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Abstract Artificial neural networks have demonstrated to be very useful in solving problems in artifi-
cial intelligence. However, in most cases, ANNs are considered integer-order models, limiting the possible
applications in recent engineering problems. In addition, when dealing with fractional-order neural net-
works, almost any work shows cases when varying the fractional order. In this manner, we introduce the
optimization of a fractional-order neural network by applying metaheuristics, namely: differential evolu-
tion (DE) and accelerated particle swarm optimization (APSO) algorithms. The case study is a chaotic
cellular neural network (CNN), for which the main goal is generating fractional orders of the neurons
whose Kaplan–Yorke dimension is being maximized. We propose a method based on Fourier transform to
evaluate if the generated time series is chaotic or not. The solutions that do not have chaotic behavior are
not passed to the time series analysis (TISEAN) software, thus saving execution time. We show the best
solutions provided by DE and APSO of the attractors of the fractional-order chaotic CNNs.

1 Introduction

Chaos is a discipline that has shown novel applications
in different engineering areas [1]. Nowadays, fractional-
order chaotic systems are a hot topic for research, but
yet the solution of the dynamical system is a challenge,
because there is not an analytical method to solve them.
Almost all dynamical systems can be converted from its
integer-order models to fractional-order ones. In both
cases, one can evaluate their performances as dynamical
characteristics that are associated to Lyapunov expo-
nents, entropy, and Kaplan–Yorke dimension (DKY ).
These characteristics can be optimized by metaheuris-
tics [2–4]. For instance, among the available optimiza-
tion algorithms, differential evolution (DE) and particle
swarm optimization (PSO) have shown advantages in
maximizing fractional-order systems [5]. In this paper,
we apply DE and accelerated PSO (APSO) to optimize
fractional-order neural networks that can have com-
mensurate (if the derivatives have the same fractional-
order) or incommensurate (if the derivatives have dif-
ferent fractional-order) orders.

Artificial neural networks (ANNs) are associated to
model the behavior of a biological neural network, as
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in the human brain [6]. They are modeled by mathe-
matical equations, some of them involving continuous-
time and other discrete time variables. Chaotic neural
networks have shown advantages in generating random
binary sequences to encrypt color images, as shown
in [7]. Other applications can be found in [8], where
the authors show recent developments on fuzzy logic,
neural networks and optimization algorithms, as well
as their hybrid combinations, and their application
in areas such as intelligent control and robotics, pat-
tern recognition, medical diagnosis, time series pre-
diction, and optimization of complex problems. More
recently, it has been proven that neural networks are a
good option for the analysis of the coronavirus pan-
demic problem [9]. One can list a huge number of
applications of neural networks, but in this paper, the
efforts are focused on problems involving fractional-
order issues [10]. For instance, the following fractional-
order neural networks can be suitable for optimiza-
tion: the fractional-order residual convolutional neu-
ral network introduced in [11]; the distributed-order
neural networks introduced in [12]; the fractional-order
neural network with time-varying delays given in [13];
the fractional-order quaternion-valued neural network
given in [14]; the fractional-order complex-valued neu-
ral network with impulsive effects given in [15]; the
fractional-order memristive neural synaptic weighting
given in [16]; the fractional-order complex-valued neu-
ral network given in [17], and so on.
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As it is well known, the challenge on applying meta-
heuristics is the reduction of the execution time in the
optimization loop. In this manner, as the evaluation
of the dynamical characteristics of a fractional-order
chaotic system consumes large time, we introduce a
procedure to eliminate the evaluation of DKY of a
fractional-order CNN when the behavior is not chaotic.
Henceforth, the proposed method consists on applying
Fourier transform to the chaotic time series, to eval-
uate if the CNN generates chaotic behavior or not. If
the CNN is chaotic, its time series are introduced to
the time series analysis (TISEAN) software to evaluate
DKY . If the CNN is not chaotic, the individual in DE or
particle in APSO is eliminated and this saves execution
time in the optimization loop.

The organization is done as follows: Sect. 2 describes
the mathematical model of the cellular neural net-
work (CNN) in its fractional-order version. Section 3
describes the metaheuristics, namely: DE and APSO
algorithms that are used to optimize the CNN. The
formulation of the optimization problem is shown in
Sect. 4, where the goal is maximizing DKY , and we
show the application of Fourier transform to reduce
execution time of DE and APSO. Section 5 summarizes
the optimization results and lists the best individuals
provided by DE and solutions by APSO along their cor-
responding chaotic attractors. Finally, the conclusions
are given in Sect. 6.

2 Fractional-order chaotic cellular neural
network

Some recent fractional-order chaotic systems have been
introduced in [18,19], and the commensurate and
incommensurate characteristics have been described in
[20,21]. This paper focuses on the Cellular Neural Net-
work (CNN) that was proposed in [22]. Basically, it con-
sists of a series of modeled cells by an analog nonlinear
circuit. In [23], the authors analyzed the chaotic behav-
ior of the autonomous CNN composed by two or three
cells. For instance, the CNN modeled by three cells is
given in (1). In this mathematical model: x, y, and z
are neural states; f(x), f(y), and f(z) are neural acti-
vation functions shown in (2); and p1, p2, p3, s, and r
are the weights or coupling forces of the network, which
values generating chaotic behavior are set to p1 = 1.25,
p2 = 1.1, p3 = 1, s = 3.2, and r = 4.4

ẋ = −x + p1f(x) − sf(y) − sf(z)

ẏ = −y − sf(x) + p2f(y) − rf(z)

ż = −z − sf(x) + rf(y) + p3f(z)

(1)

f(x) = |x+1|−|x−1|
2

f(y) = |y+1|−|y−1|
2

f(z) = |z+1|−|z−1|
2 .

(2)

Table 1 Proposed search space ranges of the design vari-
ables for the optimization process

Design Variable Range

p1 [1.00000000, 1.50000000]
p2 [0.50000000, 1.50000000]
p3 [0.50000000, 1.50000000]
s [2.50000000, 4.00000000]
r [4.00000000, 5.00000000]
qi [0.60000000, 0.99999999]

As one sees, (1) is a dynamical system of integer
order, and it can be transformed to its fractional-order
version, as shown in (3). It can be observed that the
differential equations changed to have fractional orders
denoted by q1, q2, q3. One can have two cases for the
optimization process of the fractional orders: if q1 =
q2 = q3 the CNN has commensurate orders, otherwise,
the CNN has incommensurate orders, i.e., q1 �= q2 �= q3

0D
q1
t x(t) = −x(t) + p1f(x) − sf(y) − sf(z)

0D
q2
t y(t) = −y(t) − sf(x) + p2f(y) − rf(z)

0D
q3
t z(t) = −z(t) − sf(x) + rf(y) + p3f(z).

(3)

In general, the optimization of a continuous-time sys-
tem can have infinite possibilities for the design vari-
ables, in this case the coefficients and fractional orders
of the derivatives. However, not all the possibilities will
lead to generate chaotic behavior, so that one can esti-
mate reduced search spaces for p1, p2, p3, s, and r,
and for the fractional orders, one can also establish
fractional ranges for q1, q2, and q3, as listed in Table
1, which have high possibilities of generating chaotic
behavior than other random values.

The authors in [24] demonstrated that for a chaotic
oscillator consisting of three fractional-order deriva-
tives, and considering different types of model non-
linearities, and using the proper control parameters,
chaotic attractors are obtained with system orders as
low as 2.1. Consequently, those authors introduced a
conjecture that third-order systems can still produce
chaotic behavior with a total system order higher than
2. In this manner, the fractional-order chaotic CNN
modeled by (3) has three differential equations, and its
minimum fractional order to generate chaotic behavior
must be higher than two. This can be accomplished if
all the commensurate fractional orders of the deriva-
tives have values equal or higher than 0.7. However, for
incommensurate fractional orders, one can have combi-
nations of values, so that the sum of the three fractional
orders be higher than two. To know the dimension of the
problem: By setting the search spaces from 0.60000000
to 0.99999999, it leads us to have (108)3 = 1024 possi-
bilities of having q1 �= q2 �= q3. This number increases
exponentially when varying p1, p2, p3, s, and r. For this
reason, metaheuristics are a good option to optimize a
fractional-order chaotic CNN.
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3 Metaheuristics

The pseudocodes of DE and PSO algorithms have
already given in [5] for the optimization of fractional-
order chaotic oscillators. In this paper, DE and APSO
are applied to optimize a fractional-order chaotic CNN.
The pseudocodes are summarized in the following sub-
sections.

3.1 Differential evolution (DE)

DE algorithm is a metaheuristic that uses real numbers
in its representation and then can be applied to opti-
mize continuous-time problems. DE requires as input,
the size of the population, number of generations, the
value for the recombination constant (CR), the value
for the differential constant (F ), and the threshold value
s. The pseudocode for the optimization of the chaotic
CNN is given in Algorithm 1. The evaluation of DKY

is performed, as shown in Sect. 4.2, including the verifi-
cation of chaotic behavior of the times series using the
spectrum.

The generations are updated by creating new vectors
by performing mutation (4) and crossover (5) opera-
tions. Where, a, b, and c are different numbers randomly
chosen; g denotes the current generation; F ∈ [0, 2] is
the differential constant; j = {1, 2, . . . ,D}; randb(j) ∈
[0, 1] is the jth evaluation of a generated random num-
ber; CR ∈ [0, 1] is a crossover coefficient chosen by the
user; and rnbr(i) ∈ [0,D − 1] is an index randomly

Algorithm 1 Differential evolution algorithm.
1: Initialize the population randomly (x)
2: Evaluate the position of the individuals of the CNN

described by func(x)
3: Evaluate DKY

4: Save the results of evaluating DKY in score
5: for (counter = 1; counter ≤ G; counter + +) do
6: for (i = 1; i ≤ Np; i + +) do
7: Select three different indexes randomly (a, b and

c in (4))
8: for (j = 1; j ≤ D; j + +) do
9: if U(0, 1) < CR||j = D then

10: trialj ← xaj + F (xbj − xcj)
11: else
12: trialj ← xij

13: end if
14: end for
15: fx ← func(trial)
16: if fx is better than scorei then
17: scorei ← fx
18: xi ← trial
19: end if
20: end for
21: end for
22: return x and score

generated [5]

vg+1
i ← xg

c + F (xg
a − xg

b) (4)

ug+1
ij ←

{
vg+1
ij if randb(j) ≤ CR or rnbr(i) = j

xg+1
ij if randb(j) > CR and rnbr(i) �= j.

(5)

3.2 Accelerated particle swarm optimization
(APSO)

Similar to DE, APSO algorithm is a metaheuristic that
performs a direct random search in an intelligent sense.
Generally, APSO requires the following parameters as
input: size of the population, number of generations, β,
and α. The pseudocode of APSO for the optimization
of the chaotic CNN is given in Algorithm 2. The evalua-
tion of DKY is performed, as shown in Sect. 4.2, includ-
ing the verification of chaotic behavior of the times
series using the spectrum.

The particle behavior is defined by two equations:
velocity (6) and position (7). Where, i is the index of
the particle; j its dimension; pi the best position found
in i; pg the best position found during the optimization;
α ∈ R is the inertial weight; β ∈ R the acceleration
constant; and U(•) a random number generator with
uniform distribution [5]

vt+1
ij ← αvt

ij + U(0, β)(pij − xt
ij) + U(0, β)(gj − xt

ij)

(6)

xt+1
ij ← xt

ij + vt+1
ij . (7)

4 Optimizing DKY of a chaotic CNN by
DE and APSO

This section shows the fitness function of the optimiza-
tion process, and the handling of constraints highlight-
ing the use of Fourier transform to verify if the time
series is chaotic or not and, therefore, save execution
time when evaluating DKY by TISEAN, who is time-
consuming.

4.1 Fitness function

In chaotic systems, DKY is evaluated considering the
number of ordinary differential equations. In this case,
the chaotic CNN has three equations and its dimension
can be evaluated by applying (8). This dimension is
related to the Lyapunov exponents λ1, which are equal
to the number of state variables. In this case, the chaotic
CNN has three state variables x, y, z, so that it has three
Lyapunov exponents, and to show a chaotic behavior,
one must be positive, one zero, and another negative,
and therefore, DKY > 2 [25]. Maximizing DKY leads
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Algorithm 2 Accelerated particle swarm optimization
algorithm.
1: Initialize the particle’s position randomly (x)
2: Initialize the velocity of the particles v
3: Evaluate the position of the particles associated to the

CNN described by func(x)
4: Evaluate DKY

5: Save the results of evaluating DKY in score and p ← x
6: Find the best value from p and save it in g
7: for (counter = 1; counter ≤ G; counter + +) do
8: for (i = 1; i ≤ Np; i + +) do
9: for (j = 1; j ≤ D; j + +) do

10: vij ← αvij +U(0, β)(pij −xij)+U(0, β)(gj −
xij) � This evaluates the new velocity using (6)

11: xij ← xij + vij � This evaluates the new
position using (7)

12: end for
13: fx ← func(xi)
14: if fx is better than scorei then
15: scorei ← fx
16: pi ← xi

17: if pi is better than g then
18: g ← pi

19: end if
20: end if
21: end for
22: end for
23: return x, p, g and score

us to deal with the fitness function given in (9)

DKY = j +
λ1 + · · · + λj

|λj+1| (8)

f(λ) = 2 +
λ1 + λ2

|λ3| . (9)

Among the available methods to evaluate Lyapunov
spectrum, one can use the online available software
called TISEAN, who requires the chaotic time series
of the associated state variable x, y, z, as input. This
software is used herein to evaluate DKY , but is time-
consuming, so that we propose to verify if the chaotic
time series is chaotic or not by computing the Fourier
transform, and it is taken as a constraint.

4.2 Verification of chaotic behavior using the
spectrum

The optimization algorithms based on populations as
DE and APSO are time-consuming, so that to reduce
the execution time, we propose the application of
Fourier transform to select those individuals in DE or
particles in APSO that can be passed to TISEAN to
compute DKY . Besides, the first constraint is imposed
by (10) for both commensurate or incommensurate frac-
tional orders

3∑
i=1

qi ≥ 2.1 (10)

Fig. 1 Fourier transform of a chaotic time series

A second constraint consists on verifying the eigen-
values that must be complex to generate oscillating
behavior. If the mathematical model does not have
equilibrium points, as the case of the fractional-order
chaotic CNN given in (3), then one can apply a numer-
ical method as Newton–Raphson [26], which is given
in (11). This method is very fast, so that the execution
time of the metaheuristic is not increased as for the one
taken by TISEAN

Xi+1 = Xi − J−1(Xi)f(Xi). (11)

Guaranteeing the constraint in (10) and that the
eigenvalues are complex conjugated may not lead to
chaotic behavior. In fact, in many cases, the time series
may have periodic behavior or they can be damped. In
this manner, as DE and APSO work with populations,
if the individuals are verified to have chaotic behav-
ior, the execution time can be reduced, because DKY

is evaluated by TISEAN and it is the bottleneck in the
optimization loop. See for example the spectrum of a
chaotic time series shown in Fig. 1, and the spectrum
of a non-chaotic time series shown in Fig. 2. It is very
notable that the spectrum of a chaotic time series has
higher amplitude than a non-chaotic one. For this rea-
son, we propose to evaluate the Fourier transform of
each time series before the individual or particle pass
to TISEAN and this is decided by setting a threshold
for the spectrums. In this work, the threshold was set
to 0.2.

The pseudocode including the Fourier transform as
constraint is given in the procedure named Evaluate(),
shown below. This procedure is executed in Algorithm 1
at step 3, and in Algorithm 2 at step 4 to evaluate DKY .
As one can see, the first step is verifying the fractional
order to accomplish (10). If this is accomplished, the
eigenvalues are computed applying Newton–Raphson.
If the eigenvalues are complex conjugated, the chaotic
CNN is simulated by applying a numerical method, as
the Grüwald–Letnikov [1]. The generated time series is
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Fig. 2 Fourier transform of a non-chaotic time series

Table 2 DE input parameters

Parameter Value

Population size 40
Number of generations 20
Number of variables 8
Difference constant 0.4
Recombination constant 0.1
min_p1[1], max_p1[1] 1.00000000, 1.50000000
min_p2[2], max_p2[1] 0.50000000, 1.50000000
min_p3[3], max_p3[1] 0.50000000, 1.50000000
min_s[4], max_s[1] 2.50000000, 4.00000000
min_r[5], max_r[1] 4.00000000, 5.00000000
min_qi[6 − 8], max_qi[6 − 8] 0.60000000, 0.99999999

evaluated with the Fourier transform to double check
that is chaotic behavior. Finally, the chaotic time series
is processed by TISEAN computing DKY .

1. def Evaluate(_n, vpar):

2. D_{KY} = 0.0

2. # Constraint 1: fractional order

3. const1 = Cal.FractOrder(vpar)

4. if const1 == 1:

5. # Contraint 2: eigenvalues

6. const2 = Cal.EvalEigenvalues(vpar)

7. if const2 == 1:

8. # Calculate time series

9. t = Cal.CalTimeSeries(vpar)

10. # Contraint 3: Fourier transform

11. const3 = Cal.fftDiscrete(t)

12. if const3 == 1:

13. # Calculate Kaplan -Yorke

dimension (TISEAN)

14. D_{KY} = Cal.CalDimKY ()

15. return D_{KY}

5 Results

Both DE and APSO were programmed in python lan-
guage. The simulation of the fractional-order CNN
modeled in (3) is done applying Grünwald–Letnikov
with a step-size h = 0.01 and a short memory length
of 1% of the total length, e.g., Lm = 2 for 20, 000 sam-
ples. The initial conditions for all the cases were set to
x0 = −0.1, y0 = 0.2, and z0 = −0.1.

5.1 Best feasible solutions provided by DE

The input parameters that were used for DE algorithm
are listed in Table 2. It can be noted that it includes
the parameters given in Subsect. 3.1

The four best feasible solutions provided by DE are
given in Table 3. It can be noted that solution 2 has
incommensurate, while solutions 1, 3, and 4 have com-
mensurate fractional order, but the other parameters
are totally different, and all these best solutions have
good values for the fitness function, i.e., DKY .

Figure 3 shows the chaotic attractors of the solutions
provided by DE for the fractional-order CNN. It can be
appreciated that they have very similar ranges in the
state variables x and y.

Table 3 Four best solutions provided by DE

Variable Solution 1 Solution 2 Solution 3 Solution 4

p1 1.2249 1.22556604 1.19199827 1.23340808
p2 1.08 1.13855862 1.1 1.17102638
p3 1.0 0.96259797 1.0 1.0
s 3.2 3.19792497 3.02918670 2.95860449
r 4.4 4.55205362 4.4 4.4
q1 0.99 0.98373450 0.99 0.99
q2 0.99 0.99857154 0.99 0.99
q3 0.99 0.98559591 0.99 0.99
DKY 2.41112811 2.52850903 2.59403606 2.73015194
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Fig. 3 Chaotic attractors for the solutions given in Table
3: a Solution 1, b Solution 2, c Solution 3, and d Solution
4

Table 4 APSO input parameters

Parameter Value

Population size 40
Number of generations 20
Number of variables 8
β 0.3
α 0.7
min_p1[1], max_p1[1] 1.00000000, 1.50000000
min_p2[2], max_p2[1] 0.50000000, 1.50000000
min_p3[3], max_p3[1] 0.50000000, 1.50000000
min_s[4], max_s[1] 2.50000000, 4.00000000
min_r[5], max_r[1] 4.00000000, 5.00000000
min_qi[6 − 8], max_qi[6 − 8] 0.60000000, 0.99999999

5.2 Best feasible solutions provided by APSO

APSO algorithm was executed by setting the input
parameters, as shown in Table 4. It includes the val-
ues of the search spaces ranges of the design variables
given in Sect. 3.2.

The four best solutions provided by APSO are given
in Table 5. In this case, just one commensurate case

Table 5 Four best solutions provided by APSO

Variable Solution 1 Solution 2 Solution 3 Solution 4

p1 1.2249 1.21524764 1.28832790 1.21529417
p2 1.08 1.02487968 1.14787860 1.02466857
p3 1.0 1.16548903 1.05392120 1.16572212
s 3.2 3.20087397 3.10834142 3.20088438
r 4.4 4.60504481 4.44069088 4.46546546
q1 0.99 0.99057132 0.94994949 0.99040112
q2 0.99 0.98569995 0.97372856 0.98570651
q3 0.99 0.97725932 0.94780070 0.97719746
DKY 2.41112811 2.63592020 2.64600627 2.83383367

Fig. 4 Chaotic attractors for the solutions given in Table
5. a Solution 1, b Solution 2, c Solution 3, and d Solution
4

associated with solution 1 is listed. the other three solu-
tions 2, 3, and 4 have incommensurate fractional order,
but in all cases, again the fitness function is high. In
fact, APSO provided higher DKY than DE.

Figure 4 shows the chaotic attractors associated to
the four best solutions provided by APSO.

6 Conclusions

This paper showed the optimization of a fractional-
order cellular neural network by applying metaheuris-
tics, such as DE and APSO. The fitness function was
associated to maximize the Kaplan–Yorke dimension,
which is evaluated by TISEAN program. To reduce exe-
cution time of the optimization loops in both meta-
heuristics, we proposed the evaluation of the Fourier
transform to the time series of the CNN and apply
a threshold to the spectrum to verify chaotic behav-
ior. However, to verify that the individual or parti-
cle in the population will generate chaotic behavior,
some constraints were evaluated, namely: verification
that the fractional order is higher than two, verifica-
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tion that the eigenvalues are complex, and verification
that the Fourier transform has high amplitude values
in the spectrum, e.g., 0.2, in this work. These con-
straints driven DE and APSO algorithms to maximize
DKY , providing feasible solutions whose attractors have
similar ranges in their phase portraits. The best DKY

results provided by the metaheuristics were associated
to incommensurate fractional-order CNNs. They can
be implemented on embedded systems for the develop-
ment of real applications as encryption systems under
a protocol for IoT.
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