1)

−1
2
η2
2

]
ds +

1
t

∫ t

0

η2dB2(s). (22)

Following [64], i.e., the large number theorem and local
martingles gives

lim sup
t→∞

1
t

∫ t

0

ηidBi(s) = 0, (23)

Where i = {1, 2, 3, . . .}, and obviously, φ(t) = 0 if we
use Eq. (23) and t → ∞

[
βS − (μ0 + μ1 + γ1) − 1

2
η2
2

]

≤ β

(
Λ
μ0

− μ0 + μ1

μ0

〈
I(t)

〉 − 〈
R(t)

〉
+ φ(t)

)

− (μ1 + μ0 + γ1) − 1
2
η2
2

≤
(

μ1 + μ0 + γ1 +
η2
2

2

)
(Rs − 1) .

(24)

Therefore we obtain

lim sup
t→∞

log It

t
≤

(
μ1 + μ0 + γ1 +

η2
2

2

)
(Rs − 1) < 0.

(25)

Denote Ω1 = {ω ∈ Ω : lim supt→∞ I(ω, t) = 0}. In the
view of Eq. (25), we have

P (ω1) = 1; (26)

this implies that at any non-negative ε1; there is T1 =
T1(w, ε1), so I(t) < ε1, a.s, for T1 > t, then

dZ(ω, t) =
[

dI(ω, t)
I + hI(ω, t)

− aZ(ω, t)
]

dt

≤ [dε1 − aZ(ω, t)] dt for ω ∈ Ω1, t ≤ T1.

(27)

Comparison of Theorem [65] gives

Z(ω, t) ≤e−at(Z(T1) +
∫ t

T1

dε1.e
−asds)

≤ Z(T1)e−dt +
dε1
a

for ω ∈ Ω1, t ≤ T1.

(28)

Then

lim sup
t→∞

Z(w, t) ≤ dε1
a

for ω ∈ Ω1, t ≤ T1. (29)

As ε1 is arbitrary, which implies 0 ≤ lim supt→∞ Z.
Also, lim supt→∞ Z(ω, t) ≥ 0. Because of this

lim
t→∞

〈
Z(ω, t)

〉
= 0. (30)

Let Ω2 = ω ∈ Ω : lim supt→∞ Z(ω, t) = 0 ⊂ Ω1, and
then, for ε2 ≤ 0, there is a constant T2 = T2(w, t) ≤ T1

exists and so Z(t) < ε2, a.s. for t > T2.
Now, put Eqs. (23), (25), and (30) in Eq. (19), we

can obtain

lim
t→∞

〈
R(t) + S(t)

〉
=

Λ
μ0

s.a. (31)

From first equation of model Eq. (17), we have

S(t) − S(0)
t

= Λ − β
〈
S(t)I(t)

〉 − μ2m
〈
S(t)Z(t)

〉

−(μ0 + v)
〈
S(t)

〉
+

η1

t

∫ t

0

SdB1(s),

(32)

which implies that

〈
S(t)

〉
=

Λ
(μ0 + v)

− β
〈
S(t)I(t)

〉
(μ0 + v)
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−μ2m
〈
S(t)Z(t)

〉
(μ0 + v)

− S(t) − S(0)
t

+
η1

t

∫ t

0

SdB1(s); (33)

consequently, Eqs. (23), (25), (30), and (20), we can get

lim
t→∞

〈
S(t)

〉
=

Λ
(μ0 + v)

, s.a.

Now, we have

lim
t→∞

〈
R(t)

〉
=

vΛ
μ0(μ0 + v)

a.s.

The last equation is completion of our proof. 	


5 Persistence of the stochastic hepatitis B
model

Now, here, we are going to present the condition for
the existence of solution for system (2), while the main
work of the on-going part is defined by the below result
and some well-known axioms.

Lemma 2 (Strong Law) [34,35] Let M = {M}0≤t be
continuous and real valued along with local martingale
which vanish as t → 0, and then

lim
t→∞

〈
M,M

〉
t
= ∞, a.s., ⇒ lim

t→∞
Mt〈

M,M
〉

t

= 0, a.s.

lim
t→∞ sup

〈
M,M

〉
t

t
< 0, a.s., ⇒ lim

t→∞
Mt

t
= 0, a.s.

(34)

Lemma 3 [34] Let (S(t), I(t), R(t), Z(t)) be the solu-
tion of system (2) with (S(0), I(0), R(0), Z(0)) ∈ R

4
+,

and then, lim supt→∞(S(t) + I(t) + R(t) + Z(t)) < ∞,
a.s. Moreover

lim
t→∞

S(t)
t

= 0, lim
t→∞

I(t)
t

= 0, lim
t→∞

R(t)
t

= 0,

lim
t→∞

Z(t)
t

= 0 a.s, (35)

lim
t→∞

lnS(t)
t

= 0, lim
t→∞

lnI(t)
t

= 0,

lim
t→∞

lnR(t)
t

= 0, lim
t→∞

lnZ(t)
t

= 0 a.s, (36)

and

lim
t→∞

∫ t

0
S(u)dB1(u)

t
= 0, lim

t→∞

∫ t

0
I(u)dB2(u)

t
= 0,

lim
t→∞

∫ t

0
R(u)dB3(u)

t
= 0, lim

t→∞

∫ t

0
Z(u)
t

= 0, a.s.

(37)

Then, the solution of (2)

lim sup
t→∞

(S(t) + I(t) + R(t)) =
Λ
μ0

,

lim sup
t→∞

Z(t) =
d

ah
a.s. (38)

Definition 1 [69] The proposed model (2) is said to
be persistent, if

lim inf
t→∞

1
t

∫ t

0

I(r)dr > 0 a.s. (39)

Theorem 3 If Rs
0 = βΛ

(μ0+v+
μ3md

ah +
η2
1
2 )(μ0+μ1+γ1+

η2
2
2 )

then for any initial value (S(0), I(0), R(0), Z(0)) ∈ R4
+,

the disease I(t) has the axiom

lim inf
t→∞

〈
I(t)

〉 ≥ 2Λ
√

Rs
0 − 1)

c1β
a.s., (40)

where c1 = Λ(
μ0+v+

μ3md
ah +

η2
1
2

) . Then, we can say that

the disease will prevail if Rs
0 > 1.

Proof Set

V1 = −c1lnS − c2lnI, (41)

where c1 and c2 are constants and we will find later.
Applying Itô formula, so we have

dV1 = LV1 − c1η1dB1(t) − c2η2dB2(t), (42)
LV1 = c1L(−lnS) + c2L(−lnI),

= −c1
Λ
S

+ c1βI + c1μ3mZ + c1(μ0 + v)

+ c1
1
2
η2
1 − c2βS + c2(μ0 + μ1 + γ1)

+ c2
1
2
η2
2 ,

≤ −c1
Λ
S

− c2βS + c1(μ0 + v +
μ3md

ah

+
1
2
η2
1) + c2

(
μ0 + μ1 + γ1

+
1
2
η2
2

)
+ c1βI,

≤ −2
√

c1c2Λβ + c1

(
μ0 + v +

μ3md

ah

+
1
2
η2
1

)
+ c2

(
μ0 + μ1 + γ1

+
1
2
η2
2

)
+ c1βI. (43)

Let
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c1 =
Λ(

μ0 + v + µ3md
ah

+ 1
2η2

1

) ,

c2 =
Λ(

μ0 + μ1 + γ1 + 1
2η2

2

) , (44)

LV1 ≤ −2

√√√√ Λ2βΛ(
μ0 + v + µ3md

ah
+ 1

2η2
1

) (
μ0 + μ1 + γ1 + 1

2η2
2

)

+ 2Λ + c1βI,

= −2Λ

(√√√√ βΛ(
μ0+v+µ3md

ah
+1

2η2
1

) (
μ0+μ1+γ1+1

2η2
2

)−1

)

+ c1βI,

= −2Λ
(√

Rs
0 − 1

)
+ c1βI. (45)

Substituting Eqs. (45) into (41), and then integrating
both side of the stochastic hepatitis B model (2)

V1(S(t), I(t)) − V1(S(0), I(0))
t

≤ −2Λ
(√

Rs
0 − 1

)
+ c1β

〈
I
〉 − c1η

2
1B1(t)
t

− c2η
2
2B2(t)
t

= −2Λ
(√

Rs
0 − 1

)
+ c1β

〈
I
〉

+ Ψ(t),

(46)

where Ψ(t) = − c1η2
1B1(t)
t − c2η2

2B2(t)
t . From strong law

as stated in Lemma (2), we arrive

lim
t→∞ Ψ(t) = 0. (47)

From Eq. (46), we have

〈
I(t)

〉 ≥ 2Λ(
√
Rs

0 − 1)
c1β

− 1
c1β

Ψ(t)

+
1

c1β

(
V1(S(t), I(t)) − V1(S(0), I(0))

t

)
.

(48)

According to Lemma (3) and Eq. (47), and the limit
superior of Eq. (5), we have

lim inf
t→∞

〈
I(t)

〉 ≥ 2Λ(
√
Rs

0 − 1)
c1β

a.s. (49)

This finishes the proof of Theorem (3). 	


6 Stationary distribution and ergodicity of
the stochastic hepatitis B model

We follow Hasminskii et al. [66] and will prove the
ergodicity, and stationary distribution for the model (2)

solution. Let X(t) be Markov process and regular time
and homogeneous over Rd

dX(t) = bXdt +
k∑

r=1

σr(X)dBr(t). (50)

The diffusion array is define as follows:

A(x) = (aij(x)), aij(t) =
k∑

r=1

σi
r(t)σ

j
r(x).

Lemma 4 The Markov process X(t) has ergodic sta-
tionary distribution Π(·) and unique a bounded open
domain U ⊂ Rd with regular boundary U exists and
holds the following [67,68]:

1. There is a positive number � will positive, such that∑d
i,j=1 aij(x)ζ1ζ2 ≥ �|ζ|2, x ∈ U, ζ ∈ Rd.

2. Positive function C2 and mapping V exist: LV is
negative ∀ x ∈ Rd \ U . Moreover, assume ρ(·) be a
function which is integrable w.r.t π(·), and then, for
every x ∈ Rd \ U

P

{
limT→∞ 1

T

∫ T

0
ρ(X(t))dt =

∫

Rd

ρ(x)π(dx)
}

= 1.

We present the theorem stated below for the required
stationary process as well as ergodicity.

Theorem 4 For the proposed system (2) with (S0, I0,
R0, Z0) ∈ R4

+, if Rs > 1, then the stationary distribu-
tion π(·) exists, and is ergodic.

Proof We assume α1 and α2 be numbers and are suffi-
ciently large, such that

U =
{

(x1, x2, x3, x4) ∈ Γ
1
α1

≤ x1, x2, x3 ≤ Λ
μ0

− 1
α1

,
1
α2

≤ x4 ≤ dΛ
a(μ0 + hΛ)

− 1
α2

}
. (51)

It is also to be noted that system (2) can also be written
as

d

⎡

⎢
⎢
⎣

S
I
R
Z

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

Λ − βS(t)I(t) − μ2mZ(t)S(t) − (μ0 + v)S(t)
βS(t)I(t) − I(t)(+γ1 + μ1 + μ0)

γ1I(t) + μ2mZ(t)S(t) + vS(t) − μ0R(t)
dI(t)

(1+hI(t)) − aZ(t)

⎤

⎥
⎥
⎦ dt

+

⎡

⎢
⎢
⎣

η1S(t)dB1(t)
η2I(t)dB2(t)
η3R(t)dB3(t)

0

⎤

⎥
⎥
⎦ .
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Consequently, the diffusion matrix for the associated
problem (2) is as

B =

⎡
⎢⎣

η2
1S2 0 0 0
0 η2

2I2 0 0
0 0 η2

3R2 0
0 0 0 0

⎤
⎥⎦ .

As U is subset of R4
+ while ξ ∈ R4

+ \ {(ξ1, ξ2, ξ3, ξ4) ∈
R4

+ : ξ1 = ξ2 = ξ3 = ξ4}, then a positive number C
exists as

4∑
i,j=1

aij(S, I,R, Z)ξiξj

= η2
1S2ξ2

1 + η2
2I2ξ2

2 + η2
3R2ξ2

3 + Z2ξ2
4 ≥ C

(52)

Then, condition (1) of Lemma (4) holds. Let V1(I),
V2(S, I) and V3(S,R,Z) be the function for (S, I,R, Z)
∈ R4

+ and defined by

V1(I) =
1
q
I−q,

V2(S, I) =
1
q
I−q(

Λ
μ0

− S),

V3(S,R,Z) =
1
S

+ R +
1
Z

,

(53)

where q is positive constant and we will determine it
later. Defining a function like

V (S, I,R, Z) = V1(I) + V2(S, I) + V3(S,R,Z),

V (S, I,R, Z) =
1
q
I−q +

1
q
I−q

(
Λ
μ0

− S

)

+
(

1
Z

+
1
S

+ R

)
.

(54)

By the expression Itô and the application of model (2),
we obtain

LV1(I) = −I−q (Sβ − (μ0 + μ1 + γ1)) − 1
2
(q + 1)η2

2I−q

= I−q

(
−

(
μ0 + μ1 + γ1 +

η2
2

2

)
(Rs − 1)

− q

2
η2
2

)
+ I−qβ

(
Λ
μ0

− S

)
.

(55)

Then, we compute LV2(S, I)

LV2(S, I) = I−q

(
Λ
μ0

− S

)(
(μ0 + μ1 + γ1) − Sβ

+
1
2
(q + 1)η2

2

)
− 1

q
I−q

(Λ − βSI − μSμ2mZS + μ0R)

≤ I−q

(
Λ

μ0 + v
− S

)(
μ0 + μ1 + γ1 − μ0

q

+
1
2
(q + 1)η2

2

)
+

1
q
μ2mZSI−q +

βΛ
qμ0

I−q.

(56)

For V3(S,R,Z), it implies that

V3(S,R,Z) = − Λ
S2

+
βI

S
+

μ0 + v

S
+

μ2mZ

S
− η2

1

S
+ γ1I(t) + μ2mZ(t)S(t) + vS(t)

− μ0R(t)
dI

(I + hI)Z2
+

a

Z

≤ − Λ
S2

+
[
βΛ
μ0

+ μ0 +
μ1mdΛ

aμ(μ + hΛ)

− μ2
2d

2Λ2

a2(μ0 + hΛ)2 − eta2
1

2

− η2
1

2

]
1
S

+
γ1Λ
μ0

+
μ2mdΛ2

aμ0(μ0 + hΛ)

+
dμ0I

(μ0 + hΛ)Z2

d

Z
.

(57)

Combining (55), (56), and (57), we have

LV ≤ I−q(−(μ0 + μ1 + γ1 +
η2
2

2
)(Rs − 1) − q

2
η2
2)

+ I−q(
Λ

μ0 + v
− S)(μ0 + β + μ1 + γ1 − μ0

q

+
1
2
(q + 1)η2

2) +
1
q
μ2mZSI−q +

βΛ
qμ0

I−q

− Λ
S2

+
[
βΛ
μ0

+ μ0 +
μ1mdΛ

aμ(μ + hΛ)

+
μ2

2d
2Λ2

a2(μ0 + hΛ)2
− η2

1

2

]
1
S

+
γ1Λ
μ0

+
μ2mdΛ2

aμ0(μ0 + hΛ)
+

dμ0I

(μ0 + hΛ)Z2
.

(58)

Since Rs ≥ 0, and choose sufficiently small, such that

−(μ0 + μ1 + γ1 +
η2
2

2
)(Rs − 1) − q

2
η2
2) < 0

μ0 + μ1 + γ1 + β − μ0

q
− 1

2
(1 + q)η2

2 < 0.
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Likewise, Λ
μ0+μ1

≤ S + I + R ≤ Z ≤ dΛ
a(μ+hΛ) , then

for (S, IR,Z) ∈ ΓU either S ≤ 1
α1

I ≤ 1
α1

, R ≤ 1
α1

or Z ≤ 1
α2

. It is simple from Eq. (58), as for α1 or
α2, sufficiently large LV ≤ −1 for (S, I,R, Z) ∈ Γ \ U .
Therefore, Lemma (4) holds and the model (2) admits
an ergodic invariant distribution Π(·), which is unique.
Hence, (St, It, Rt, Zt) is ergodic and

P

{
lim

t→∞
1
t

∫ t

0

χ(Ss, Is, Rs, Zs) ∈ Γds

=
∫

R4
χΓπ(dx)

}
= 1, (59)

where χΓ is the characteristic function of Γ. 	


7 Numerical simulation of the stochastic
hepatitis B model

Now, in this part, we are presenting some approximate
solution by simulation to understand about the theo-
retical results. For this, we have applied the stochas-
tic Runge–Kutta method to obtain the following dis-
cretization transformation of system (2):

Si+1 = Si +
[
Λ − μ2mZiSi − βSiIi − (μ0 + v)Si

]
 t

+η1Si

√
tζ1,i +

η2
1

2
Si(ζ2

1,i − 1)  t,

Ii+1 = Ii +
[
βSiIi − (μ0 + γ1 + μ1)Ii

]
 t (60)

+η2Ii

√
tζ2,i +

η2
2

2
Ii(ζ2

2,i − 1)  t,

Ri+1 = Ri +
[
(γ1Ii + μ2mZiSi + vSi − μ0Ri)

]
 t

+η3Ri

√
tζ3,i +

η2
3

2
Ri(ζ3,i − 1)  t,

Zi+1 = Zi +
[

dIi

(1 + hIi)

2

− aZi

]
 t.

We perform approximate solution by simulation tech-
niques of the considered hepatitis B stochastic disease
system (2) and (1). For this propose, we use the well-
known “stochastic Runge-Kutta method”. This anal-
ysis verify our analytical findings of the influence of
environmental noise and information intervention. It
has been found that white noise and information inter-
vention have a big effects on the disease. Now, we are
going to assume the numerical value of the parame-
ters with biological feasibility to verify the extinction
and the diseases free equilibrium E1 result are as, see
Fig. 1. Here, we take the noise η1 = 0.25 ,η2 = 0.12,
η3 = 0.525, and the parameters have the assigned val-
ues given as Λ = 5.5, β = 0.015, μ0 = 0.4,γ1 = 0.31,
μ1 = 0.4, m = .02, μ2 = 0.1, v = 0.04, h = 0.4, d = 0.4,
and a = 0.9, whereas the initial population sizes will be
considered as aforementioned. The result of Theorem 2
shows the behavior of the proposed equation (2) and
at the equilibrium point E1 before infection is stochas-
tically asymptotically stable. Figure 1a and b shows
that the stochastic system (2) and the deterministic
system (1), respectively, have the same behavior. Both
the model’s solutions are converging to the disease-free
equilibrium point E1. This shows that the disease will
extinct, i.e., the infection cases will approaches to zero,
while there will be always susceptible population.

In a similar fashion, we assume the following param-
eter value and the intensity of white noise to show
the permanence or stationary distribution and endemic
equilibrium E2, i.e., Λ = 5.5, β = 0.015, μ0 = 0.2,γ1 =
0.1, μ1 = 0.004, m = 0.2, μ2 = 0.2, v = 0.04, h = 0.4,

(a) (b)
Fig. 1 The trajectories show the dynamics of S(t), I(t), and R(t): a represents the stochastic model (2) and b represents
its corresponding deterministic model
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(a) (b)
Fig. 2 The trajectories shows the dynamics of S(t), I(t), and R(t): a represents the stochastic model (2) and b represents
its corresponding deterministic model

d = 0.2 and a = 0.9, and the noise intensities are
η1 = 0.25, η2 = 0.12, and η3 = 0.25, while the initial
population sizes will be taken as above. The Theorem
3 axioms are satisfied. Therefore, the stochastic sys-
tem (2) solutions moves up and down for a more time
through the feasible unique disease equilibrium E2 of
the idealistic system (1), and the mean motion through
the disease equilibrium point E2 are low because of the
small noise waves that the disease come back will exist.
Models of both types tend to the disease equilibrium
point E2 (shown in Fig. 2a and b). Figure 2 shows the
comparison between Eq. (1) and Eq. (2). Once again the
three curves in Fig. 3a shows the dynamical behavior of
susceptible, infected, and recovered population, which
shows that the model maintains the permanence.

Furthermore, for the stationary distribution, to dis-
play the effect of the noise intensity on the stationary
distribution, we have run the numerical simulation 1000
times and obtain the average extinction time of S(t),
I(t), and R(t) at t = 351, and their distributions are
exhibited in Fig. 3 (see for more details Fig. 3a–c).
Then, the conditions of Theorem 4 are satisfied.

8 Variable-order fractional network

Herein, we aim to answer this question: How can we
model the impact of the disease rate in different soci-
eties. In other words, we want to embed the interac-
tion between different communities in the modeling of
the disease. For instance, the relationships and travels
between two countries will definitely affect the rate of
diseases in both of them. To the best of our knowledge,
up to now, no study has investigated this matter in
the modeling of hepatitis B. We proposed to consider
the model of the disease as neurons affected by each
other in a network. Also, the fractions calculus, which
is the generalized form of integer one and provides more

accurate results, is considered for the disease model-
ing. To construct a network of stochastic hepatitis B
model, we couple N numbers of these models through
the nearest-neighbor method. It is supposed that the
interaction between neurons is through the susceptible
components, i.e., the coupling is made on the variable S.
Consequently, the equations of the network is described
as

dq(t)Si

dtq(t)
= Λ − βSi(t)Ii(t) − μ2mZi(t)Si(t)

− (v + μ0) Si(t)

+
l

2p

i+p∑
j=i−p

(Sj − Si)

dq(t)Ii

dtq(t)
= βIi(t)Si(t) − (μ0 + γ1 + μ1) Ii(t)

dq(t)Ri

dtq(t)
= γ1Ii + μ2mZi(t)Si(t) + vSi(t) − μ0Ri(t)

dq(t)Zi

dtq(t)
=

dIi(t)
(1 + hIi(t))

− aZi(t), (61)

where q(t) indicates the time-varying fractional-order
derivative. l is the coupling strength, P is the number of
nearest neighbors on each side, and N denotes the num-
ber of systems in the network. Also, similar to (2), using
the standard Brownian motions, i.e., B1(t), B2(t), and
B3(t) along with the intensities h1, h2 and h3, we can
propose the type of deterministic model (1) in stochas-
tic style as follows:

dq(t)Si = [Λ − βSi(t)Ii(t) − μ2mZi(t)Si(t)

− (v + μ0) Si(t) +
l

2p

i+p∑

j=i−p

(Sj − Si)

]

dtq(t)

+ η1Si(t)dB1(t)
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(a) (b)

(c)
Fig. 3 Frequency histograms for S(t), I(t), and R(t) under the noise intensities η1 = 0.25, η2 = 0.12, and η3 = 0.25 of
model (2)

dq(t)Ii

dtq(t)
= [βIi(t)Si(t) − (μ0 + γ1 + μ1) Ii(t)] dtq(t)

+ η2Ii(t)dB2(t)

dq(t)Ri

dtq(t)
= [γ1Ii + μ2mZi(t)Si(t) + vSi(t) − μ0Ri(t)] dtq(t)

+ η3Ri(t)dB3(t)

dq(t)Zi

dtq(t)
=

[
dIi(t)

(1 + hIi(t))
− aZi(t)

]
dtq(t). (62)

Figure 4 shows the time history of the variable
fractional-order network of hepatitis B model. The
time-varying fractional derivative is considered as q(t) =
0.9+0.05tan−1 T (i)

20 . For this simulation, the parameters
of the model are the same as the other simulation. As it
is shown in this figure, although the parameters are the
same as the previous model, the results are completely
different. This confirms the importance of two factors:
Fig. 4a the effects of fractional derivative and Fig. 4b
the impacts of other communities, in the modeling of
the system.

9 Conclusion

We investigated the dynamics of hepatitis B via a
stochastic SIR model by incorporating environmen-
tal noise and information intervention. We found that
white noise and information intervention have consid-
erable effects on the disease. From the dynamics, we
noted that it plays a crucial role in the disease spread-
ing and prevalence. We particularly proved the exis-
tence analysis and uniqueness analysis and showed that
the proposed problem is well posed. We also defined the
stochastic reproductive number by Rs for the problem
(2) to discuss the analysis of extinction, persistence, and
stationary distribution. On behalf of threshold quantity
Rs, we proved that the hepatitis B could be eradicated
if the value of Rs is less than unity, see Theorem (2),
and this may reduce the maximum value of infected
cases population (see Fig. 1). Moreover, for the stochas-
tic model (2), we have obtained sufficient conditions for
the disease prevails of a unique stationary distribution;
see Theorem (4). Therefore, the information interven-
tion may reduce the maximum value of infected cases.
At the end, all the theoretical findings are justified with
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Fig. 4 The trajectories
show the dynamics of
neuron (62) in the
proposed network: a
represents the stochastic
model and b represents its
corresponding
deterministic model

(a) (b)

the help of simulation analysis via the stochastic Runge-
Kutta method. Then, as a new approach, a variable-
order fractional network of the stochastic hepatitis B
model is introduced to consider the effects of different
societies on each other. It was supposed that popula-
tions are jointed through the nearest-neighbor method.
In a feature work, we will investigate the optimal con-
trol of the proposed variable-order network.
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