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2 Departament de F́ısica Quàntica i Astrof́ısica, and Institute of Cosmos Sciences (ICCUB), Universitat de Barcelona, Av.
Diagonal 647, 08028 Barcelona, Catalonia, Spain

Received 14 December 2020 / Accepted 4 June 2021 / Published online 21 June 2021
© The Author(s) 2021

Abstract In previous works, we have derived a Running Vacuum Model (RVM) for a string Universe, which
provides an effective description of the evolution of 4-dimensional string-inspired cosmologies from inflation
till the present epoch. In the context of this “stringy RVM” version, it is assumed that the early Universe is
characterised by purely gravitational degrees of freedom, from the massless gravitational string multiplet,
including the antisymmetric tensor field. The latter plays an important role, since its dual gives rise to a
‘stiff’ gravitational axion “matter”, which in turn couples to the gravitational anomaly terms, assumed to
be non-trivial at early epochs. In the presence of primordial gravitational wave (GW) perturbations, such
anomalous couplings lead to an RVM-like dynamical inflation, without external inflatons. We review here
this framework and discuss potential scenarios for the generation of such primordial GW, among which
the formation of unstable domain walls, which eventually collapse in a non-spherical-symmetric manner,
giving rise to GW. We also remark that the same type of “stiff” axionic matter could provide, upon the
generation of appropriate potentials during the post-inflationary eras, (part of) the Dark Matter (DM) in
the Universe, which could well be ultralight, depending on the parameters of the string-inspired model.
All in all, the new (stringy) mechanism for RVM inflation preserves the basic structure of the original
(and more phenomenological) RVM, as well as its main advantages: namely, a mechanism for graceful exit
and for generating a huge amount of entropy capable of explaining the horizon problem. It also predicts
axionic DM and the existence of mild dynamical Dark Energy (DE) of quintessence type in the present
universe, both being “living fossils” of the inflationary stages of the cosmic evolution. Altogether the
modern RVM appears to be a theoretically sound (string-based) approach to cosmology with a variety of
phenomenologically testable consequences.
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1 Introduction

In the string-inspired effective gravitational field theory
for the very early Universe, proposed in [1–3], and fur-
ther discussed from the point of view of the swampland
criteria and the weak gravity conjecture in [4], it was
assumed that the only degrees of freedom present are
those from the massless bosonic gravitational multiplet
of the (super)string, consisting of dilaton, gravitons and
antisymmetric tensor (Kalb–Ramond (KR)) fields. The
latter can be dualised by means of a massless gravita-
tional KR axion field, which is characterised by a “stiff”
equation of state. Upon assuming constant dilatons,
which are consistent string backgrounds, it was shown
that condensation of primordial gravitational waves
(GW) leads to a “running-vacuum-model”(RVM)-type
cosmology [5–11], with a dynamically induced (approx-
imately) de Sitter era, without the need for external
inflatons. Crucial to this, was the fact that gravita-
tional anomalies are present in the early phases of this
string Universe, which couple to the KR (and other
stringy) axions via CP-Violating anomalous gravita-
tional Chern–Simons couplings. The condensation of
GW perturbations imply, in turn, condensation of such
anomalous terms, and an approximate-de Sitter era, in
which the vacuum energy density resembles that of the
RVM. The GW condensates are triggered by the ‘cos-
mological birefringence’ of the GW during inflation and,
as shown in [1,2], are responsible for the generation of
terms in the vacuum energy density proportional to the
fourth power of the Hubble rate H4, which induce infla-
tion without the need for external inflaton fields. We
term this phase “GW-induced stringy RVM inflation”.

During this inflationary era, KR-axion backgrounds
of a specific type (varying linearly with cosmic time)
remain undiluted, leading to eventual matter–antimatter
asymmetries (baryogenesis through leptogenesis) in the
post-inflationary radiation era. During the radiation
and matter eras, the gravitational anomalies cancel, due
to the generation of chiral matter at the exit phase
from the GW-induced stringy RVM inflation. How-
ever, chiral anomalies remain, which lead, through non-
perturbative effects (e.g. instantons in the Gluon sec-
tor of Quantum Chromodynamics part of the matter
action) to potentials, and thus masses, for these axions,
which in general can mix with other stringy axions,
leading to significant components of axionic Dark Mat-
ter (DM) in the late eras of this string Universe. As dis-
cussed in [1], the latter can also be ultralight, depending
on the parameters of the model.

In this study, we revisit these ideas and elaborate
further on the properties of such KR axions, and other
stringy-type axions that may characterise the very early
stages of the string Universe. We propose the possibil-
ity that there is a pre-inflationary era of (cold) stiff-
axionic-matter dominance, which then, upon conden-
sation of primordial gravitational waves (GW), leads—
through the gravitational anomalous couplings of the
axions—to “stringy RVM-inflation”. Such form of infla-
tion preserves all of the virtues of the original, more
phenomenological, RVM proposal (see [12–15] for a
review) but it has a more solid theoretical formulation.

Moreover, we discuss potential origins of the primor-
dial GW, by presenting several pre-inflationary scenar-
ios for their production, One of them, involves dynami-
cal broken supergravity, which are models embeddable
in string theory. The breaking occurs through condensa-
tion of gravitino fields, the partners of gravitons, whose
double-well potential may eventually be deformed by
‘bias’ induced due to, say, percolation effects of vac-
uum bubbles in the effective theory. This leads to the
formation of unstable domain walls, whose collapse in
a non-spherically symmetric manner leads to primor-
dial GW. In this minimal scenario, only gravitational
degrees of freedom are encountered in the early Uni-
verse, in agreement with the assumption of [1,2], given
that the gravitino is the supersymmetry partner of the
graviton.

To be complete, and give as much information as
possible to the reader who might not be familiar with
our previous works [1–4], we also review here the con-
ventional RVM [5–11] and compare it with its mod-
ern ‘stringy’ version, stressing the essential similarities
but also the important differences, which might have
important, and observable in principle, phenomenolog-
ical consequences.

The structure of the article is as follows: in Sect. 2,
we describe the essential features of the conventional
RVM model, discuss its dynamical inflation, without
external inflatons, stressing important differences from
other dynamical-inflation scenarios like the Starobin-
sky model, and review the thermodynamical aspects
of the framework. In regards to the latter topic, we
review in detail the mechanism [16–19] underlying the
generation of an enormous amount of entropy during
the exit phase from the RVM inflation, which provides
also an explanation of the horizon problem in cosmol-
ogy [15,20] and shows that the RVM satisfies the Gener-
alized Second Law of Thermodynamics [21]. In Sect. 3,
we describe the stringy version of the RVM. We first dis-
cuss in detail the kind of stringy axions that arise in the
model, which apart from the KR axion, contain other
axions arising from compactification schemes in string
theory. All these axions have non-trivial anomalous cou-
plings to the gravitational Chern–Simons terms. They
constitute a form of ‘stiff’ “matter”, the evolution of
which is discussed within the RVM framework. We then
study a phase of dynamical inflation induced by grav-
itational anomaly condensates induced by primordial
GW perturbations. We explain how the latter lead to
an RVM energy density, but we stress the essential
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differences of the string version from the conventional
RVM approach, some of which might have observable
consequences. In Sect. 4, we discuss potential scenar-
ios for the origin of such primordial GW in pre-RVM-
inflationary phases of the string Universe. Among the
discussed scenarios, there is a minimal one, in which
there is a dynamically broken supergravity phase during
this pre-RVM inflationary phase, which occurs at the
end of a first (unobservable) hill-top inflation, induced
by the gravitino-condensate field. We discuss physical
mechanisms, due to percolation effects among vacuum
bubbles during this early phase of the string Universe,
which lead to unstable domain walls, whose collapse
produces the primordial GW responsible for the sec-
ond (and observable) “GW-induced-RVM inflation”. In
Sect. 5, we review the swampland criteria for embed-
ding the RVM model in ultraviolet complete theories
of quantum gravity, and discuss [4] how these criteria
are evaded in the case of the GW-condensate-induced
composite inflation that characterises the stringy RVM.
This is consistent with the phenomenological agreement
of the RVM inflation with slow-roll data. In this sec-
tion, we also mention briefly a mechanism for entropy
generation at the last stages of the stringy RVM infla-
tion, which is due to string states that in general fail
to decouple from the low-energy effective field theory.
This provides the stringy RVM mechanism for entropy
production, which calls for comparison with the field-
theoretic RVM version reviewed in Sect. 2. Requiring
the satisfaction of the swampland criteria in models
with fundamental inflatons is consistent with the ther-
modynamics of such states being treated within a local
effective field theory approach. However, the compos-
ite nature of the condensate field that leads to the
GW-induced stringy inflation enables the evasion of the
swampland restrictions in this case. Finally, conclusions
and outlook are discussed in Sect. 6.

2 Essentials of the running vacuum model
(RVM)

The original RVM[5–11]—see [12–15] for detailed revi-
ews—constitutes a theoretically (renormalisation-group
inspired) and phenomenologically compelling alterna-
tive to the standard concordance ΛCDM model, pro-
viding an effective description of the cosmological evo-
lution of the Universe from inflation till the present
era. It also helps alleviate the current tensions with the
data, as shown in a variety of fitting analyses [22–29].
These tensions must be overcome as they are indeed
a potentially important headache for the phenomeno-
logical consistency of the standard model of the cosmic
evolution (the ΛCDM model) [30]. Their stubborn per-
sistence may point to the existence of physics beyond
ΛCDM. Whatever the nature of the new physics might
be, we expect that it should not imply a drastic modifi-
cation of the ΛCDM since the latter provides already a
fairly good description of the overall cosmological data.

At the same time we expect that the needed correc-
tions to the concordance model should be sensitive to
the new features of both, the late and the early RVM
universe [16–21].

2.1 General structure of the RVM and its
connection to the renormalisation group in curved
spacetime

The RVM evolution of a cosmological Universe is usu-
ally formulated on a Friedmann–Lemâıtre–Robertson–
Walker (FLRW) background space-time metric, with
scale factor a(t), in the context of General Relativity
(GR). Let us, however, note that one may also obtain
an effective RVM evolution in a Brans–Dicke (BD) con-
text with a cosmological constant, hence within a grav-
ity paradigm different from GR. It turns out that in
this latter form (in which there is an evolution of the
effective gravitational coupling as well) the RVM is par-
ticularly efficient in solving the main tensions, above
all the one associated with the local value of the Hub-
ble parameter, H0 [31,32]. In either framework (GR
or BD), the dynamical vacuum energy density associ-
ated with the RVM is based on the following general
renormalisation-group (RG)-like form of the vacuum
energy density in terms of powers of the Hubble param-
eter H(t) = ȧ/a, which is a function of the cosmic time
t, and its cosmic-time derivative Ḣ [12–15]:

d ρΛ(μ)

d lnμ2

=
1

(4π)2

∑

i

[
AiM

2
i μ2 + Biμ

4 + Ciμ
6 + ...

]
, (1)

where the coefficients Ai, Bi are dimensionless, whereas
the Ci ones and higher are dimensionful. They receive
contributions from loop corrections of boson and fermion
matter fields with different masses Mi. The above RG
equation provides the rate of change of the quantum
effects on the CC as a function of some characteristic
cosmological scale μ. The leading effects are controlled
by the “soft-decoupling” terms of the form ∼ M2

i μ2.
Notice that the M4

i terms are absent, as they would
trigger a too fast a running of ρΛ(μ) as a function of
the scale μ. In fact, these effects are ruled out by the
RG formulation itself, since only the fields satisfying
μ > Mi are to be included as active degrees of freedom
contributing to the running.

The association of μ with some representative cosmo-
logical scale can be a matter of debate, but the ansatz
μ = O(H) (i.e. μ being of order of the Hubble scale at
each epoch) has been fostered since long ago [5–9]. If we
adhere to it, it is obvious that the condition μ > Mi (i.e.
H > Mi) cannot be currently satisfied by the SM par-
ticles. Therefore, the leading effects on the running of
ρΛ are, according to Eq. (1), of order M2

i μ2 ∼ M2
i H2,

and hence dominated by the heaviest fields at disposal.
In the context of a typical GUT near the Planck scale,
mPl ∼ 1019 GeV, the main contribution comes from
fields with masses Mi ∼ MX � mPl.
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While we agreed that μ ∼ H can be a natural asso-
ciation of the RG-scale in cosmology, a more general
option is to associate μ2 to a linear combination of
H2 and Ḣ (both terms being dimensionally homoge-
neous). Adopting this setting and integrating (1) up to
the terms of O(μ4), it is easy to see that we can express
the result as follows [12–15]:

ρΛ
RVM(H, Ḣ, Ḧ, . . . ) = a0 + a1 Ḣ + a2 H2 + a3 Ḣ2 + a4 H4

+ a5 Ḣ H2 + a6HḦ . . . , (2)

where the coefficients ai are real, having different
dimensions in natural units, we work with here. From
the foregoing discussion, we can see that the form (2)
for the vacuum energy density in cosmology has been
derived from general RG qualitative arguments. It is
worth noticing, though, that it can actually be sup-
ported by explicit calculations as well. This is in fact
the result presented very recently in [33], based on com-
puting the quantum corrections to a classical action
with a scalar field non-minimally coupled to gravity
(see next Sect. 2.2, for a summarised discussion). In
[33], it is shown from the calculation of quantum effects
in QFT in curved spacetime (specifically on a FLRW
background) that the ∼ M4

i terms are in fact absent
from the correctly renormalised vacuum energy density.
Furthermore, such calculation confirms that it is indeed
the cosmological scale H that controls the size of the
quantum corrections and, in addition, that the “soft-
decoupling” terms ∼ M2

i μ2 are the leading quantum
corrections to the vacuum energy density. At the end
of the day, it is reassuring to see that the banishing of
the quartic mass terms from the RG Eq. (1) is not an
ad hoc procedure, and also that μ ∼ H is in fact a sensi-
ble ansatz for gauging the size of the quantum effects in
cosmology. The physical results, therefore, are no longer
based on the useful (but qualitative) arguments origi-
nally proposed in [5–8].

Because of the general covariance of the effective
action of quantum field theories, which must charac-
terise all gravitational field theories, all the terms in the
RVM form (2) must appear as being of even adiabatic
order, and therefore, only an even number of deriva-
tives of the scale factor is possible. For example, apart
from the H2 and Ḣ terms which constitute the leading
terms at low energies, the next-to-leading ones would
be of the three forms Ḣ2, H2Ḣ and HḦ, all of them
of adiabatic order 4. Despite most of these structures
can actually be derived from the aforesaid QFT calcu-
lation in FLRW spacetime [33], no specific structure of
the form ∼ H4 appears in it, despite being suggested
as one of the expected terms in the general solution (2)
of the RG Eq. (1). As a result, all of the terms of order
4 vanish for H =constant. Thus, if these were the only
ones available at this adiabatic order, inflation could
not have been triggered from a transitory period where
H =constant. This is of course no drama, since infla-
tion can alternatively be triggered from a short period
where Ḣ =constant. This is exactly the situation, for
example, with Starobinsky inflation [34,35], where the

variation of the R2 term in the Starobinsky action pro-
duces precisely the aforementioned structures, as will
be reviewed in more detail in Sect. 2.4.

2.2 The RVM and its connection to quantum field
theory in curved spacetime

As noted, we would like to substantiate the RVM
form (2) of the vacuum energy density on more explicit
calculational grounds and, in addition, we would like
to use it to produce inflation with an alternative mech-
anism, e.g. one in which H =constant for an initial
period. For this to occur, a new term of order 4 should
enter the adiabatic expansion (2), namely the term
∼ H4 with no derivatives of the Hubble rate. Unfor-
tunately, as previously indicated, such a term does not
appear if one considers just the quantum effects of QFT
in curved spacetime within a scalar field theory coupled
to curvature [33]. Indeed, let us consider the action of a
free neutral scalar field non-minimally coupled to grav-
ity1:

S[φ] =
∫

d4x
√−g

(
1
2
gμν∂νφ∂μφ − 1

2
(m2 − ξR)φ2

)
,

(3)
where ξ is the non-minimal coupling of the quantum
matter field φ to curvature. It is well known that for ξ =
1/6, the massless (m = 0) action is conformally invari-
ant. Since φ is a quantum matter field, we can expand it
around its background value φ(η, x) = φb(η)+ δφ(η, x),
where δφ(η, x) denote the quantum fluctuations and
η is the conformal time. Because of these fluctuations
one has to add the higher derivative (HD) terms of the
vacuum action, since they are generated at the quan-
tum level and are, therefore, needed for renormaliz-
ability [38]. The HD vacuum action is composed of the
O(R2) terms, i.e. the squares of the curvature and Ricci
tensors: R2 and RμνRμν . No additional HD terms are
needed in 4 dimensions since the square of the Rie-
mann tensor, RμνρσRμνρσ, is not independent owing to
the topological (total derivative) nature of the Euler’s
density (or Gauss–Bonnet (GB) term, as is otherwise
called): GB=Rμνρσ Rμνρσ − 4Rμν Rμν + R2 = J μ

;μ,
μ, ν, ρ, σ = 0, . . . 3, where the semicolon in the last
expression denotes as usual the gravitational covariant
derivative2

1 We use here the following geometric conventions: met-
ric signature gμν , (+, −, −, −); Riemann tensor, Rλ

μνσ =

∂ν Γλ
μσ + Γρ

μσ Γλ
ρν − (ν ↔ σ); Ricci tensor, Rμν = Rλ

μλν ;
and Ricci scalar, R = gμνRμν . Overall, these correspond to
the (−, +, +, +) conventions in the classification by Misner–
Thorn–Wheeler [37].
2 Here, for concreteness and brevity, we do not discuss sit-
uations, like the one encountered in 4-dimensional effective
low-energy field theories coming from string theory, where
the scalar (dilaton) field couples to the Euler invariant. In
such cases, the dilaton and graviton fields are part of the
string gravitational vacuum, and the inclusion of dilaton-
Riemann-curvature-square terms play an important rôle on
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Thus, the full action consists of the Einstein–Hilbert
(EH) action with cosmological constant, the HD action
and finally the matter part, which in this case boils
down to Eq. (3): S = SEH + SHD + S[φ]. Since the HD
terms are included, the variation of S leads to the mod-
ified Einstein’s equations:

1
8πGN

Gμν + ρΛgμν + a1H
(1)
μν = 〈T δφ

μν 〉 + Tφb
μν , (4)

where Tφb
μν is the contribution to the energy-momentum

tensor (EMT) from the classical or background part,
whereas 〈T δφ

μν 〉 is the contribution from the vacuum fluc-
tuations of φ. The 00-component of the latter is con-
nected with the zero-point energy (ZPE) density of the
scalar field in the FLRW background. This is of course
the genuine effect of the vacuum energy-density we are
after. Finally,

H(1)
μν =

1√−g

δ

δgμν

∫
d4x

√−gR2

= −2∇μ∇νR − 2gμν�R − 1
2
gμνR2 + 2RRμν ,

(5)

with � the gravitationally covariant D’ Alembertian,
comes from the functional differentiation of the R2 term
in the HD vacuum action3. Thus, the total vacuum con-
tribution reads

〈T vac
μν 〉 = TΛ

μν + 〈T δφ
μν 〉 = −ρΛgμν + 〈T δφ

μν 〉 . (6)

The above equation states that the total vacuum EMT
is made out of the contributions from the cosmological
term and the quantum fluctuations of the field.

The computation of all these quantities has been per-
formed in [33], where an adiabatic regularisation and
renormalisation procedure has been used to produce
finite quantities. If we define the fundamental parame-
ters at the characteristic scale of a generic Grand Uni-
fied Theory (GUT), typically at MX ∼ 1016 GeV,
the renormalised vacuum energy density at low energy
emerging from explicit QFT calculation reads as fol-
lows [33]:

ρvac(H) � ρvac 0 +
3ν

8π
(H2 − H2

0 )m2
Pl , (7)

where ν is a dimensionless parameter given by [33]

ν =
1
2π

(
1
6

− ξ

)
M2

X

m2
Pl

(
1 +

m2

M2
X

ln
H2

0

M2
X

)
. (8)

Footnote 2 continued
the underlying physics, for instance, they may lead to black
holes with (secondary) scalar dilaton hair [39].
3 Recall that the corresponding term associated with the
functional differentiation of the square of the Ricci tensor,

H
(2)
μν , is not necessary since it is not independent of H

(1)
μν for

FLRW spacetimes [38].

It is obvious that |ν| � 1 since M2
X/m2

Pl � 1, with
mPl = 1/

√
G � 1.22 × 1019GeV the Planck mass

defined in terms of Newton’s constant, G, and H0

stands for the current value of the Hubble parameter4.
We will also use at convenience the reduced Planck mass
MPl = mPl/

√
8π � 2.435 × 1018 GeV in other parts of

the paper. The reader should also notice from (8) that,
in the conformal case, ξ = 1/6 the coefficient ν = 0, as
expected. However, as noted in [33], this does not mean
that the effective value of this coefficient should be zero,
even for conformal fields, as ν really receives contribu-
tions not only from fundamental scalar particles (s) but
also from fundamental fermions (f) and vector bosons
(v). In other words, the final value for such coefficient
is νeff = νs + νf + νv. The calculation performed in
[33] accounts for the contributions from a single scalar
field particle non-minimally coupled to gravity, i.e. it
partially accounts for the value of νs. This is neverthe-
less sufficient to demonstrate that the structure (7) can
be derived from QFT calculations on a FLRW back-
ground. As argued in that reference, we expect that
all fields would contribute formally the same with only
differences in the values of νi for each spin.

As already mentioned, the above result applies for
the present universe since it involves the constant term
ρvac 0 (the current value of the vacuum energy den-
sity (VED)) and the corrections of order O(H2). The
obtained result conforms with the expansion (2) up to
this order, since we have neglected at this point all
the terms of order O(H4), which, however, will play
an important role in the early universe. If such terms
are included, their contribution reads [33]

ρvac(H)=
9

16π2

(
ξ− 1

6

)2 (
2HḦ+6H2Ḣ − Ḣ2

)
ln

H2

M2
X

.

(9)
and again most of the new terms conform with the
general expansion (2) up to fourth adiabatic order. No
∼ H4-term, though, appears in (9). The reader should
again notice the vanishing of the vacuum energy for

4 Let us stress that the result (7) was foreseen long ago on
the basis of general renormalisation group arguments [5–8],
which, however, were only merely indicative, since the renor-
malisation procedure in curved spacetime is not so straight-
forward, especially if using off-shell renormalisation schemes
(such as Minimal Subtraction (MS)). The latter do not lead
to the correct answer in the infrared and generate large (but
spurious!) ∼ m4 terms. These terms have been a well-known
problem for a longtime, as they lead to huge fine tuning in
the value of ρvac 0. The RVM form (7), which contains no
such unwanted contributions, had also been predicted in [9]
in the context of anomaly-induced inflation and it was fur-
ther discussed in the general context of quantum fields in
curved spacetime in [12–15]. However, as indicated, it was
only recently that the RVM has been accounted for in full
detail from explicit QFT calculation in curved spacetime
based on the adiabatic regularisation and renormalisation
of the EMT corresponding to the action (3) [33]. In such a
context all the above mentioned spurious contributions can
be disposed of.
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the conformal case ξ = 1/6, which constitutes a nice
consistency check of the approach.

In contradistinction to the higher order corrections
found in the QFT case [33] , the ∼ H4-term appears
in the context of a stringy-dominated era of the Uni-
verse at scales above the effective RVM inflationary
scale [1–4]. All other degrees of freedom such as e.g. the
gauge ones, appear as virtual quantum fluctuations, or
in hidden sectors of the string-inspired model. In such
a stringy RVM framework, scenarios can be conceived
leading to the formation of primordial gravitational
waves (GW) and other metric (tensor) fluctuations.
The supermassive transplanckian string modes decou-
ple from the effective field theory during the expansion
and an effective action is left involving only the massless
degrees of freedom of the bosonic gravitational multi-
plet of the string in a broken supergravity phase, see [1–
4] and discussion in subsequent sections of this paper.

What is important for this consideration is that the
string induced primordial GW generate the necessary ∼
H4 terms, which are the trademark of the new (stringy)
mechanism of RVM inflation that cannot be produced
from QFT effects. We stress that the gravitational-
anomaly terms in the string-inspired RVM couple to
fundamental massless gravitational axion fields, which,
together with the dilaton and graviton fields, constitute
the massless ground-state gravitational multiplet of the
string. Such CP-violating couplings of the gravitational
axion fields with anomalies are crucial for the afore-
mentioned GW-induced condensates. In the absence of
axion fields, the gravitational anomaly terms are irrele-
vant, being total derivatives (topological). The charac-
teristic of this new formulation of the RVM, therefore,
is that ∼ H4 -inflation can be accounted for on string-
based theoretical grounds. The ∼ H4 -inflation mech-
anism is obviously different from Starobinsky infla-
tion [15]. Its compatibility with observations [1,2], make
it worth of detailed studies. In subsequent sections of
this paper, we will devise new detailed scenarios aimed
at explaining the transition from the string era into the
QFT one within this modern, stringy RVM, formula-
tion.

2.3 Basics of RVM inflation

In simple cosmological models, which suffice to describe
phenomenologically realistic cosmic evolution, from
inflation to the present epoch, the various epochs
are described with approximately constant deceleration
parameter q per era, in which case one can write

Ḣ � −(q + 1)H2. (10)

The above relation is exact if q(t) is the instanta-
neous value at cosmic time t, but is approximate for
each epoch if q is taken to be as constant. Recall
that q = (1, 1/2,−1) for radiation, matter and vacuum
energy, respectively. From (2), then, one can then use
for all practical purposes [16–21]:

ρΛ
RVM(H) =

Λ(H)
κ2

=
3
κ2

(
c0 + νH2 + α

H4

H2
I

+ . . .

)
,

(11)
where κ2 = 8πG = 1

M2
Pl

is the four-dimensional gravita-
tional constant, with MPl the aforementioned reduced
Planck mass. As pointed out before, this structure can
also be motivated from RG arguments on assuming that
μ2 can be associated with a linear combination of the
homogeneous quantities H2 and Ḣ. The H4 terms and
higher do not play any significant rôle in fitting the cur-
rent data. We shall only keep the H4 ones to investigate
the physics of the early universe, where they could pro-
vide e.g. a new inflationary mechanism as an alternative
to the standard inflaton models and the like. The dots
in (11) denote terms of order H6 and higher, which we
expect to remain further suppressed. Recall that the
expansion (2) is supposed to emerge from solving the
aforementioned RG Eq. (1). Since the terms ∼ H6 and
higher in that RG equation are accompanied by coef-
ficients with negative dimension of mass, such terms
should follow the fate dictated by the decoupling theo-
rem in QFT [40], and hence they will be ignored from
now on. The notation Λ(H) is used in (11), to stress the
connection of the RVM with a “running cosmological
vacuum energy term” with an equation of state (EoS)
identical to that of a cosmological constant:5

wRVM = −1. (12)

Within the standard RVM framework a smooth evo-
lution of the Universe is assumed, where the numerical
coefficients of the various terms in (11) are assumed
the same at various epochs [16–21]. In this respect, the
late Universe evolution is dominated by the true cos-
mological constant c0 and H2 terms, which imply a
slight, but phenomenologically important and observ-
able deviation from the ΛCDM evolution, which mim-
ics quintessence behavior and helps to smooth out the
aforementioned tensions existing in the ΛCDM [22–29].
On the other hand, the early-Universe eras are domi-
nated by the ∼ H4-terms, which can lead to dynamical
inflation [16–21], without the need for external inflaton
fields [42].

To understand this, let us one consider a generic
RVM model, which includes matter/radiation excita-
tions of the running vacuum, with energy density ρm

and pressure
pm = wm ρm , (13)

5 We note for completeness, that a similar situation, with
an EoS of the form (12) but a vacuum energy Λ(t) depend-
ing on cosmic time, also appears to characterise the vacuum
of some non-critical-string-theory cosmologies, with space-
time brane defects [41], where the induced running of the
cosmological constant with the cosmic time is a direct con-
sequence of the interpretation of the target time as a local
renormalisation scale on the world-sheet of the non-critical
string. The considerations of [1–4] provide another non-
trivial connection of RVM with rather generic critical, this
time, string cosmological models with gravitational anoma-
lies.
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where wm denotes the relevant EoS, with wm = 1/3 for
radiation (relativistic matter in general), and wm = 0
for non-relativistic matter. The pertinent cosmological
(Friedmann) equations in the presence of a running Λ(t)
are given by

κ2ρtot = κ2ρm + Λ(t) = 3H2 , (14)

κ2ptot = κ2pm − Λ(t) = −2Ḣ − 3H2, (15)

where the overdot denotes derivative with respect to
cosmic time t, and

ρtot = ρm + ρΛ, ptot = pm + pΛ = wm ρm − ρΛ, (16)

are the total energy density and pressure density of both
the vacuum (suffix Λ) and matter/radiation (suffix m)
terms, and in the second equation we used (12).

It is important to stress that, unlike in the stan-
dard ΛCDM model of cosmology, where Λ =constant,
in the RVM, for which Λ(t) depends on cosmic time
(cf. (2)) there are nontrivial interactions between radi-
ation/matter and the vacuum, which are manifested
in the modified conservation equation for the mat-
ter/radiation energy density ρm, obtained from the cor-
responding Bianchi identities of the RVM Universe:

ρ̇m + 3(1 + ωm)Hρm = −ρ̇Λ
RVM . (17)

The alert reader should notice that, in view of (10),
the right-hand side of (17) consists of terms of order H3

and higher, and also suppressed by factors q +1 which,
during the inflationary phase are almost zero (in fact,
during the inflationary phase, for which the H4 term in
(11) dominates, one has ρ̇Λ

RVM = O
(
(q + 1)H5

)
).

Taking into account the RVM expression (11) and
using Eqs. (14) and (15), one arrives at:

Ḣ +
3
2

(1 + ωm)H2
(
1 − ν − c0

H2
− α

H2

H2
I

)
= 0 , (18)

which, on using (17), leads to a solution for H(a) as a
function of the scale factor and the equations of state
of ‘matter’ in RVM [16–19]:

H(a) =
(

1 − ν

α

)1/2
HI√

D a3(1−ν)(1+ωm) + 1
, (19)

where D > 0 is an integration constant. Notice that
in arriving at (19), we ignore the c0-dependent term
in front of 1, but we keep the order H4 terms in the
expansion (11), as they play a crucial rôle in the early
Universe. On assuming |ν| � 1, which is consistent
with the standard RVM phenomenology [22–29] (which
implies ν ∼ 10−3, consistent with previously-existing
theoretical estimates [9]), one observes that for early
epochs of the Universe, where the scale factor a � 1,
one has D a3(1−ν)(1+ωm) � 1, and thus an (unstable)

dynamical de Sitter phase [16–19], characterised by an
approximately constant

Hde Sitter �
(

1 − ν

α

)1/2

HI (20)

emerges.
On the other hand, in radiation-dominated epochs

of generic RVM models, with an EoS wm = 1/3, one
obtains from (19):

H(a) =
(

1
α

)1/2
HI√

D a4 + 1
, (21)

for |ν| � 1, which connect smoothly with the early
(unstable) de Sitter phase at Da4 � 1, during which
H remains approximately constant (20).

The above expressions for the RVM Hubble function
describe the early universe, when the scale factor is a �
0. To make the connection with the current universe
(a � 1, in units of the present-day scale factor) more
apparent, it is convenient to rescale some quantities.
In particular, it is convenient to rewrite D in terms of
a more physical parameter of the early stages of the
cosmic evolution: the point where inflation stops. To
determine this point, we have to compute the energy
densities of matter and vacuum and find the equality
point aeq between them. Such a point is defined by the
condition ρr(aeq) = ρΛ(aeq) and can then be used to
trade D for aeq. In fact, it is even more convenient to
use a rescaled form of the latter:

â ≡ a

a∗
, (22)

where a∗ is related to aeq through [21]

D =
1

1 − 2ν
a−4(1−ν)
eq ≡ a

−4(1−ν)
∗ . (23)

It is clear that a∗ is essentially the same as aeq since
|ν| � 1 but the former is a more convenient notation
simplifying the writing of the formulae. Thus the Hub-
ble function and the associated energy densities of mat-
ter and vacuum energy read, respectively [16–21]:

H(â) =
H̃I√

1 + â4(1−ν)
, (24)

ρr(â) = ρ̃I(1 − ν)
â4(1−ν)

[
1 + â4(1−ν)

]2 (25)

and

ρΛ(â) = ρ̃I
1 + νâ4(1−ν)

[
1 + â4(1−ν)

]2 . (26)
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In the above equations, we have also rescaled HI and
ρI = 3H2

I /κ2 as follows:

H̃I =

√
1 − ν

α
HI , ρ̃I =

3
κ2

H̃2
I . (27)

As it is evident from (25) and (26), the values of H̃I and
ρ̃I are precisely the Hubble rate and vacuum energy
density at a = 0: H(0) = H̃I , ρΛ(0) = ρ̃I , i.e. at the
start of the inflationary epoch. We had initially called
the former quantity the de Sitter scale value of the Hub-
ble rate, see (20).

The previous formulae clearly demonstrate the exis-
tence of a transfer of energy from vacuum into mat-
ter during the cosmic evolution, as clearly illustrated in
Fig. 1 (see [16–19] and [15,20,21] for more details). Such
process is especially pronounced in the early stages of
the cosmic evolution. At â = 0, we confirm that the
vacuum energy is maximal, whilst the matter density is
zero. From this point onwards, the vacuum decay con-
tinues until reaching an equality point at aeq, where
ρr(aeq) = ρΛ(aeq). An order-of-magnitude estimate of
the point aeq � a∗ can be easily obtained by taking
into account that, in the asymptotic limit (â 
 1, i.e.
a 
 aeq) deep into the radiation epoch, the radiation
density (25) behaves as

ρr(a) = ρ̃I(1 − ν)â−4(1−ν) = ρ̃I(1 − ν)a4(1−ν)
∗ a−4(1−ν) .

(28)

This form should be familiar, given that we are able
recover the standard behavior of the radiation density,
ρr(a) ∼ ρr0a

−4(1−ν), from the exact expression (25),
up to a tiny correction which depends on ν (recall that
|ν| � 1). Imposing that (28) must reproduce the radi-
ation density at present: ρ(a = 1) = ρr0 gives a handle
to estimate a∗ and hence aeq. Indeed, using also that
the energy density at the inflationary period must be of
order of the GUT one, ρ̃I ∼ M4

X , with MX ∼ 1016 GeV
and that the current radiation energy density in units
of the critical density is of order Ωr0 = ρr0/ρc0 ∼ 10−4,
we can easily derive

aeq � a∗ �
(

Ωr0
ρc0

ρI

)1/4

∼ (Ωr0)
1/4 (H0 MPl)

1/2

MX
∼ 10−29 .

(29)
This numerical value places the balance point between
radiation and vacuum energy densities in the very early
universe, virtually at the end of inflation or, equiva-
lently, the incipient radiation-dominated epoch 6.

However, as we discussed in [1,2], and shall fur-
ther address below, in the context of a specific string-
inspired RVM model the ‘matter content’ is different
from that of relativistic matter. Moreover, there is no

6 It may be illustrative to compare it in order of magni-
tude with the (much more recent) equality point between
radiation and nonrelativistic matter: aEQ ∼ 10−4 [55].

Fig. 1 Evolution of matter and vacuum energy densi-
ties (25)–(26) as a function of the scale factor during the
primeval inflationary epoch in RVM inflation, and their
transition into the FLRW radiation era. Both densities are
normalised with respect to the primeval vacuum energy den-
sity ρI , and the scale factor with respect to the equality
point, aeq, for which ρΛ = ρr (see the text). The relativistic
matter component is shown as a black dashed line, whereas
the vacuum energy density as a red solid line

perfectly smooth evolution from the de Sitter inflation-
ary eras to the current era, as there are phase tran-
sitions at the exit from inflation, which result in new
degrees of freedom entering the effective field theory,
although qualitatively the main features of RVM are
largely preserved. In fact, the above discussion shows
that a smooth evolution can lead to a reasonable pic-
ture, in which the standard radiation dominated epoch
(ρr ∼ a−4) follows continuously from the inflation-
ary one. A more realistic scenario, however, requires
an intermediate step (phase transition) in which the
Kalb–Ramond (KR) axion from the effective low-energy
string theory will play a significant role, see Sect. 3.
Needless to say, this is an important point of the stringy
version of the RVM, which was absent in its original
form, and is under discussion in this article.

At this point, some important remarks are in order,
which help elucidate the connection between the RVM
physics of the early universe and the one expected at the
present era. From the generic RVM expression for the
vacuum energy density (11), one might expect that the
connection with the current universe is obtained in the
limit α → 0. However, such a limit is undefined for both
the Hubble rate (21) and the energy densities (25)–(26)
and hence it cannot be implemented [21]. Indeed, as
can be inferred from (19), a crucial virtue of the RVM
approach is that the initial value of the Hubble rate for
a scale factor a → 0 (cf. (20)), H(0) = H̃I � HI/

√
α,

is finite and hence there is no initial singularity for the
RVM Universe. To ensure this feature, it is indispens-
able that α > 0 (strictly) in (11).

Par contrast, when α → 0, so that the H4 term is
subdominant compared to H2 in (11), the entire RVM
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physics of the early universe disappears since no non-
singular solution can exist at a = 0, except the triv-
ial one corresponding to a static Universe (H = 0).
Indeed, in such a case, for matter/radiation dominance,
obtained from (18) by setting α = 0 and assuming
c0 � H2, which justifies ignoring the c0 term in (18),
the solution for H(a) exhibits an initial singularity, as
a → 0, in the form:

H(a)matter/radiation dominance
H4-ignored ∼ a− 3

2 (1+wm)(1−ν), (30)

with the standard ΛCDM case corresponding to ν = 0.
We shall come back to this point in Sect. 3, when we
discuss early Universe phases in the context of string-
inspired RVM.

In other words, it is only when the term H4 is present,
and carries a positive coefficient, that nonsingular solu-
tions to the cosmological equations can exist. A nonva-
nishing value for α is mandatory and hence the way to
connect the early universe and the current universe in
the context of the RVM model (11) is not by performing
a zero limit of the parameters ν, α but by just letting
the evolution of H to interpolate between the different
epochs. The two coefficients must be present and non-
vanishing in the entire cosmic history. The connection
between epochs is implemented dynamically through
the relative strength of H4 vs H2 that changes when
moving from early epochs to the current ones, in which
the former term is completely negligible compared to
the latter. The function (11) is indeed a continuous
function of H and moves from H4 dominance into H2

dominance, and finally we are left with a mixture of a
constant (and dominant CC) term plus a tiny correc-
tion ∼ νH2. This means that, according to the RVM,
the dark energy in the current universe is evolving, as
there is still a mild dynamical vacuum energy ∼ H2 on
top of the dominant term (the cosmological constant).
Although it may create the illusion of quintessence, it
is just a residual dynamical vacuum energy that helps
to improve the fit to the data [22–29].

While this is the basics of the standard picture within
the RVM [12–15], in a stringy RVM formulation the
contributions to the current-era cosmological constant
may come from condensation of much-weaker GW, and
the evolution cannot be described by a smooth solu-
tion (19), connecting the initial inflation to the cur-
rent epoch [1,2]. More details will be given here. Basi-
cally, the GW condensation leading to the initial and
current-era (approximately) de Sitter space times are
viewed as dynamical phase transitions, whose presence
affect the smoothness of the evolution of the stringy
Universe. In this respect, the RVM can be seen as pro-
viding an effective description within each epoch, with
non-trivial coefficients of the various H-powers in the
string-inspired RVM analogue of (11), which are com-
puted microscopically in the various eras, as we dis-
cussed in [1] and revisit below.

Having said that, though, we also stress that in the
stringy RVM the H4 term in the vacuum energy density
arises from condensation of GW, and is linked to the

gravitational anomalies, which are non-zero only in the
presence of GW [1]. When the latter are absent, as, for
instance, may happen deep in a pre-RVM-inflationary
phase of the Universe, the H4 terms vanish, consistent
with the fact that in the stringy RVM, the GW-induced
inflationary phase is associated with a phase transi-
tion, that of the formation of the anomaly condensate.
Nonetheless, even in such a case, the initial singularities
at the Big-Bang point may be absent due to the higher
order curvature corrections of the string-inspired grav-
itational action [43], which must be taken into account
at such an early epoch. Therefore, in this respect, the
spirit of the RVM, as implying the absence of initial sin-
gularities in the Universe, is maintained by its stringy
version. We shall discuss such issues in Sects. 3 and 4.

In the following two subsections, we shall discuss
some additional features of the standard RVM, before
proceeding to a discussion of the stringy RVM version
in Sect. 3. Such features are shared by both the conven-
tional and stringy RVM frameworks, and their descrip-
tion will help the reader appreciate the connection
between the two formalisms at an effective field theory
level. In the next Sect. 2.4, we shall review a compar-
ison/contrast of the inflation within the RVM frame-
work with that of the Starobinsky model. Although
both models do not require external inflation fields,
nonetheless there are important differences, which we
will discuss in some detail. In Sect. 2.5, we shall discuss
the thermodynamical aspects of the RVM framework.
We stress that both of these features are important for
the compatibility of the (stringy) RVM approach with
the swampland criteria [4] of embedding it properly in
an UltraViolet (UV) complete theory of quantum grav-
ity, such as strings, discussed briefly in Sect. 5.

2.4 Short comparison of RVM inflation with
Starobinsky inflation

In this subsection, we compare the RVM inflation with
Starobinsky’s inflation [34,35], which is based on adding
a classical term R2 to the usual EH action:

S =
∫

d4x
√−g

(
− R

16πG
+ b̃R2

)
+ Smatter . (31)

We will follow closely the discussion of [15], except that
we denote the (dimensionless) coefficient of the R2 term
by b̃ not to be confused with the KR field b(x) which
will appear later on. The R2 term is present explicitly
in the Starobinsky classical action. It is usually written
as b̃ = m2

Pl/(6M2
sc), where Msc is a parameter of mass

dimension [+1]—playing the role of the scalaron mass
in the original model [34]. In the case of the scalar-field
model non-minimally coupled to gravity, Eq. (3), the R2

term is part of the vacuum action, to absorb the diver-
gences of the renormalisation procedure, but the value
of its coefficient is not needed, only the renormalisation
shift (i.e. the counterterm) associated with its variation
(a1 → a1 + δa1) should be specified [33]. However, in
both cases, the variation term, or, more properly, the
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functional differentiation of R2 with respect to the met-
ric, is involved in the effective action, which gives the
result (5).

The field equations associated with the variation of
the action 31 are easily obtained. Assuming a single
matter component behaving as an ideal fluid of density
ρ and pressure p , they read

Gμν − 32πGb̃(∇μ∇νR + gμν�R + RRμν

−gμν

4
R2) = 8πGTμν , (32)

with
Tμν = −pgμν + (ρ + p)UμUν (33)

the EMT of the matter fluid and Uμ its four-velocity
field. In the early universe we may assume that the
latter is a relativistic fluid, so we have pr = ρr/3 for
the matter EoS. Next, writing down the (μ, ν) = (0, 0)
and (μ, ν) = (i, j) components of the field Eq. (32) in
the spatially flat FLRW metric, as usually done in the
GR case, we may combine them to find:

2H2 + Ḣ + 48πGb̃(2
...
H + 14ḦH + 24H2Ḣ + 8Ḣ2) = 0 .

(34)
One can easily see that for b̃ = 0 we recover the
expected GR equation 2H2 + Ḣ = 0 characteristic
of the pure radiation era (a ∼ t1/2). However, when
b̃ �= 0, solving the nonlinear Eq. (34) can be a chal-
lenge. Even before making any attempt in this direc-
tion, it is pretty obvious that no H =constant solution
is possible. Therefore, a steady Hubble rate is not the
trademark of Starobinsky inflation. Nonetheless, infla-
tion can still be triggered by an initial phase charac-
terised by Ḣ =constant, instead of H = constant. This
is confirmed by the exact numerical solution given in
Fig. 2 (see [15] for details). Since Ḣ remains essentially
constant until we are very near the end of the infla-
tionary phase (as it is obvious from the straight line
in the plot on the lower panel in Fig. 2), we can solve
(34) by neglecting Ḣ/H2 � 1 and all higher derivative
terms. This yields 576πGN b Ḣ = −1, which is solved
by H(t) = HI −m2

Plt/576πb (the equation of the afore-
said straight line). Integrating once more, we get the
approximate solution for the scale factor:

a(t) ∼ eH(t)t ∼ eHIte− M2
sct2

192π . (35)

Obviously, we must have b̃ > 0 (hence a well-defined
scalaron mass, Msc > 0) to have a stable inflationary
solution until the inflationary phase is extinguished at
around tf � 192π HI/M

2
sc. The larger the b̃ (i.e. the

lighter the scalaron) the longer the inflationary time.
When the Ḣ �constant period is over, a final phase,

characterised by rapid oscillations of the gravitational
field, produces a reheating period (see Fig. 2). This
period is usually associated to the slow roll of the
scalaron prior to its decay into relativistic particles,

Fig. 2 The exact (numerical) inflationary solution of
Eq. (34) corresponding to the Starobinsky model (31). On
the upper panel it is shown the initial exponential growth
a ∼ eHI t of the scale factor and its stabilisation into the
radiation regime a ∼ t1/2. We have taken HI = mPl and
b̃ = 108 [36]. On the lower panel we display the correspond-
ing behavior of the Hubble function. The straight line is
described by the approximate inflationary solution (35). In
the inner window, we show the characteristic oscillations
when the Universe leaves the inflationary phase and enters
the radiation epoch in the form a ∼ t1/2 + oscillations.
In that window, we have now set b̃ = 100 to make the
oscillations more apparent. Time has been rescaled as t̂ =
(MP /

√
96π) t, and Ĥ = ˆ̇a/a is the (dimensionless) Hubble

rate in the rescaled time

which reheat the universe (note that the intermedi-
ate state dominated by scalarons is not hot, but cold,
since the scalarons are heavy particles). This is how
the standard reheating picture in Starobinsky’s infla-
tion proceeds and leads the universe into the radiation-
dominated epoch. During that epoch, the scalar curva-
ture vanishes identically R = 0, and the higher order
terms cease to be relevant from that point onwards in
the cosmic evolution. This also happens in the RVM
case discussed in the previous section, except that for
Starobinsky inflation nothing is left of the inflationary
phase at the present time, whereas after RVM infla-
tion, e.g. during the matter-dominated period and the
DE epoch, the RVM still provides terms proportional
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to H2 in (11), which remain currently active and make
DE a dynamical quantity, see particularly the form (7).

Unfortunately, the missing H4 terms in Starobinsky
inflation, are also missing in the explicit QFT calcu-
lation of [33] aiming at reproducing the entire RVM
structure (11). In that calculation only the ∼ H2

terms are found plus the higher order contributions
given in Eq. (9), which depends on the same structures
Ḣ2, H2Ḣ and HḦ appearing in Starobinsky inflation,
with no pure H-term of the form ∼ H4. Therefore, the
non-minimally coupled scalar field action(3) with quan-
tum corrections and the Starobinsky action (31) both
lead to common terms of adiabatic order 4 which vanish
for H =constant, as we have just seen from the preced-
ing discussion. The missing term ∼ H4, which is the
hallmark of RVM inflation as compared to Starobin-
sky inflation [34] and is crucial for generating the char-
acteristic form of RVM inflation based on a period of
H =constant rather than a period of Ḣ = constant,
though, will be finally generated in the stringy RVM
scenario [1], to be discussed in Sect. 3.

Obviously, once the H4 term is secured, the associ-
ated thermodynamical features to each type of infla-
tion are very different in the two inflationary mecha-
nisms (Starobinsky and RVM). In the original version
of RVM inflation, there is no “reheating”; the vacuum
decays into particles through a continuous “heating
up” period rather than through an intervening state
of material particles (inflatons or scalarons) 7 This is
obvious from the cosmological solution of the RVM
equations presented in the previous section and can
be appraised graphically in Fig. 1. In the next subsec-
tion, we shall close the discussion on the conventional
RVM by reviewing some of its specific thermodynamical
implications. These will be retained in full in the stringy
version of the RVM, of course, since the string-inspired
formulation actually provides a raison d’être for the pre-
eminent H4 power in the RVM structure (11).

2.5 Some thermodynamical aspects of RVM
inflation and the GSL

Since H =const characterises the initial period of RVM
inflation, it is obvious that the RVM can provide an
explanation for the horizon problem since the particle
horizon (essentially H−1) remains much larger than the
size of the universe when we recede to very early times
where a → 0. This was already amply clarified in [15].
Here, however, we would like to emphasise the solu-
tion of the horizon problem from the point of view of
the large production of entropy and the fulfilment of
the Generalized Second Law (GSL) by the RVM uni-
verse [21]. The GSL ideas for the universe are inspired
from the situation with black holes (BH). The GSL for
BH’s asserts that in all physical processes in which BH’s

7 That the RVM inflation, when formulated as a scalar
quantum field theory, cannot be described as a typical
scalaron-induced inflation has been recently discussed in
[44].

are involved, the sum of the BH entropy, SBH, and the
ordinary entropy of matter and radiation fields in the
BH exterior volume, collectively denoted as SV , cannot
decrease:

S′
V + S′

BH ≥ 0 , (36)

where the prime indicates differentiation with respect
to a convenient variable defining the evolution of the
process. The idea stems from Bekenstein [45–47] who
conjectured a proportionality between the BH entropy
and the horizon area, which is based on Hawking’s
area theorem stating that the BH surface cannot
decrease [48]. The proposed BH entropy formula is the
famous Bekenstein–Hawking formula:

SBH =
kB A

4�2Pl

=
kBc3 A

4 � G
−→ SBH

=
A

4G
(natural units) . (37)

For a Schwarzschild’s BH of mass M , the surface area
is A = 4πr2

S , where rS = 2GM/c2 is the Schwarzschild
radius.

These notions were later extended to cosmology for
the entire universe [49], see e.g. [50,51] for a review. In
this case, the Schwarzschild radius is replaced by the
apparent horizon (AH), let us call it �h. Therefore, for-
mally the same Eq. (37) applies, but now the area A is
replaced by that of the AH: A = 4π�2h. Since for spa-
tially flat FLRW geometries (the only ones we shall use
here) the AH coincides with the inverse of the Hubble
rate8

SA =
π

GH2(t)
=

πm2
Pl

H2(t)
(natural units) . (38)

Of the two entropy contributions in Eq. (36), the last
(S′

BH) is the biggest in the RVM universe. Using (24),

8 Although we can spare the reader a formal definition of
AH here (see e.g. the above mentioned reviews), physically
speaking, we can say that beyond the cosmological AH all
null geodesics recede from the observer and no information
can reach us. The closest intuitive notion to it may be the
Hubble sphere, but the latter is only a particular case for
spatially flat spacetime. The edge of that sphere is the ulti-
mate light cone for spatially flat universes since in it the
galaxies recede at the velocity of light. The AH is generally
different from the event horizon. The latter is a null surface,
whereas the former generally is not. When the event horizon
exists, the AH is usually contained in it, or coincides with
it. In cosmology, the AH is dynamical, and in the impor-
tant case of the ΛCDM, and also for the RVM, the presence
of the cosmological constant term Λ, is such that the AH
becomes eventually an event horizon with �h = 1/HΛ, where
HΛ is the limiting value of Eq. (45), below, for a → ∞. In
the ΛCDM case, one sets ν = 0. The AH is generally con-
sidered more suitable for thermodynamics discussions than
the event or particle horizons [52–54].
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we find

Searly
A (â) =

π m2
Pl

[
1 + â4(1−ν)

]

H̃2
I

∼ m4
Pl

M4
X

â4(1−ν) (â � 1) ,

(39)

where the fast growing SA ∼ a4(1−ν) holds deep in the
radiation epoch. Insofar as the radiation entropy from
relativistic particles inside the horizon is concerned, it
involves the radiation temperature, Tr, related to the
radiation density through ρr = π2

30 g∗T 4
r . The calculation

is similar to that of the comoving entropy [55], except
that we have to replace the comoving volume by the
horizon volume (a3 → Vh = �3h), whence

Srad
V (â) =

4

3

ρr

Tr

Vh

=
4

3

(
π2g∗
30

)1/4 4π

3

ρ3/4
r

H3(a)
∼ m3

Pl

M3
X

a3(1−ν) (â � 1) .

(40)

In the last step, we used (24) and (25).
Both Searly

A and Srad
V increase very rapidly with the

scale factor at this epoch, but the former is clearly dom-
inant. Particularly noteworthy is the following observa-
tion: even though S′

A,V > 0 in both cases, the con-
vex behavior S′′

A,V > 0 shows that the Universe does
not tend to equilibrium at this early stage. For this we
would need overall concave behavior : S′′

A + S′′
V < 0.

Therefore, the question arises as to whether the RVM
universe eventually reaches thermodynamical equilib-
rium. One can answer this question in the affirmative,
and the existence of a positive cosmological constant
plays a crucial rôle in this. To see that, let us note that
the late time behaviour is different from that displayed
in the above equations. Differentiating the expression
(7) describing the running of the VED at low energies,
we find dρvac = (3ν/8π)m2

PldH2 = ν (dρm + dρvac),
where in the second step Friedmann’s equation has been
used. Thus, we arrive at the following relation between
the infinitesimal variations of the energy densities of
vacuum and matter in the RVM framework:

dρvac =
ν

1 − ν
dρm . (41)

Substituting on the r.h.s. of Eq. (17) and trading the
cosmic time differentiation for the differentiation with
respect to the scale factor (df/dt = aHdf/da ≡
aHf ′(a) for any function f) we arrive at the following
differential equation for the matter density with respect
to the scale factor:

ρ′
m +

3
a
(1 + w)(1 − ν) ρm = 0 . (42)

Its integration provides

ρm(a) = ρm0 a−3(1+w)(1−ν) . (43)

This result now can be used back into (17) to derive
the evolution of the vacuum energy density explicitly
in terms of the scale factor:

ρvac(a) = ρvac 0 +
ν ρm0

1 − ν

(
a−3(1−ν) − 1

)
. (44)

From these densities, we can compute the (square) of
the late-eras Hubble rate at low energies (in the matter
and DE epochs, for which w = 0 for the dust compo-
nent):

H2
late =

H2
0

1 − ν

[
Ωm0 a−3(1−ν) + ΩΛ0 − ν

]
, (45)

where Ωm0 + ΩΛ0 = 1, with Ωi 0, i = m,Λ, denoting
present-day energy densities for matter (i = m) and
vacuum (Λ) in units of the critical density of the Uni-
verse. Notice that Hlate → constant as the cosmic time
evolves. As expected, it boils down to the RVM tend-
ing to ΛCDM for ν → 0. Upon inserting Eq. (45) in
Eq. (38), we can calculate the entropy of the AH near
our time and into the future:

Slate
A (a) = π

m2
Pl

H2
late(a)

=
πm2

Pl (1 − ν)
H2

0

[
Ωm0 a−3(1−ν) + ΩΛ0 − ν

] ,

(46)

This contribution is overwhelmingly large as compared
to that of the radiation energy density in the same
late epochs of the cosmological evolution. Recall that
in these epochs the radiation energy density behaves
as in Eq. (28). Furthermore, substituting H → Hlate in
(40) and taking into account Hlate → constant, we find
a fast drop of the radiation entropy inside the AH when
the universe evolves into the future:

Srad late
V (a) ∼ ρ

3/4
r

H3
late(a)

∼ a−3(1−ν) . (47)

At the same time, we can neglect the entropy from
the material (nonrelativistic) particles, which is given
by the product of the particle number density (n) times
the specific entropy per material particle (typically
taken to be one Boltzmann unit κB , hence 1 in natural
units) times the volume of the AH (Vh = (4π/3)�3h). In
the asymptotic regime, we find

Smat
V (a) = n(a)κBVh =

4π

3
n(a)

H3
late(a)

∼ a−3(1−ν) , (48)

where we used that Hlate → constant for a 
 1 (late
de Sitter era) and we accounted for the particle dilution
law n(a) ∝ a−3(1−ν) (involving a small ν-correction), in
accordance with Eq. (43). We find that both the radia-
tion entropy and that from the material nonrelativistic
particles can be utterly neglected. They definitely play
no rôle on judging the fulfilment of the GSL in the late
universe, as the GSL is in fact completely controlled by
the holographic contribution from the AH (46).
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Fig. 3 Late time evolution of the horizon entropy SA(a),
as given in Eq. (46) and its first derivative, from the current
universe into the future. The upper panel shows the ratio
SA(a)/SA(a = 1), normalised to its current value. The lower
panel shows the first derivative with respect to the scale
factor, also normalised in the same way. We can see quite
evidently from the plots (and confirmed by the calculations)
that S′

A > 0 and S′′
A < 0. Therefore, we can assert that the

GSL is ultimately preserved by the RVM evolution since
the numerical significance of SV is comparatively negligible,
as explained in the text. Plots are shown for four different
values of the parameter ν: ν = 0.1 (red solid), ν = 0.01
(black dotted), ν = 0.001 (green dash-dotted), and ν =
0.0001 (blue dashed)

Thus, it is enough to focus on the late time behavior
of (46), which is much more tamed than the rampant
behavior of the early times, Eq. (39)—which was essen-
tial for the huge initial production of entropy. The two
behaviours are of course connected by the continuous
vacuum energy density function (11). Explicit calcula-
tion shows that the dominant holographic contribution
from the AH fulfils S′

A(a) > 0 and the concave condition
S′′

A(a) < 0. These results can be appraised graphically
in the plots of Fig. 3, see [21] for an extended discus-
sion. Thus, the entropy rise eventually enters the cor-
rect behavior required by the Generalized Second Law
applied to the universe with an apparent horizon. The
entropy finally reaches a maximum [21]

Smax
A (a → ∞) =

πm2
Pl (1 − ν)

H2
0 (ΩΛ0 − ν)

∼ 10122 . (49)

The RVM universe is thus granted to eventually attain a
state of thermodynamical equilibrium carrying an enor-
mous amount of entropy, which is far bigger than in
the standard ΛCDM model [55]. This solves comfort-
ably the entropy problem in the ΛCDM and a fortiori

the horizon problem [21]. In the absence of a cosmologi-
cal constant term, we would have ΩΛ0 −ν = c0/H2

0 = 0
in (46) and the horizon entropy would still grow as ∼
a3(1−ν), hence preventing the Universe from ever attain-
ing thermodynamical equilibrium within the GSL.

3 String-inspired RVM: primordial GW’s
and stiff-axion “matter”

In the previous sections, we have summarised the RVM
as a unified model for the cosmic evolution and we have
described a variety of implications for the early universe
and for the phenomenology of the current universe,
including some thermodynamical considerations, which
show the consistency of the model with the General-
ized Second Law. In the string-inspired RVM, all these
appealing features remain essentially intact, but as dis-
cussed in [1–4] the various coefficients in (11) depend
on the era. For instance, during the early inflationary
epochs of the string-inspired model, when only degrees
of freedom from the massless gravitational string mul-
tiplet are present, the coefficient νinfl < 0 [1], while at
later (radiation, matter and current) epochs, for which
matter and cosmic gauge fields are present, the coef-
ficient becomes positive, νrad/matt > 0, as the result
of these additional contributions. Nonetheless, during
each era, from the inflationary one to the present, the
basic dominant features of the RVM are preserved.

However, there is an important feature for the every-
early-Universe string-inspired RVM, which is not pre-
dicted in a generic RVM framework, but seems to be a
specific feature of the string-inspired model. This is the
existence of stiff “matter ” comprising of the KR and
other stringy axions that may exist in string theories, as
a result of compactification to four space-time dimen-
sions. The presence of such stringy axions may lead to
a stiff-matter era dominating the pre-inflationary era,
in analogy with suggestions made in [56,57], but with
a very different microscopic origin and properties of
the stiff-matter, which comprises of stringy axions in
our model, unlike the cold-fermion (baryon) gas of [56].
Our axions are electrically neutral, but they do couple
to gravitational-anomaly terms via CP-violating inter-
actions. The latter play an important role in induc-
ing dynamically an inflationary era, as we discussed in
detail in [1].

Below, we shall first review the basic features of this
string-inspired cosmological model (“stringy RVM”),
which is essential for the reader to understand the
emergence of axionic stiff matter. Then, we shall go
one important step ahead of the discussion in our pre-
vious papers [1–4], to study the emergence of a pre-
inflationary stiff-matter-dominated era, and its conse-
quences, under certain circumstances, for the absence
of an initial cosmological singularity.
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3.1 Types of stringy axions

In [1–4], we have considered a four-dimensional string-
inspired cosmological model, based on critical-string
low-energy effective actions of the graviton, gμν = gνμ,
and antisymmetric tensor (spin-one) Kalb–Ramond
(KR) fields , Bμν = −Bνμ, of the massless (bosonic)
string gravitational multiplet [61–68], after compactifi-
cation to (3+1)-dimensions. In our studies, and here,
we ignore non-constant dilaton fields, assuming that a
constant dilaton Φ = Φ0 is a consistent solution to our
equations of motion, which has been checked explic-
itly. 9 A crucial ingredient for the embedding of RVM
formalism into our string effective theory is the pres-
ence of the KR axion field. In four space-time dimen-
sions, the latter is equivalent to a pseudoscalar massless
excitation, the KR axion field b(x). Such a field cou-
ples to gravitational anomalies, through the effective
low-energy string-inspired gravitational action, which
in [1–3] has been assumed to describe fully the early
Universe dynamics:

Seff
B =

∫
d4x

√−g
[

− 1
2κ2

R +
1
2

∂μb ∂μb

×
√

2
3

α′

96κ
b(x)Rμνρσ R̃μνρσ + . . .

]
, (50)

where α′ = 1/M2
s is the Regge slope, with Ms the string

mass scale, which is in general different from the four-
dimensional Planck mass [61–64]. Greek indices refer
to the four-dimensional space-time, and the last term
in the right-hand side of this equation is the grav-
itational Chern–Simons term, associated with a CP-
violating gravitational anomaly [58]. The tilde above
the Riemann tensor denotes its dual, defined as

R̃μνρσ =
1
2
εμνλπRλπ

ρσ , (51)

with εμνρσ being the four-dimensional covariant Levi-
Civita tensor density in curved space time, totally anti-
symmetric in its indices:

εμνρσ =
√−g εμνρσ, εμνρσ = − 1√−g

εμνρσ, (52)

with ε0123 = +1, etc., the totally antisymmetric Levi-
Civita symbol in Minkowski space time.

We now remark that in string theory [61–64], the
KR axion is associated with a dualisation procedure of
the field strength Hμνρ of the spin-one field Bμν =

9 Specifically, a constant dilaton is assumed to be the result
of, say, quantum-string physics, possibly non perturbative,
which results in a potential for the dilaton. The constant
dilaton may then be seen as a configuration that mini-
mizes this potential. In the context of our string effective
actions, this imposes constraints in the pertinent equations
of motion, which, however, have been implemented consis-
tently (see discussion in [1,2] and references therein.

−Bνμ [68,69], and it is only one type of the sev-
eral kinds of axions allowed in the landscape of string
theory (‘Axiverse’ [70]). The KR axion constitutes
the so-called string-model-independent axion, present
in all string theories. There is a plethora of other
axions, however, associated with Kaluza–Klein zero
modes of appropriate p-forms that appear in the spec-
trum of strings compactified to four space-time dimen-
sions, that is string theories formulated on target-
space-time manifolds of the form M1,3 × X6, with
M1,3 the uncompactified (3+1)-dimensional space time,
and X6 the extra-dimensional space, assumed to be a
smooth compact manifold (e.g. Calabi–Yau [61–64]).
Such axions are, therefore, dependent on the micro-
scopic string-theory model considered and are called
model-dependent axions. In the heterotic string theory,
for instance [61–64], one has the (Neveu–Schwarz(NS)-
type) two-form B of the Kalb–Ramond field in ten
dimensions, which, upon compactification on a Calabi–
Yau six-dimensional compact space, X6, can be written
as

B = Bμν(x) dxμ dxν +
1
2π

bI(x)ωI
ij(z, z̄) dzi dz̄j ,

μ, ν = 0, . . . 3, i, j = 1, 2, 3 (53)

where zi, i = 1, 2, 3 are complex coordinates parametris-
ing the compact manifold. The Bμν(x) field yields,
upon the aforementioned dualisation procedure, the KR
axion b(x), whilst the quantities ωI

ij(z, z̄), I = 1, . . . h1,1

(in standard notation for the Hodge numbers h1,1), rep-
resent harmonic (1,1) forms that depend only on the
coordinates of the complex manifold, and are linked to
the aforementioned KK zero modes. One uses the nor-
malisation [69]

∫
CJ

ωI = δIJ (54)

where CI is a 2-cycle in the compact manifold. In other
words, the harmonic forms ωI span the integer (1,1)
cohomology group of the target space [58]. The quanti-
ties bI(x), I = 1, . . . h1,1, represent dimensionless pseu-
doscalar fields on the uncompactified space-time, and
the factor 1

2π has been inserted so that the fields bI(x)
have a period 2π, as is conventional for axions [71–73].
The kinetic terms of the two-form (53), in the ten-
dimensional-target-space-time action, yield, upon com-
pactification, the four-space-time-dimensional kinetic
terms of the bI(x) fields.

In generic string or D-brane models, model-dependent
axion fields aI(x) are also obtained as KK zero models
of other appropriate p-form fields, Cp, e.g. the Ramond–
Ramond(RR)-type p = 0, 2, 4-forms of type IIB string
theory, or the p = 1, 3-forms of type IA [69]:

aI(x) =
1
2π

∫
C(p)

I

Cp , I = 1, . . . M, (55)
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where C(p)
I ⊂ X6 are appropriate homologically non-

equivalent p-cycles in the compact manifold, and we
normalised again the axion so as to have period 2π.

The pertinent kinetic terms for the axions bI(x)
in (3 + 1)-dimensions stem from terms in the ten-
dimensional Lagrangian of the form

L10D � HMNP HMNP , (56)

where HMNP = ∂[M BNP ] +Chern–Simons (gauge and
gravitational) terms, M,N,P = 0, . . . 9 (with [. . . ]
denoting complete antisymmetrisation of the respec-
tive indices). Upon compactification down to (3+1)-
dimensions, with BMN being given in differential-form
language by (53), the structures (56) yield, apart
from model-independent-KR-axion-b(x) kinetic terms
(cf. (50)), also kinetic terms for the model-dependent
axions, of the form

S10D 	
∫ √−g d4x

∫

X6

∂μBij ∂μBij

=

∫ √−g d4x ∂μbI(x)∂μbJ(x)

∫

X6

ωI
ij(z, z̄) ωJ ij(z, z̄) ,

≡
∫ √−g d4x ∂μbI(x)∂μbJ(x) γIJ

μ = 0, . . . 3, I, J = 1, . . . h1,1, (57)

where, for brevity, we only indicated the structures,
omitting numerical coefficients. The reader should
observe the non-trivial kinetic mixing γIJ �= δIJ of the
model-dependent stringy axions b(x)I , which depends
on details of the compact manifold.

The axion coupling constants fbI , I = 1, . . . M , where
M are the species of such axions in a given string the-
ory model, which couple the model-dependent-axions to
anomalies, are determined [69] by the (one-loop) coun-
terterms required for Green–Schwarz (GS) anomaly-
cancellation mechanism in string theory [61–64]. To
see this, let one consider, as an example, the E8 × E8

heterotic string, formulated on M1,3 × X6, with the
Standard Model gauge group SU(3)c × SU(2) × UY (1)
embedded, say, in the first E8 group factor. It was
shown in [69], that in such a case, the GS countert-
erms in the string effective action, yield four-space-time
dimensional anomaly terms for the axion-bI(x) fields:

Sanom string axion

=
( 1

16π2

∫
X6

ωI(z, z̄) ∧
[
Tr1F ∧ F − 1

2
R ∧ R

])
∫

d4x bI(x)
(
− 1

16π2
Tr1F ∧ F + . . .

)
(58)

where for brevity we did not write down explicitly the
gravitational anomaly terms, denoted above by . . . ,
which have the same structure as in (50). The first term
inside the parentheses on the right-hand side of (58)
expresses mixed anomalies in the compact manifold X6,
with F the appropriate gauge-field-strength two-form

over the compact space X6 and R the corresponding
compact-space-X6 curvature two form. The symbol ∧
denotes the appropriate exterior product among differ-
ential forms [58], and the trace Tr1 pertains to the first
E8 gauge group.

The form (58) defines the axion coupling to the
anomaly terms, and thus the corresponding model-
dependent axion coupling constant, which thus depends
on the details of compactification. Moreover, by diag-
onalising the kinetic-mixing terms, upon appropriate
redefinition of the axion field, one arrives at the generic
conclusion that in string theory, in the presence of both
model-independent and model-dependent axions, one
is having several anomalous couplings of the various
axions to the anomaly terms, which correspond to a
variety of axion coupling constants, fbI . That is, there
are the following anomalous couplings of the model-
dependent axions in the effective action, which should
be considered in addition to the KR-model-independent
axion terms

Smodel-depnd
4-dim �

M∑
I=1

∫
d4x

√−g
1

fbI

b′ I(x)

(
c1Rμνρσ R̃μνρσ − . . .

)
(59)

where c1 are numerical constants, which can be absorbed
in the definition of fbI , and the . . . denote gauge
terms. The fields b′ I here denote appropriately rede-
fined dimensionful (of mass dimension +1) model-
dependent stringy axions with canonical (diagonalised)
kinetic terms

∑M
I=1

∫
d4x

√−g 1
2 ∂μb′ I(x) ∂μb′ I(x).

Including the KR axion in the set, we may write
the relevant gravitational (3+1)-dimensional, string-
inspired, low-energy effective action in the form

Seff multi-axion
B =

∫
d4x

√−g
[

− 1

2κ2
R+

M+1∑

I=1

(1

2
∂μb′ I(x) ∂μb′ I(x) +

1

fbI

b′ I(x) Rμνρσ R̃μνρσ
)

+ . . .
]

(60)

where

fbM+1 ≡ fb =
(√

2
3

α′

96κ

)−1

(61)

is the axion coupling of the KR axion field b′ M+1(x) ≡
b(x) (cf.(50)).

In our analysis in [1], we only considered the model-
independent action (50) as describing the dynamics of
the early Universe. However, one could extend rather
straightforwardly such an analysis to include the model
dependent axions. The reader can easily see that this
will not affect the results of [1] qualitatively, given that,
in most formulae discussed in [1], one simply replaces

b(x) ⇒
M+1∑
I=1

b′ I . (62)
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Hence, from now on, we only restrict ourselves to
the single (model-independent) KR axion only (50),
although whenever appropriate, we shall also make
explicit reference to the multi-axion case. We do note
though that, despite the formal simplicity of (62), which
allows for the passage from the single- to the multi-
axion cases, the presence of more than one species
of stringy axions have much richer phenomenological
implications for Dark Matter in the string-inspired Uni-
verse [1,70]. Nonetheless, it should be stressed that only
one of these axions, the KR-axion, is the dual of the
antisymmetric-tensor field strength Hμνρ, which plays
the rôle of torsion in the string effective actions [61–
64,68], and thus the corresponding Dark matter, upon
the development of a non-perturbative potential for it
by instanton effects during the matter era [1], admits a
geometrical ‘torsion’ interpretation.

3.2 Stiff stringy axion matter and gravitational-wave
contributions to anomaly condensates

The interactions of the b field (or, in that matter, also
of all the model-dependent axion fields b′I (59)) with
the gravitational anomaly terms in the early Universe,
where gauge fields are assumed absent in the model
of [1], vanish for a Friedmann–Lemaitre–Robertson–
Walker background. This is because the gravitational
Chern–Simons term Rμνρσ R̃μνρσ identically vanishes
for FLRW spacetime. In that case, from the effec-
tive action (50), we observe that the massless KR and
model-dependent axions, without any potential terms,
have a stress tensor

T b
μν =

2√−g

δSb(b, gαβ)
δgμν

= ∂μb ∂νb − 1
2
gμν(∂αb ∂αb).

(63)

and thus constitute [1] a type of ‘stiff matter’ with stiff
EoS [1]10

wstiff
m-string-RVM =

p

ρ
= +1 . (64)

This kind of EoS characterises a fluid in which the
velocity of sound in it equals the velocity of light:
cs = δp/δρ = 1.

We stress again that the stiff character of the EoS
for the KR axion is valid only within the model of
[1], in which gauge field terms, that could generate an
axion potential through instantons, are assumed absent

10 Stiff matter was originally introduced by Zeldovich in the
context of a phenomenological cold gas of baryons [56]—see
also [57] for considerations along similar lines. Our context is
completely different to that; it is connected with properties
of the KR axion in the early universe. Moreover, in RVM-
inflation there is no singularity at a = 0 since all energy den-
sities are finite at that point (cf Sect. 2.3). This is actually
the reason why the huge amount of entropy generated in
the RVM universe is calculable and can explain the entropy
and horizon problems, see Sect. 2.5. We will come back to
the role played by stiff matter in our context in Sect. 3.4.

in early epochs of the Universe. Such terms, of course,
are generated at the post-inflationary period, as dis-
cussed in detail in [1,2], where we refer the interested
reader for details.

If one includes formally, i.e. before specifying the
space-time background, the interactions of the b-field
and the gravitational anomalies, (50), then this yields
a modified, conserved stress tensor, as a result of the
non-trivial variation of the gravitational Chern–Simons
anomalous terms with respect to the variation of the
metric tensor:

κ2 T̃ μν
b+gCS ≡

√
2

3

α′ κ

12
Cμν + κ2T μν

b ⇒ T̃ μν
b+Λ+gCS ;μ = 0 ,

(65)

the extra terms, proportional to the Cotton tensor Cμν ,
describing energy exchange between the axion and grav-
itational field. The Cotton tensor is defined as [74]

Cμν ≡ −1
2

[
vσ

(
εσμαβRν

β;α + εσναβRμ
β;α

)

+ vστ

(
R̃τμσν + R̃τνσμ

)]
,

= −1
2

[(
vσ R̃λμσν

)
;λ

+ (μ ↔ ν)
]
,

vσ ≡ ∂σb = b;σ, vστ ≡ vτ ;σ = b;τ ;σ. (66)

and, due to properties of the Riemann tensor, it is grav-
itationally traceless

gμν Cμν = 0 , (67)

and obeys

Cμν
;μ = −1

8
vν Rαβγδ R̃αβγδ. (68)

Eq. (68) implies that the b-matter stress tensor (63) is
not conserved, which is to be expected due to the non-
trivial exchange of energy between the axion and the
gravitational field due to the anomaly terms in (50).
Nonetheless, there is no issue with general covariance,
in view of the existence of the improved stress tensor
(65), where such interactions are taken correctly into
account.

In the multi-axion case, similar results hold, upon the
replacement of Cμν by Cμν I , for each axion b′ I , I =
1, . . . N , which now replaces b in the above expressions.
The multi-axion improved and conserved stress tensor,
generalising (65), is evaluated from (60), and yields

κ2 T̃μν
b′+gCS =

M+1∑
I=1

(
8

1
fbI

Cμν I + κ2 ∂μb′ I ∂νb′ I

− 1
2
gμν(∂αb′ I ∂αb′ I)

)
(69)

For flat or FLRW space-time backgrounds, the Cot-
ton tensor vanishes, as already mentioned, and in such a
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case the stress tensor (65) reduces to the stress tensor of
the KR axion field (63). However, in the presence of CP-
violating primordial gravitational waves (GW) in the
early Universe, which perturb the FLRW metric back-
ground, the CP-violating gravitational anomaly term is
non-trivial, as a result of GW condensation [1,59,60],
which yields

〈Rμνρσ R̃μνρσ〉 =
16
a4

κ2

∫
d3k

(2π)3
H2

2 k3
k4 Θ + O(Θ3),

(70)

where 〈. . . 〉 indicates the condensation, in which gravi-
ton fluctuations of momentum k are integrated out. The
Fourier integral over k is cutoff at an Ultraviolet (UV)
momentum scale μ � κ−1. The result (70) holds to lead-
ing order in k η 
 1, where k is the standard Fourier
scale variable, and η is the conformal time, defined as
dη = dt

a(t) ⇒ η = 1
H exp(−Ht). The quantity Θ is

given by

Θ =

√
2
3

α′ κ
12

H ḃ = 8

√
2
3

1
fbM+1

κ2 H ḃ , (71)

using (61), and is assumed small, |Θ| � 1, which is phe-
nomenologically consistent [1], allows for a perturbative
treatment of the induced anomalies.

We should remark at this stage that the physical
mechanism behind the GW condensate (70) as com-
puted in [1,59,60] is the ‘cosmological birefringence’ of
the GW’s during inflation. The different behavior of the
left (hL) and right handed (hR) chiral components of
the GW’s leads to attenuation of the former and ampli-
fication of the latter in the early universe. This means
that one can distinguish the effects from chiral grav-
itational components having different dispersion rela-
tions, which explains the name. Such effect is of quan-
tum origin since the Chern–Simons condensate (70) is
a quantum vacuum expectation value of the quantity
Rμνρσ R̃μνρσ, which is computed from the two-point
Green’s function 〈hL(x)hR(x′)〉 associated to the left
and right handed chiral components of the GW’s. In
the absence of such cosmological birefringence during
inflation, the aforementioned VEV would vanish and
no gravitational condensate would occur.

We remark at this point, that in the stringy multi-
axion case, the anomaly condensate assumes a similar
form as in (70), but with the parameter Θ now replaced
by (cf. (62)):

Θ ⇒ Θmulti = 8

√
2
3

κ2 H

M+1∑
I=1

1
fbI

ḃ′ I (72)

which can also be assumed small |Θmulti| � 1.
As discussed in detail in [1,2], the GW-induced

anomaly condensate (70), (71) (or (72) in the multi-
axion case leads to the possibility of an approximately
constant anomaly, upon appropriate restrictions of the

string scale. For a dominant KR axion, such restrictions
read

MPl � Ms � 10−3 MPl, (73)

which guarantees a Lorentz-violating solution of the
equations of motion for the KR axion, for a cosmologi-
cal background b(t) in a FLRW space-time, with metric
gμν = gμν(t) of the form [1]:

d

dt

(√−g
[
ḃ − 1

fb
K0

])
= 0

⇒ ḃ = f−1
b K0 � constant ,

⇒ b(t) = b(0) + (constant) t , (74)

where b(0) is an initial value of the KR axion field at the
beginning of inflation. In (74), K0 denotes the tempo-
ral component of the (GW-induced condensate of the)
total derivative Kμ, in terms of which the gravitational
anomaly can be expressed [58]. In our case, we have
approximately, for weak GW perturbations [1]:

〈√−g Rμνρσ R̃μνρσ〉 � √−g〈Rμνρσ R̃μνρσ〉 � d

dt

(√−g K0
)

(75)
where the anomaly condensate on the left-hand side is
given by (70). Under the formation of condensates (75),
the (approximately) constant K0 arises as a consistent
solution of (74) [1]:

K0(t) ∼ K0
egin(t(η = H−1))

exp
[

− 3H t(η)
(
1 − 1

3 π2 × 18 × 96

( H

MPl

)2 ( μ

Ms

)4)]
,

(76)

where t (η) denotes the cosmic (conformal) time, and
K0

egin(t(η = H−1)) is the value of the anomaly conden-
sate at the onset of the RVM inflation. From (76), one
observes that one derives an approximately constant K0

during inflation, for an UV cutoff of the modes of the
GW perturbations of order

μ � (
3π2 × 18 × 96

)1/4
( H

MPl

)−1/2

Ms � 15
( H

MPl

)−1/2

Ms , (77)

We now remark that, for the multi-axion case, which
involve several axion couplings, which depend on details
of the compactification (see, e.g. (58)), the correspond-
ing restrictions (73) are compactification-model depen-
dent, but the of the conclusions of [1], based on the
single-axion case, are largely maintained. The Lorentz-
violating solution for the axions now read

d

dt

(√−g
[
ḃ′ I − 1

fbI

K0
])

= 0

⇒ ḃ′ I =
1

f ′ I
b

K0 � contant , I = 1, . . . M + 1 ,

(78)
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including the KR axions b ≡ b′ M+1.
For a period where a scalar field drives the cosmologi-

cal evolution, the connection between the rate of change
of the Hubble function and that of the scalar field is
given in very good approximation by ϕ̇2 � −2M2

PlḢ.
This follows immediately from differentiating Fried-
mann’s equation and using the Klein–Gordon equation
satisfied by the (homogeneous) scalar field. Thus, the
standard slow-roll parameter ε, which characterises the
inflation period, can be written as

ε ≡ − Ḣ

H2
=

1
2

ϕ̇2

(MPlH)2
� 1 . (79)

Such parameter must be small during inflation, as in
that period the rate of change of the Hubble function
is small. The previous equation, which we may apply
to the undiluted background of the KR axion field b at
the end of inflation [1]), tells us that

ḃ =
√

2ε MPlH , (80)

where H � HI is the approximately constant value of
the Hubble parameter in the de Sitter phase and hence
the parameter setting the inflationary scale. Comparing
the obtained relation with (74), which is the inflationary
solution for the KR background, we see that one may
take the constant coefficient in the solution for b to be
of order

constant =
√

2ε MPl HI . (81)

Fitting the data [75] requires ε ∼ 10−2 and

HI

MPl
∈ [10−5 , 10−4) . (82)

In view of (77), one obtains for the mode UV cutoff
μ: μ ∼ 103 Ms. If one imposes that, for a consistent
low-energy theory of quantum gravity, transplanckian
modes must decouple (although strictly speaking this
restriction might be avoided, if one attributes trans-
planckian values of the UV cutoff to modes in the deep
(stringy) quantum-gravity regime [1]), then μ � mPl =√

8π MPl, which would restrict the allowed string-mass-
scale range (73) to

10−3 � Ms

MPl,
� 10−2 . (83)

Further discussion on the predicted range of the string
scale and the associated range of inflation in the con-
text of the stringy RVM, using the transplankian cen-
sorship conjecture, is given in [76]. Taking into account
the value of the reduced Planck mass, MPl � 2.4 ×
1018 GeV, it follows that the working range for our
string scale estimate would be close to the typycal GUT
scale MX ∼ 1016 GeV—up to the above qualification
on avoiding decoupling of the transplanckian modes in
the stringy regime, which could soften the limits (83)
and push them a bit higher. The phenomenology of the

multi-axion case (78), required to match the cosmologi-
cal data [75], is similar to the single-KR axion case (74),
and will not be discussed further here.

3.3 GW condensates and RVM-like dynamical
inflation

As discussed in [1], the GW condensation leads, apart
from the anomaly condensate, implying the existence
of the spontaneously-Lorentz-symmetry-breaking solu-
tions (74) (or (78)), also to a cosmological-constant-
type term in the effective action,11

SΛ =

√
2

3

α′

96 κ

∫
d4x

√−g 〈b Rμμρσ R̃μνρσ〉

≡ −
∫

d4x
√−g

Λ(H)

κ2

�
∫

d4x
√−g

(
5.86 × 107

√
2 ε

[ b(0)

MPl
+

√
2 ε N

]
H4

)
.

(85)

Above, the symbol � indicates and order of magnitude
estimate, and we took into account that H t is bounded
from above by (H t)max evaluated at the end of the
inflationary period, for which (H t)max = H tend ∼
N = 60 − 70, with N the number of e-foldings. We
also set ε ∼ 10−2, as required by inflationary phe-
nomenology. The notation Λ(H) implies that the term
is (approximately) constant during the de Sitter phase,
in which the Hubble parameter is approximately con-
stant, H � HI .

We next notice that [1,2], on assuming

|b(0)| �
√

2 ε N MPl ∼ 10MPl , (86)

the quantity Λ > 0 in (85) does not change order of
magnitude during the entire inflationary period, for
which H � constant, and thus it can be approximated
by a constant. In that case, the term (85) behaves as
a positive-cosmological-constant (de Sitter) type term,
which is responsible for inducing inflation. Quantum
fluctuations of the condensate are then responsible
for deviations from scale invariance, providing a novel
mechanism for cosmological perturbations.

The corresponding modified stress tensor (65) now
acquires a Λ-vacuum contribution, but its conserva-
tion (65) is not of course affected by the presence of a

11 In the multi-axion case, this term would read:

SΛ =

√
2

3

M+1∑

I=1

1

fbI

∫
d4x

√−g 〈b′ I Rμμρσ R̃μνρσ〉 . (84)

This also leads (upon taking into account (72)) to a
cosmological-constant contribution in the effective action of
qualitatively similar form as (85).
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constant Λ:

κ2 T̃μν
b+Λ+gCS+Λ ≡

√
2
3

α′ κ
12

Cμν + κ2Tμν
b + Λgμν ,

(87)

As demonstrated in [1], the presence of a de Sitter-
like term (85) is crucial for ensuring the positive-
definiteness of the total vacuum energy density of the
string Universe obtained from (the temporal compo-
nent of) (87), including contributions from axions and
their interactions with the GW-induced gravitational-
anomaly condensates, which has the form:

ρtotal � 3κ−4

[
− 1.65 × 10−3

(
κH

)2

+
√

2
3

|b(0)|κ × 5.86× 106 (κH)4
]

> 0 .

(88)

Remarkably, this has a structure similar to the vacuum
energy density in a RVM (11), but here, in contrast to
the conventional RVM [12–14], the ν coefficient of the
H2 term is negative, due to negative contributions from
the gravitational Chern–Simons anomaly term, which
overcome the positive ν contributions from the ‘stiff’
KR axion [1,2]. In the early Universe, however, this
has no dramatic consequences since the dominant term
is the H4 term, with a positive coefficient, arising from
the GW condensate, and thus the energy density ρtotal

is positive and drives an almost de Sitter (inflationary)
phase in that period [1,16–19]. From (86), one can easily
check that the corresponding coefficient α in (11) is of
order 0.1, in agreement with a RVM associated with a
typical GUT scale MX ∼ 1016 GeV.

At the inflationary exit period, massless chiral fermi-
onic matter, as well as gauge degrees of freedom, are
assumed to be created [1,2], which enter the effective
action via the appropriate fermion kinetic terms and
interaction with the gravitational and gauge anoma-
lies. The primordial gravitational anomaly terms are
cancelled by the chiral matter contributions [1,2], but
the triangular (chiral) anomalies (electromagnetic and
of QCD type) in general remain. In fact, they must
remain, to explain important features of particle phe-
nomenology ( e.g. π0 → γγ through the anomalous chi-
ral term in the Axial-Vector-Vector (AVV) amplitude).

In the post-inflationary phase the KR axion acquires,
through instanton effects, a non-perturbative mass,
and may play the role of Dark Matter [2]. It can be
shown [1] that, due to the presence of cosmic gauge
fields and other effects, the late-era vacuum energy den-
sity acquires a standard RVM form (11), with posi-
tive coefficient νlate ∼ O(10−3), consistent with phe-
nomenology. At late eras, higher than H2 terms in the
energy density are not phenomenologically relevant and
thus can be safely ignored. The νlateH

2 corrections to
the standard current-era cosmological constant term
c0 lead to distinctive signatures of a “running” dark

energy, which helps to alleviate the aforementioned ten-
sions in the cosmological data with the predictions of
the standard ΛCDM [22–29].

3.4 String-inspired-RVM evolution in the presence
of stiff matter

There are some interesting features of the RVM with
stiff matter, that we feel we must stress at this point.
In our stringy RVM model [1,2], after condensation of
GW, the anomalous interactions of axions with gravity,
through the CP-violating terms in the string-inspired
gravitational effective action (50) (or the generalised
one (60)) obscures the rôle of such gravitational-in-
origin axions as pure matter.

Indeed, in the absence of GW condensates, our effec-
tive gravitational theory (50) would have been domi-
nated by the KR stiff axion matter, with EoS (64). The
solution of the classical Eqs. (74) (or (78)) would be of
the form

ḃ =
c0

a3(t)
, c0 = constant �= 0. (89)

The stress tensor (63) of such axions would thus scale
with a−6 which is the scaling power of stiff matter, as
follows from (17), upon setting wm = 1, and ρ̇Λ

RVM = 0,
since the anomaly term in (50) vanishes if GW metric
fluctuations would not occur, and hence the vacuum
energy density is either zero, or, at most, has the form of
some cosmological-constant vacuum contribution, due
to some yet unknown quantum string/brane physics.
The solution of (17) in such a case, with null right hand
side and for ρm → ρstiff , would yield the scaling

ρstiff ∼ a−6, (90)

for the corresponding stiff-matter energy density, in
agreement with (89) (or, equivalently, (30) with ν = 0,
following from the corresponding Friedman Eq. (14)
with Λ(t) = 0). In this case, the stringy axions,
although gravitational in origin, nonetheless would
behave as true stiff-matter excitations [56,57].12. We

12 We remark in passing that, naively, one would think
that, if such phase of the string Universe with a scaling (90)
exists, which would precede the RVM-GW-condensate infla-
tionary period, it would imply that there should be an ini-
tial (Big-Bang) singularity, as a → 0, if the effective action
(50) was valid up to such early pre-inflationary eras. This,
however, is not so, given that at very early epochs of the
Universe, higher curvature and higher-than-two-derivative
terms dominate the effective theory. In such a case, one may
encounter situations in which there is no initial singular-
ity. For example, higher curvature Gauss–Bonnet terms, in
the presence of non-trivial (time-dependent) dilatons, are
known to produce initial-singularity-free cosmologies [43],
and the incorporation of Kalb–Ramond gravitational axions
b(x) in such theories is expected to be characterised by terms
in the corresponding effective actions that contain higher-
than-quadratic derivatives of the field b(x). Thus, it is not
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note that such a stiff-axion dominated phase will be
described by free KR-axion stress energy tensor (63),
which, in view of (89) and (90), leads to an energy
density of a running-vacuum form (11), with positive
coefficient of the H2 term:

νstiff axion > 0 . (91)

Specifically, since such contribution emerges from the b-
axion field stress tensor Tμν

b upon ignoring the Chern–
Simons terms, we simply equate ρb = T 00

b and use (80)
and we find

νstiff axion =
κ2 ḃ2

6H2
=

ε

3
� 3 × 10−3 > 0 . (92)

We note that the validity of this equation hinges on that
of (80) and in general we cannot associate that estimate
to the value of ν at post-inflationary epochs. However, a
new, more conventional, actor comes on stage when we
enter the regular FLRW regime, i.e. when we cross the
point where the stringy inflationary phase associated to
the H4 power no longer feeds the cosmological evolu-
tion. From that point onwards, it will be the turn of the
QFT effects, discussed in Sect. 2.2, to generate the coef-
ficient ν of the ∼ H2 term. The reader should recall that
the O(H4) effects predicted by the QFT corrections
vanish for H =constant, since they all depend on time
derivatives of the Hubble rate, and hence all these terms
are subdominant during the inflationary phase, which
is primarily driven by the H4 terms. However, once
the inflationary period H =const ends, all the O(H4)
effects fade away and we enter the radiation epoch. At
this point the stringy features of the early universe,
associated with the gravitational anomaly terms, have
no longer influence on the dynamics of the vacuum and
the main effects are determined by the more pedestrian
context of QFT in curved spacetime. In fact, as dis-
cussed in [1], the gravitational anomalies cancel out
during the post-inflationary period by the chiral mat-
ter generated at the end of the stringy-RVM inflation.
A typical QFT contribution to ν from a scalar field non-
minimally coupled to curvature is given by Eq. (8). The
effective final value of ν, though, as we have pointed
out in Sect. 2.2, actually receives contributions from
all possible (fundamental) scalars, fermions and vector
bosons: νeff = νs + νf + νv. Therefore, ultimately such
effective value is to be fitted to experiment. Interest-
ingly, this task has been performed in the literature
and a wealth of remarkable results have been obtained.
The fitting analyses to the modern cosmological data
indeed suggest that the RVM can be competitive, if
not superior, to the ΛCDM in describing the overall

Footnote 12 continued
unlikely that, in the presence of such higher order deriva-
tives axion terms, combined with the dilaton-Gauss–Bonnet
ones, the singularity-free situation of [43] is maintained. The
nonexistence of an initial singularity, which was already the
hallmark of the original RVM inflation—cf. Sect. 2.3—could
then be realised as well in the stringy version of it.

cosmological observations (and in alleviating the ten-
sions afflicting the latter) provided the effective value
of νeff is positive and of order νeff = O(10−3) > 0 [22–
29,31,32]. Amazingly, this value is also of the order of
the predicted one in (92).

Let us now come back to the regime where the KR
axion has emerged from the inflationary phase and let
us compare the behavior of its energy density with that
of the traditional stiff matter [56]. As we have seen
above, in the presence of GW-induced anomaly con-
densates, the classical solution to the axion equation of
motion (74) (and (78) in the multi-axion case) corre-
sponds to a (approximately) constant ḃ. This leads to
constant contributions to the ‘running vacuum’ energy
density (88), which are viewed as vacuum contributions,
leading to dynamical inflation. In such a case, during
the early de Sitter era, in view of the aforementioned
fact that |ν| = O(10−3) � 1 in (88), one would have
from (19)

H(a)early string RVM �
(

1
α

)1/2
HI√

Dstring a6 + 1
,

(93)
to be contrasted with the result (21) in the standard-
RVM with relativistic matter, as far as the scaling with
the scale factor a(t) of the FLRW Universe is concerned.

The corresponding energy densities of (stiff) axionic
“matter” and “vacuum” can be readily found, within
the same approximation, from (88) ((11)) and (17),
with wm = +1. We obtain the following scaling for
the energy density of the “stiff-axionic” matter:

ρstiff(a) � 3H2
I

κ2α

Dstringa
6

(Dstring a6 + 1)2
(94)

while for that of the “running vacuum”, we have

ρΛ(a) � 3H2
I

κ2α

1
(Dstring a6 + 1)2

(95)

These equations characterise what we may call the
axionic pre-heating phase, and can be compared with
the corresponding ones in the original RVM, see
Eqs. (24)-(26). In the present context, such pre-heating
phase precedes the ordinary RVM-inflationary stage
and hence acts as a pre-inflationary stage. The steeper
behavior of the above formulae is of course caused by
the stiff matter EoS (64) governing such pre-heating
phase. It should be noted that the energy densities
(94) and (95) are equally well behaved at a = 0
as their counterparts in the conventional RVM. In
stark contrast with the ordinary situation of self-
conserved stiff-matter [56,57] or the particular situa-
tion with gravitational-anomaly-and-potential-free stiff
axions (90) in our stringy context, the scaling behav-
ior (94) is not of the ordinary form (90). As it turns
out, when matter axions are in interaction with a H4-
driven vacuum phase, the smoother behavior (95) with
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no singularity at a = 0 is warranted. The steeper scal-
ing ρstiff(a) ∼ a−6 appears only later on, for sufficiently
large values of the scale factor. In ordinary stiff-matter
frameworks, such more drastic behavior is there right
from the start and cannot avoid the initial singularity
at a = 0, unless one assumes that the energy density of
the stiff fluid is negative [57]. We do not assume exotic
situations with negative energy densities anywhere.

In the stringy RVM scenario under discussion all
physical quantities are smooth, the stiff-matter-energy
density is perfectly positive and vanishes at the Big-
Bang (a → 0), while the Hubble function and the vac-
uum energy density are both finite at that point and
remain approximately constant in the early inflationary
stages. We believe that this is much more natural, and
suggests that the de Sitter phase would start immedi-
ately after the Big-Bang. The initial singularity is fully
averted, at least as far as the above physical quantities
are concerned.

Nonetheless, as we shall discuss later on, in Sect. 4,
one needs to devise appropriate mechanisms for the gen-
eration of the primordial GW that are responsible for
inducing the RVM inflation. In some of them, there is
a pre-inflationary phase, before the formation of GW,
in which the anomaly terms, and hence the H4 terms
in the energy density, are absent. Nevertheless, even in
such cases there is no initial singularity, because, as we
have already mentioned, higher curvature corrections in
the string-inspired effective gravitational action become
important, which are capable of removing the initial
singularity [43]. As we shall discuss in Sect. 4, there
are also models characterised by a first hill-top infla-
tionary phase, that precedes the GW-induced inflation,
and occurs shortly after the Big-Bang. Such a phase
might also be described by an RVM-type energy den-
sity [77], which is finite at the Big-Bang point, hence
no initial singularity in such models either.

The coefficient Dstring, depends on the underlying
microscopic string model. In a similar way as we did in
Eq. 23, it can be related to the equality point between
the density of stiff matter and vacuum, i.e. ρstiff(ãeq) =
ρΛ(ãeq), where we use ãeq to distinguish it from other
equality points previously defined . If we neglect once
more the ν effects at these early times, we find from
(94) and (95):

Dstring = (ãeq)
−6

. (96)

In our string-inspired RVM, the very early (unstable) de
Sitter phase is, therefore, characterised by (a/ãeq)

6 �
1. Naively, the a−6 scaling of the energy density (90)
would occur for Dstring a6 
 1. However, we note
that the above equations cannot actually be applied
for a 
 ãeq because the vacuum cannot fully decay
into massless axions. The ordinary radiation-dominated
phase must be generated during the late inflationary
period, as proposed in [1], when the scale factor lies in
the range

ãeq < a < aeq , (97)

where aeq is the ordinary equality point between vac-
uum and radiation in the ordinary version of the
RVM [16–20], see Sect. 2.3. Thus, in this scenario, the
ordinary radiation-dominated phase of the Universe fol-
lows the first period of vacuum decay into massless
axions.

Let us now compare the string-inspired RVM with
the ideas of [56], where it was postulated that a pre-
inflationary stiff-matter-dominated phase occurs imme-
diately after the Big-Bang. In [56], however, the stiff
matter was associated with baryons (charged fermions).
Par contrast, in our case, although at early eras after
the Big-Bang stiff matter also exists, nonetheless it
has a gravitational origin, as it consists of axions that
exist in the massless gravitational multiplet of strings
(plus other, compactification-related axion-like parti-
cles, as we discussed in this work). In [56] a matter-
antimatter asymmetry was axiomatised for such stiff
baryons. In our case, one does not need to do this.
The gravitational action (50) (or (60) for the multi-
axion case) is CPT invariant, and the KR axions are
their own antiparticles. In the model of [1] the early
Universe is characterised by gravitational degrees of
freedom only, appearing in the massless gravitational
multiplet of the string spectrum. (Relativistic) Matter
is generated only at the final stages of inflation, and
then, as a consequence of the background (74) (or (78)),
which remains undiluted at the exit from inflation [1],
one encounters a matter-antimatter-asymmetric Uni-
verse in the radiation era, due, e.g. of leptogenesis
induced by the decay of heavy right-handed neutri-
nos into standard model leptons and antileptons in
the backgrounds (74) [78–82]. Such lepton asymme-
tries can then be communicated to the baryon sec-
tor (baryogenesis) through Baryon-minus-Lepton(B-L)-
symmetry-preserving sphaleron processes [83–85] in
the standard model sector of the effective field the-
ory.

Moreover, as previously emphasised, our stringy stiff-
axion ‘matter’ has always a positive energy density,
and a simple equation of state (64). We do not con-
sider here polytrope EoS, which would even involve
non-linear dependence of the pressure density on higher
(e.g. quadratic) powers of the energy density. Such
EoS appear in some cosmological models with stiff-
matter discussed in [57],13 where cases with even neg-
ative energy densities for stiff matter have been con-
sidered, leading to initial-singularity-free Universe. In

13 It is also remarked that polytrope EoS might characterise
stiff-matter which forms a Bose–Einstein Condensate in the
early Universe. Our early-Universe axions, which are mass-
less, and not characterised by any potential, cannot form
such condensates. This might be the case of the axions in
the post-inflationary matter and radiation eras, where as we
have explained in [1,2], can develop masses and potentials
due to instanton effects, and under certain conditions play
the rôle of dark matter. The condition for the formation
of cosmic Bose–Einstein condensates for such dark matter
axions, including ultralight stringy ones, through their grav-
itational self interactions, have been discussed in [86–88].
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our case (94), (95) the initial singularity is avoided if
one assumes an RVM right up to the Big-Bang (i.e.
when the scale factor of the Universe vanishes). In the
context of our string-inspired model, where the RVM
energy density (88) arises due to GW condensates, this
means that we assume the existence of such primordial
GW right up to the Big-Bang point.

4 Potential origins of GW and a
pre-inflationary era for the string-inspired
RVM universe?

The origin of the primordial GW, which leads to the
anomaly condensate, is not precisely known. If such
GW appear shortly after the Big-Bang, then an infla-
tionary era follows the initial singularity. However,
there could well be, a very short pre-inflationary epoch,
covering the intermediate period between the Big-Bang
and the inflationary era. It is in that period that GW
can be generated in a variety of ways, which we now
proceed to discuss in the context of our stringy RVM.
There are many ways in the literature to generate DW,
but in our models we shall try to maintain their basic
feature that only gravitational in origin degrees of free-
dom are dominant [1,2].

4.1 GW from primordial black hole mergers

As a first relevant scenario for the formation of GW,
we consider merging of primordial black holes [89],
which, in the context of our string-inspired RVM,
could be formed by the collapse of massive space-time
defects that could populate the very early Universe.
Indeed, in string/brane-Universe models, one has space-
time brane defects, for instance compactified 3-branes
which are wrapped around 3-cycles or other appropriate
Calabi–Yau compact spaces. From the point of view of a
three-large-dimension brane world, such defects might
look like effective point-like “D-particle defects” [90–
96]. Such defects are massive, with masses of order
Ms/gs, where gs is the string coupling, assumed weak
(gs < 1). The non-spherically symmetric gravitational
collapse of populations of such massive stringy objects,
say in brane Universes, may lead to the formation of pri-
mordial black holes in the very early (pre-inflationary)
brane Universe, on which our gravitational effective
field theory (50) lives.

These primordial black holes may coalesce, and thus
produce GW, which in turn will condense, provided the
appropriate conditions for such a condensation exist in
this very early Universe. Such a GW condensation will
lead to inflation, as we discussed in [1] and reviewed
above. Inflation will dilute beyond trace these primor-
dial black holes.14

14 We cannot exclude, however, the possibility that for some
fine-tuned situations, a percentage of such primordial black
holes remains during the post-inflationary period, which

4.2 GW from unstable domain walls (DW) in
pre-inflationary universe

Another scenario that could be in operation in our mod-
els is that of the formation of Domain Walls (DW) in
the pre-inflationary Universe, which are unstable, and
either annihilate each other, or collapse non-spherically,
leading to the production of GW [105]. DW are known
to appear in theories with broken discrete symme-
try [106]. One mechanism for the production of unsta-
ble DW is proposed in [106],15 and also in [107] and
[108], and requires the existence of only an approxi-
mate discrete symmetry, which, e.g. could be due to a
bias between the two minima of the double-well poten-
tial of the (pseudo)scalar field that gives rise to DW.
The difference in the energy density between the two
vacua in such asymmetric situations generates a pres-
sure force, which is responsible for the DW annihilation.
Cosmological studies of such biased-discrete-symmetry-
induced unstable DW, discussing detailed ways of their
annihilation, can be found in [109].

Axion models, of interest to us in this work, are also
known to produce unstable domain walls, via appro-
priate discrete-symmetry-breaking terms [110]. How-
ever, this mechanism requires the presence of matter
fermions (quark) interacting (via Yukawa couplings)
with massive axions, with potentials generated by gauge
instantons, responsible for the spontaneous breaking
of the U(1)-Peccei–Quinn symmetry down to a dis-
crete subgroup ZN , with N the number of fermion
(quark) flavours. This will imply the presence of N -
degenerate vacua, leading to stable DW. Hence, such
a scenario, would not be suitable for the case of our
effective field theories at (pre)inflationary eras, which
comprise only gravitational degrees of freedom, and in
which the (gravitational-in-origin stringy) axions in the
very early Universe have no potential [1,2]. Nonetheless,
in our models, gravitational axions acquire instanton-
induced potentials only after inflation [2], since matter
and radiation (gauge fields) are generated at the end
of inflation [1]. In this sense, the generation of stable
DW would be incompatible with the standard Cosmol-
ogy. Fortunately, as shown in [110], the DW generated
in the above way become unstable in the presence of

Footnote 14 continued
then could play the role of some component of dark mat-
ter [97–104]. This is not a possibility we pursue, however, in
the context of our string-inspired models, where we believe
that the axions could play such a role, as discussed in [1,2].
15 Although not relevant to our purposes here, given that
any DW, that could be produced in our models, would be
produced during the pre-inflationary era, and hence would
be diluted by inflation, nonetheless we mention, for comple-
tion, that the presence of stable DW would be incompatible
with Big-Bang cosmology, leading to a power-law expan-
sion of the Universe. Therefore, if DW were created during
the early Universe eras, they have to disappear somehow.
The same mechanisms that make DW unstable, are also
responsible for the production of GW in our case, hence our
interest in such unstable DW.
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four-fermion (quark) matter interactions, which, if suffi-
ciently strong at an appropriate energy scale, close, e.g.
to QCD scale, can lead to quark vacuum condensates,
and thus terms < q q >2 �= 0 in the energy density. The
latter are responsible for lifting the degeneracy of the
ZN vacua, by energy shifts proportional to the (square
of the) quark condensates, which leads to instabilities
and eventual collapse of the DW, as per the arguments
of [106]. This would solve the DW problem, but in addi-
tion, if the collapse is non-spherically symmetric, will
produce GW in such models, which could be present in
the radiation era as well, of relevance to phenomenol-
ogy.

4.3 GW from gaugino-condensate-induced DW in
supergravity model with hidden gauge sectors

However, in string theories, of the type considered in
our approach, one may have supergravity in the early
phases of the Universe, which may be broken sponta-
neously by means of vacuum condensates of the super-
symmetric partners of gauge fields (gauginos) pertain-
ing to the gauge sector of the pertinent supergravity
models [111,112]. Such gaugino condensates provide the
scale of supersymmetry (supergravity) breaking, and
give rise to massive gravitinos, with masses m3/2 pro-
portional to the gaugino mass. Although in our string-
inspired models, we assume only gravitational degrees
of freedom, nonetheless one could allow for such gaugino
vacuum condensates in early, pre-inflationary phases of
the Universe. Below we briefly discuss the scenario of
[115] involving an SU(N ) super Yang–Mills gauge (hid-
den) sector, responsible for supersymmetry breaking,
which may be assumed not to have sizeable couplings
with the other sectors of the supergravity theory, inter-
acting with them primarily gravitationally [115]. This
sector is characterised by an R symmetry, which is spon-
taneously broken down to a discrete subgroup Z2N by
non-perturbative instanton effects [113,114], and then
down to Z2 due to condensation of gaugino λa fields,
with a = 1, . . . N 2 − 1, an SU(N ) index:

< λa λa >k= −32π2 Λ3
gc ei2π k/N , k = 1, . . . N ,

(98)
where Λgc [115] is the energy scale at which the gauge
interactions become strong, leading to the gaugino con-
densation (gc). There are N degenerate vacua, as a
result of (98). The corresponding effective superpoten-
tial, below the scale Λgc, is given by [115]

Wgc = N Λ3
gc ei2π k/N . (99)

However, to cancel the cosmological constant that
“afflicts” the vacuum of the corresponding broken
supergravity theory, one should add a constant w0 to
the above superpotential (99): Wgc +w0, which implies
a scalar potential [116]

V = −3
N

M2
Pl

Λ3
gc w�

0 ei2π k/N + h.c. (100)

where MPl is again the reduced Planck mass, h.c.
denotes Hermitian conjugate and � denotes complex
conjugate, and the cancellation of the cosmological con-
stant in the scalar potential of supergravity requires
|w0| = m3/2 M2

Pl, where m3/2 is the gravitino mass,
which is connected to the gaugino mass mλ via [115]:
mλ = 3N g2/(16π2)m3/2.

The important thing to notice is that the presence
of the factor w�

0 on the right-hand-side of (100) implies
that the degeneracy of the vacua is now lifted, because
the scalar potential now takes on different values at the
various vacua. Thus, the discrete symmetry Z2N is bro-
ken down to Z2 by the formation of gaugino condensates
(gc), due to gauge interactions that become strong at a
scale. This leads to the formation of unstable DW, since
the pertinent energy shifts would contribute to pressure
force and eventual collapse of DW. In this respect, the
rôle of the gaugino condensates is in some way anal-
ogous to the quark condensate formation in QCD-like
axion models [110], which also destabilises the pertinent
DW, as discussed above.

4.4 DW in axion-dilaton models

DW formation have also been discussed in generic
axion-dilaton models [117–119], which can characterise
early Universe phase of string-inspired models, like
ours. Indeed, it is possible that during a pre-inflationary
phase of our Universe, interpolating between the Big-
Bang and the GW-induced de Sitter (inflationary)
phase, one has non-trivial dilatons, with say exponen-
tial potential, arising, e.g. in the so-called Liouville
cosmologies, as a result of the non-criticality of the
string [120–125], or in other contexts, such as super-
gravity models, including string-inspired ones [126,127]
(in units where the (3+1)-gravitational constant is:
2κ2 = 1, for notational brevity):

Sa−Φ =

∫
d4x

(
− R +

1

2
∂μΦ ∂μΦ +

1

2
eμ Φ ∂μa ∂μa − Λ0 e−λ Φ

)

(101)

where Φ is the (canonically) normalised dilaton, and
a a pseudoscalar axion field, which in our stringy-
RVM-context would be a stringy axion. For our string-
inspired cases, we may take the scale Λ0 > 0, and the
constant parameters λ > 0, μ ≥ 0. Domain wall solu-
tions for the case of the action (101) have been explicitly
constructed in [117–119], including the case of constant
axions. But such structures are stable, and hence of no
direct relevance to us, as we are interested in mecha-
nisms for generating GW from unstable domain walls.

However, one may embed such models in supergrav-
ities with gauge sectors, which are characterised by
gaugino condensation, for instance, as we discussed
above. To this end one may consider more general dila-
ton potentials V (Φ) in (101), and identify the latter
with the scalar potential of the appropriate supergrav-
ity model, which involves both axions and dilatons, as
the real and imaginary components of complex scalar
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fields

τ = a + iΣ(Φ), (102)

respectively, taking values in a Kähler target space,
with metric G = ∂τ ∂τ K, with K the Kähler poten-
tial [117–119]. The function Σ(Φ) is to be determined
by demanding that the Lagrangian density of (101),
with a given dilaton potential V (Φ), can be derived
from the appropriate supergravity action [117–119]

L =
√−g

(
− R + 2G∂μ τ ∂μ τ + V (τ, τ)

)
(103)

where the scalar potential V (τ, τ) is expressed in terms
of K and a holomorphic superpotential as usual [111].
For our purposes here, it is not necessary to give its
explicit expression. We only mention that one can then
construct the appropriate superpotential W by identify-
ing V with the dilaton potential in (101). In [117–119],
an explicit construction of the Lagrangian (101), with
an exponential dilaton potential, from such supergrav-
ities, has been given.

We next remark that, on considering hidden-sector
supersymmetry breaking, via gaugino condensation,
then, as we discussed above, one may induce insta-
bilities in the formed DW, whose collapse would lead
to GW. In such a case, the dilaton field could then
be relaxed to a constant value, Φ → Φ0, through its
potential minimum, and the Universe (101) could lead
to (50), in the presence of a “bare” cosmological con-
stant term Λ e−λ Φ0 > 0. Such a term will not affect
the analysis of [1,2], provided Λ0 is smaller than the
dynamically induced cosmological constant Λ due to
the GW condensates, which would then drive inflation
à la RVM. The bare Λ0 could contribute to the cosmo-
logical constant today, given that the RVM evolution is
impervious to it.

4.5 Gravitino condensation and DW formation in
pre-inflationary RVM-like universe?

Finally, let us close this section with the remark that
in [128,129], we have discussed dynamical breaking of
N = 1 four-dimensional supergravity by means of a
gravitino condensate in the early Universe, which lead
to a double-well potential for the gravitino scalar con-
densate σ(x). In that work, we have discussed special
conditions to allow for Starobinsky inflation, which are
not necessary in view of our GW-condensate-induced
RVM scenario [1,2]. However, the dynamical scenario
for supergravity breaking without the need for gaugino
condensation we presented in [128,129] might be used
in our context as providing a pre-inflationary era, which
is also of RVM type as far as the cosmic evolution of the
energy density is concerned, as shown explicitly in [77].
The massive gravitinos, which can have a mass of order
up to the Planck scale, as discussed in [77,128,129],
can then be integrated out of the spectrum of the pre-
inflationary supergravity action, which includes only
light gravitational degrees of freedom (axions, dilatons

and gravitons), plus the scalar condensate of graviti-
nos. The latter, with its double-well potential, might
provide the seeds for the formation of DW, interpolat-
ing between vacuum bubbles, in the interior of which
the condensate field acquires either of its expectation
value ±v. The system has a Z2 symmetry. The bare
cosmological constant that is added as a regulator for
the analysis [128,129], does not play an important role
in our arguments, for the same reason that the scale Λ0

in Sect. 4.4 plays no role.
At present, though, we are not aware of a microscopic

mechanism for inducing a bias in these two degenerate
vacua, that would make the Z2 symmetry not exact,
and thus cause the DW to collapse, due to pressure
exerted by the bias energy shift [106–108] (unless of
course we consider extending the supergravity model
to incorporate (hidden) gauge sectors, which, via gaug-
ino condensations, as mentioned previously, can lead to
unstable DW). If such a mechanism existed, then this
scenario would be the simplest extension of our string-
inspired RVM in which GW could be generated in a
pre-inflationary era. As discussed in [111], one has an
RVM type of vacuum evolution for the energy density in
such models, which then, upon the appearance of GW,
and their subsequent condensation, would be connected
smoothly to the RVM inflationary phase. In addition,
one could also couple the N=1 four-dimensional super-
gravity to a chiral superfield, so as to incorporate axions
and dilatons (cf. (103)), which in turn can also form
their own DW according to the arguments of [117–
119,126,127]. But again to induce instabilities to such
walls, so as to produce GW by their decays, one needs
to introduce gaugino condensates.

4.5.1 Gravitino condensation as an out-of-equilibrium
phase transition and statistical origin of bias leading to
GW

Before closing the section, we would like to discuss
one more scenario to introduce bias between the two
vacua of the double-well potential of the gravitino con-
densation, which may be of statistical origin, due to
biased non-equilibrium phase transitions in the early
Universe [130–132]. In our case that would be the pre-
GW-induced-inflation era. If one considers the one-loop
double well-shaped gravitino potential in such a case,
given in [128,129], whose real part we call Ṽ , then, in a
FLRW background space-time, with Hubble parameter
H, the equation of motion for the (homogeneous and
isotropic) gravitino condensate field σ is

σ̈ + 3H σ̇ =
∂Ṽ

∂ σ
. (104)

The potential can generate a hill-top “first” inflation
near the origin σ = 0 [133], which, for reasons to become
clear below, we may assume to take place in this early
epoch, that precedes the GW-condensate-induced RVM
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inflation of [1].16 By assuming such an early first infla-
tion, one ensures that at its end, any spatial inhomo-
geneities of the gravitino-condensate scalar field σ have
been washed out, and hence (104) is valid to an excel-
lent approximation. This will be important in what fol-
lows.

It goes without saying that we assume here that
the gravitino condensation phase takes place after the
string-dominated phase of the Universe, near the Big-
Bang, where as mentioned above, higher curvature and
purely string effects are in operation and might be
responsible for the absence of any initial-singularity
in the Big-Bang Universe. The gravitino condensa-
tion phase is an intermediate phase between the Big-
Bang and the GW-induced-RVM inflationary phase.
The duration of such epochs depend on the details of
the microscopic string theory, and are of no direct rel-
evance to our arguments. In general, we may assume
this phase to be short compared with the subsequent
phases of the RVM universe.

It is important to note that the gravitino conden-
sation process is viewed as a non-thermal equilibrium
phase transition in this early supersymmetric/superstring-
inspired Universe, since only gravitational interactions
are involved in the formation of the condensate (the
relevant four-gravitino interactions, which give rise to
the condensate [128,129], characterise any supergrav-
ity theory, as a result of the inherent fermionic ‘torsion’
terms of supergravity models [111]). The formation of
condensates results in massive gravitinos, while gravi-
tons remain massless. This breaks local supersymmetry
at a given high scale [128,129,133], which may be taken
to be much higher than the inflationary scale of the sec-
ond RVM GW-induced inflation of [1], that occurs at a
subsequent phase of this Universe evolution, after GW
are formed due to the collapse of unstable DW, as we
shall discuss below. This implies that the scale of the
first inflation is also much higher, close to Planck scale.

We may also assume that, after the hill-top first infla-
tion, during the decay of the gravitino, stringy KR
axions are produced (assuming that the model is viewed
as an effective field theory embedded appropriately in
string models). The latter have a stiff equation of state
(64) and a scaling of the Hubble parameter of the form
(following from (90) via the Friedmann equation in a
stiff-axion dominated phase):

Hstiff axion =
Hi

a(t)3
, (105)

where Hi denotes the constant Hubble parameter dur-
ing the first hill top inflation induced by the gravitino-
condensation potential, and we normalise (105) such

16 We note for completeness that the potential’s imaginary
parts [128,129], expressing the decay of the condensate field
after the first hill-top inflationary epoch, will not play a
rôle in our qualitative arguments here, and hence they may
be ignored. One may, e.g. assume that the scale of such
imaginary parts is much smaller than the scale of the real
parts during the hill-top ‘first’ inflation.

that a(ti) = 1, where ti is the cosmic time correspond-
ing to the exit from the first hill-top inflation. We note
at this stage that, since this ‘first’ inflation does not lead
to observable effects in the CMB [75], given the exis-
tence of the second RVM-like GW-induced inflationary
phase, we need not worry about fine tuning the param-
eters to ensure the right phenomenology, and hence,
as already mentioned, its scale, Hi, could be assumed
as lying higher than that of the second inflation, close
to Planck. Moreover in our approach here, we also do
not consider the possibility of a Starobinsky inflation
around the non-trivial minima of the one-loop gravitino
potential, as suggested in [134]. We stress that in our
case, any observable effects on the CMB should come
from the RVM-like GW-condensate-induced inflation
that succeeds the stiff-axion phase. We have already dis-
cussed in Sect. 2.4 that Starobinsky inflation is intrinsi-
cally very different from the RVM inflation, both being
compatible with the CMB data but subject to very dif-
ferent inflationary mechanisms, which means that these
two inflationary models should be eventually distin-
guishable.

Since the stiff-axion-dominated phase occurs for very
early epochs of the Universe, we may easily assume
that the potential-gradient term on the right-hand-side
of (104) can be omitted when compared to the grav-
itational friction term H σ̇ = Hstiff axion σ̇ 
 ∂Ṽ /∂σ.
Such a condition also characterises the exit from the
first hill-top inflationary phase. In this case, to leading
order, the solution of (104) is an approximate constant
classical gravitino-condensate field σcl:

σcl � ϑ = constant (106)

where ϑ is essentially arbitrary (see also discussion in
[130–132]). We note that among the allowed constants
ϑ are of course the vacuum-expectation-values (VEV)
of the condensate, for which ∂Ṽ /∂σ = 0 [128,129,133].

This (approximate) constancy of the classical part of
the condensate field, σcl persists right up to the first
inflationary phase, as one goes backwards in cosmic
time. The formal necessity for having such an inflation-
ary phase is explained below.

To this end, we first notice that the full quantum con-
densate field, σ can be written as an expansion about
the classical σcl field:

σ(x) = σcl + σq(x) = ϑ + σq(x) (107)

where σq(x) denotes the quantum fluctuations. The
existence of an inflationary epoch allows first of all to
associate the quantum fluctuations σq(x) with a very-
weakly inhomogeneous semi-classical scalar field, which
can be represented as the sum of a zero mode, to be
discussed below, and a part which is decomposed into
Fourier components with wavelengths λ satisfying the
condition [130–132]

H−1
i ≤ λ ≤ L (108)
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where L is the radius of the Universe, and H−1
i is the

radius of the event (Hubble) horizon at the end of the
(first, hill-top) inflation. The condition (108) implies
that Hi acts as an UV cutoff scale for the Fourier
momentum scale k of the modes. For subsequent eras,
e.g. the stiff-axion-dominated epoch in our model, only
the modes with wavelength

H(t)−1 ≡ �c(t) ≤ λ ≤ L (109)

i.e. inside the Hubble horizon of the corresponding era,
will remain frozen and thus constitute the components
of the semi-classical field.

The existence of an inflationary era allows us, accord-
ing to standard analysis, to compute the two-point cor-
relation function [130–132]

ξ(�) =< 0|σq(x + �)σq(x)|0 > (110)

where � is an arbitrary length. The reader should have
noticed that in (110) the vacuum state |0 > used is
the Bunch–Davies-vacuum, which is appropriate for
the inflationary space time, and which is characterised
by translational invariance. This implies that the two-
point function ξ(�) is independent of the space-time
coordinate x. For �c � � � L, which is a range rel-
evant for our purposes, as we shall explain below, one
has

ξ(�) �=
Hi

4π2
ln

(L

�

)
. (111)

This result is dominated by long wavelength modes with
� ≤ λ ≤ L.

On the other hand, by dividing the Universe into
coarse-grained causally independent regions of radius
� � L, one may consider random (Gaussian) fluctua-
tions of the quantum gravitino condensate field inside
each such region. As explained in [130–132], the various
spheres are correlated by the longer wavelength modes
of the field, which they share in common. This leads to
an approximately constant (x-independent) zero-mode
background:

Σ� =
√

ξ(�) . (112)

The random fluctuations of the field within each causal
sphere of radius � are due to short wavelengths modes,
satisfying �c(t) ≤ λ ≤ �, which are characterised by the
fluctuation parameter (variance)

Δ(�) � Hi

4π2
ln

( �

�c

)
. (113)

These random quantum fluctuations of the gravitino
field inside a causal coarse-grained region of the Uni-
verse, of radius �, centred at a point x of space-time,
at the exit of the first-inflation, is then given by the
Gaussian distribution

P(F�(x)) =
1√

2π Δ(�)
exp

(
− F�(x)2

2Δ(�)

)
(114)

and the full quantum condensate field σ(x, �) (107),
inside a coarse-grained region of radius �c � � � L,
appropriate for our situation described here, is then
given by

σ(x, �) = σcl + σq(x, �) = ϑ + Σ� + F�(x). (115)

We next notice that, as the cosmic time elapses, the
potential-gradient term in (104) will become compara-
ble to the gravitational friction term H σ̇, and even-
tually dominate it. The system then, at each point in
space x (for a given cosmic time t) must roll towards
one of the two vacua (±) of the gravitino double-well
one-loop effective potential [128,129], with probability
for, say the (+) vacuum (with the definition (+)((−))
vacuum corresponding to positive (negative) VEV of
the gravitino condensate):

p+ =
∫ +∞

0

DF� P(F�) =
∫ +∞

ϑ+Σ�

dσ(x)

× 1√
2π Δ(�)

exp
(

− (σ(x) − ϑ − Σ�)2

2Δ(�)

)

(116)

while the probability for the system to roll towards the
(−) vacuum is p− = 1 − p+ �= p+ in general. A biased
non-equilibrium phase transition then occurs. In pass-
ing from the middle to the last equality in (116), we
made use of (115), taking into account that ϑ and Σ� are
x-independent constants, as we have discussed above.

The reader should notice that the probability p+ is
arbitrary, since ϑ is arbitrary. It is only in thermal-
equilibrium situations that p+ = p− = 1/2, but
here, the gravitino condensation occurs as a result of
only non-thermal gravitational interactions, as we have
already mentioned [128,129]. The formation of DW soli-
tons interpolating between (+) and (-) vacua occurs,
but as a result of the bias, such DW are unstable. One
may then discuss percolation properties of the system,
as done in [130–132], which we shall not pursue fur-
ther here. For our purposes, the important point is that
such percolating unstable DW systems, forming clus-
ters of vacua of different sizes, lead to the formation of
GW, as a result of non-spherical collapse or annihila-
tion of DW. Generic phenomenological studies of the
formation of GW in such systems have been performed
in [105], where generically a bias in, say, a double-
well potential, including the statistical case discussed
above, is described phenomenologically by assuming the
existence of small linear and cubic correction terms in
the field σ in the respective effective double-well, Z2-
symmetric potential. Such perturbations break the Z2

symmetry, resulting in unstable DW.
In our context, during the final stages of the evo-

lution of the gravitino condensate towards the non-
trivial vacua of its double-well potential, there is pro-
duction of KR (or other stringy) axions, which domi-
nate the phase as stiff “matter” (cf. (50), or (60) for the
multi-string-axion case). Before the GW formation, the
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Fig. 4 The (bias) double-wall potential corresponding to
the gravitino condensate σ in models with dynamical break-
ing of (say N = 1) supergravities [128,129,133], after perco-
lation effects of the corresponding vacuum bubbles [130–132]
are taken into account. The near-zero-field-value region of
the potential corresponds to a ‘hill-top-inflationary phase,
which in the context of our stringy RVM model [1] would
correspond to a first inflationary phase, preceding the GW-
induced RVM inflation. This latter inflation would occur
at the broken-supergravity phase, in which the gravitino-
condensate field has been stabilised to a constant transla-
tionally invariant value σ0 at the bottom of one of the two
non-trivial vacua. The GW are generated by the collapse
of unstable domain walls created due to the vacuum-bubble
percolation effects in the phase preceding the RVM inflation

anomaly terms are irrelevant, since for a FLRW back-
ground, assumed to characterise also this early phase,
these terms vanish. As depicted in Fig. 4, and discussed
above, percolation of the bubbles corresponding to the
two vacua [130–132] would lead to an “effective bias”
of the (gravitino) double-wall potential, in the sense of
the situation being described phenomenologically by an
“effective shift” in energy between the two vacua [105].
This would then lead to domain walls, whose collisions
and annihilation would result in generation of GW.17
Once GW perturbations are created, we assume that,
as the time elapses, the conditions in this early Universe
become appropriate for their condensation. The stringy
axion matter couples to the GW condensates through
gravitational anomalies, leading eventually to a RVM-
like second dynamical inflation [1,2], as reviewed above.
It is this second inflation that can be tested phenomeno-
logically by means of cosmological data [75].

Although the existence of a first hill-top inflationary
phase does not have any phenomenological sequences in
this model, nevertheless it allows us to perform concrete
computations for the percolation probability and thus

17 The frequency of such GW is expected to be of the order
of the gravitino mass, which in the model of [128,129,133]
is proportional to (and actually of the same order as) the
gravitino-condensate mass.

understand better the evolution of the DW network in
this early phase of this string-inspired Universe, charac-
terised by gravitino condensation. Moreover, the pres-
ence of this first hill-top inflationary era implies that
any spatial inhomogeneities of various fields are washed
away, thereby providing a microscopic explanation of
the existence of cosmological (time-dependent, homoge-
neous to leading order) backgrounds, which have been
used in [1,2] to discuss the RVM-like dynamical infla-
tion. On the other hand, the second RVM-inflationary
phase, implies that any remnant of massive gravitinos
or domain walls from the early phase of the Universe,
is washed out during the second inflationary period, at
the end of which only KR (or other stringy) axion back-
grounds remain, while chiral matter is generated [1].

For completeness, we also mention at this point, that,
as discussed in [77], this first inflation can also be
described within the RVM unifying framework, which
in this way can connect the Big-Bang to the present era
of a string-inspired Cosmology. However, as mentioned
in [1], and reviewed above, during the GW-condensate
inflation, the ν coefficient of the H2 terms of the energy
density of the running vacuum (11), turns out to be neg-
ative, in contrast to the stiff-axion-dominated ((91))
and post-second-RVM-inflationary (radiation, matter
and present) eras, for which this coefficient is positive.
This feature is a unique feature of our gravitational-
anomaly string-inspired RVM, which could perhaps be
tested by cosmological data of the early Universe in the
foreseeable future.

5 Stringy RVM and the swampland criteria

Last but not least, we would like to discuss briefly in
this section the so-called swampland criteria [135–139]
for embedding the (stringy) RVM framework in an UV
complete quantum-gravity model, such as strings. The
swampland criteria refer to conditions on the potential
V of scalar fields used in inflationary or other models,
which, if satisfied, guarantee that the model is embed-
dable in string theory, which is a consistent quantum-
gravity framework. The criteria require that one of the
following two inequalities is satisfied, either

|∇V |
V

� c2 κ > 0 (117)

or
min(∇i ∇jV )

V
≤ −c3 κ2 < 0 (118)

where c2, c3 are dimensionless (positive) constants of
O(1). The gradient ∇i in field space refers to the mul-
ticomponent space of scalar fields φi, i, j = 1, . . . N con-
tained in the effective field theory. The second swamp-
land conjecture (118) refers to potentials that have a
local maximum in field space, and the application of
the criterion is near that maximum. It is evident that
the swampland criteria (117) and (118) disfavour slow-
roll inflation.
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Hence, they appear incompatible with the stringy
RVM inflation, which is compatible with the slow-roll
data. However, as explained in [4], there is no contra-
diction, because the GW-induced RVM inflation is due
to a condensate of the anomaly terms due to GW con-
densed perturbations, and as such, its potential is still
not fully known. Nonetheless, because of its composite
nature, the swampland criteria are avoided altogether,
which accounts for the phenomenological compatibility
of this phase with the slow-roll-inflationary data.

On the other hand, the so-called “vacuumon repre-
sentation” of the RVM [44] appears compatible with
these criteria. According to the vacuumon picture,
one can represent classically the total energy density
and pressure of the generic RVM model (including its
stringy version) in terms of a scalar (“vacuumon”) field
φ by means of the correspondences [4,44]:

ρtot ≡ ρφ = φ̇2/2 + U(φ), ptot ≡ pφ = φ̇2/2 − U(φ).
(119)

from which we obtain

φ̇2 = − 2
κ2

Ḣ ⇒ φ = ±
√

2
κ

∫ (
− H

′

aH

)1/2

da ,

(120)

and

U =
3H2

κ2

(
1 +

a

6H2

dH2

da

)
. (121)

Using (21) for the conventional RVM, or (93) for its
stringy version, and (121), one could construct the vac-
uumon potential directly, which can lead to hill-top
inflation. The potential has the form [4,44]:

U(φ) =
9H2

I

ακ2

2
3 + cosh2(κφ)

cosh4(κφ)
,

κ φ(a) =

√
2
3

sinh−1(
√

Dstringa
3)

=

√
2
3

ln
(√

Dstring a3 +
√

Dstring a6 + 1
)
.

(122)

where HI is the inflationary scale, α is the coefficient
of the H4 term in the RVM energy density (11), and
a is the scale factor of the Universe. The potential is
depicted in Fig. 5.

It can be seen from (122) that the potential satis-
fies the second swampland conjecture (118) for small
values of the vacuumon field, near the origin, with
0 ≤ κφ � 0.4 [4], where the potential leads to hill-
top inflation. For field values larger than κφ � 0.4, the
first swampland condition (117) can be seen to be sat-
isfied, since in that region κ−1 |U ′|/U > 1.04. As also
noted in [4], for large κφ > 1, |U ′|/U asymptotes to the
value 2, which can be understood by the saturation of
the entropy of the string-inspired RVM by the Bousso

Fig. 5 The “vacuumon” potential (122), U/U0, U0 ≡
9H2

I
ακ2 for a classical scalar field representation of the early-
Universe string-inspired RVM [1,2], with early-epoch mass-
less ‘stiff’ stringy (gravitational axion) “matter” present,
with EoS wm = 1. The potential is defined for positive val-
ues of the vacuumon field φ > 0. The potential leads to hill-
top (not of slow-roll type) inflation, near the origin φ � 0,
where it satisfies the second swampland conjecture (118)

entropy bound [50] (maximum Bekenstein–Gibbons–
Hawking entropy [45–49]) during the exit from the early
de Sitter phase.

Thus one could naively think that they can describe
the early H4-dominated vacuum inflationary phase by
means of the effective potential U(φ) of the vacuumon
which plays the role of the scalar degree of freedom
associated with the RVM inflation. However, given that
the potentials U(φ) are compatible with the swampland
criteria, as shown in [4] and mentioned above, which
disfavour slow-roll inflation, while the dynamical RVM
inflation is compatible with the slow-roll data, such a
description cannot be extended to the full quantum
RVM.

At this point we note for completeness that the
swampland criteria appear to be consistent with the
thermodynamical properties of the RVM, discussed in
Sect. 2.5. Indeed, as discussed in [4], most of the entropy
of the stringy RVM is produced near the exit phase
of the RVM inflation, which occurs for large values of
the vacuumon field κφ > 1, due to towers of stringy
states becoming light, thus contaminating the effec-
tive field theory approach. Imposing the Bousso holo-
graphic entropy bound [50], which pertains to field the-
ories, and is equivalent to the Bekenstein–Gibbons–
Hawking entropy in a cosmological setting [45–49] (38)
(cf. Sect. 2.5), one obtains actually the second swamp-
land conjecture (118) [137]. However, although such a
compatibility implies that the vacuumon representation
is embeddable in principle in an UV complete quantum-
gravity framework, it also implies that the vacuumon
model fails to provide a faithful representation of the
fully quantum RVM, given the agreement of the lat-
ter with the slow-roll inflationary data, as mentioned
above. Hence, the vacuumon is not the fully quantum
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scalar degree of freedom that underlies the condensate-
induced inflation in the stringy RVM framework [4].

We do notice, however, that within the context of a
supergravity-breaking first inflation model, the double-
well potential of the gravitino condensate, viewed as a
hill-top-inflation-inducing potential, with the conden-
sate playing the role of the inflaton field, can be made
compatible, with the second swampland criterion (118),
near the origin of the potential. This would imply that
the first inflation would not be a slow-roll one, which
will have no phenomenological consequences, as men-
tioned previously, given that this first inflationary phase
cannot be detected by the current data. This compati-
bility though, would allow the early-Universe model to
be embedded in a UV complete theory, such as strings,
consistent with the fact that the underlying supergrav-
ity theory can be obtained as a low-energy limit of
string theory.

6 Conclusions and outlook

In this review, we discussed a stringy version of
the Running-Vacuum-Model (RVM) (“stringy RVM”),
which provides an effective description for the evolu-
tion of a string-inspired cosmological model from the
Big-Bang to the present era. For completeness, we have
first recalled some of the basic properties of the RVM of
the Universe, including its thermodynamical behaviour,
and stressed its important differences, as a model lead-
ing to dynamical inflation without external inflatons,
from other such frameworks, for instance Starobinsky
inflation. This will hopefully assist the reader in their
quest towards a better understanding of the physics
underlying the embedding of the RVM framework in
a string-inspired low energy approach, and an appre-
ciation of its distinctive features as compared to the
conventional field-theoretic RVM.

We have argued that an RVM-behaviour charac-
terises the early phases of the string Universe, in which
only gravitational degrees of freedom from the mass-
less bosonic ground-state string multiplet (i.e. dila-
tons, graviton and antisymmetric (KR) axion fields) are
included. Other stringy axions, arising from compact-
ification might also be present. For constant dilatons,
one obtains consistent cosmological solutions, and this
is the case we restrict ourselves on in this review and
in [1], which this work is based upon.

The model is in general characterised by gravita-
tional anomalies, which become non-trivial in the pres-
ence of primordial gravitational waves (GW). In the
review, we have discussed potential scenarios on the
origin of such waves. One of the simplest scenarios is
that of dynamical breaking of a supergravity model,
which could be viewed as a low-energy limit of our
string theory. Condensation of gravitino fields in such
models, at a very early epoch near the Big-Bang, may
break supergravity dynamically, and lead to percolation
effects of the bubbles associated with any of the two
vacua corresponding to the non-trivial minima of the

double-wall gravitino-condensate potential. The perco-
lation phenomenon, in turn, results in formation of
unstable domain walls, whose collapse produces GW.
The reader should notice that in such extended sce-
narios, still only gravitational degrees of freedom are
assumed to be present in the early Universe, given that
gravitinos are the (local)supersymmetric partners of
gravitons.18

A schematic evolution of the stringy RVM is given
in Fig. 6, where the various epochs, that have been
studied in detail in [1,2], are depicted inside boxes.
The main features of these epochs are largely inde-
pendent of the underlying microscopic string theory.
Their main characteristic is the existence of (string-
model independent) KR axions, which in the early infla-
tionary era, in the presence of GW, couple to gravita-
tional anomalies via CP-violating anomalous couplings,
responsible for inducing inflation. Additional stringy
axions that depend on the details of compactification
may be present, and couple to the gravitational anoma-
lies in the same way, but the KR axion is always present.
In each of these eras, the energy density of the cos-
mic fluid assumes an RVM form (11), but the coeffi-
cients of the H2 and H4 may differ from era to era,
due to phase transitions in the stringy Universe. In
this respect, we mention that the ν coefficient of the
H2 term during the GW-induced RVM-inflationary era
is negative, due to the dominant contributions of the
gravitational anomaly terms. This should be contrasted
with the positive signature of the corresponding ν coef-
ficients in the post- or pre-inflationary epochs, for which
gravitational anomalies are absent. The reader should
bear in mind that ordinary QFT effects associated with
matter and radiation fields are responsible for the gen-
eration of positive ν > 0 coefficients of the H2 terms
during the radiation- and matter-dominated epochs of
the post-inflationary Universe, as per the study of [33],
reviewed here, in particular in Sect. 2.2 (cf. (8) for
the case of a scalar matter field non-minimally cou-
pled to gravity. Qualitatively similar positive contribu-
tions are made by other matter and/or radiation fields
of various spins, as we discussed above). This differ-
ence in sign between the ν coefficients in the RVM-
inflationary and post-inflationary eras is one of the most
important, phenomenologically relevant, features of the
stringy RVM, which might be, in principle, falsifiable,
provided that sufficiently accurate data from the infla-
tionary era become available, leaving sufficiently signif-
icant imprints on CMB spectra [75]. At present, this is
an open issue.

Our stringy RVM framework, make the prediction
that the primordial KR and other stringy axions could
constitute a significant (or a dominant, depending on
the model) dark-matter (DM) component. Given the
‘torsion’ interpretation of the KR axion, one obtains

18 Of course, one may also assume more complicated gauge
supergravity models, in which gauge degrees of freedom
appear in hidden sectors of the model, thus still maintain-
ing the spirit of only gravitational degrees of freedom being
present in the observable sectors of the early Universe.
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Fig. 6 The Cosmic Evolution of the stringy Running Vac-
uum Model (RVM) of the Universe, from an early era after
the Big-Bang, till the present epoch [1,2]. The main eras
examined in detail in our studies are depicted inside boxes.
The main characteristics of these epochs are independent
of the underlying microscopic string model. On the other
hand the (non-boxed) initial and pre-inflationary eras, do
depend on details of the underlying microscopic string the-
ory model. At the Big-Bang era, corresponding to the ori-
gin of time t = 0, all (infinite-order) higher curvature terms
in the gravitational action play a role, and thus the ini-

tial singularity is expected to be smoothened out. This is
compatible with an effective RVM description. The main
RVM-inflationary phase is due to a condensate of Grav-
itational Waves (GW). The GW could be produced in a
pre-RVM-inflationary phase, which could include a first
inflation in some string-inspired supergravity models, which
our framework can be embedded to. A microscopic-model-
independent feature of this epoch is that after the first infla-
tion, in the phase where supergravity is dynamical broken,
there is a “stiff”-KR-axion dominance

a ‘geometric origin’ for DM in this case. Moreover, the
undiluted KR axion background at the end of the RVM
inflation, whose Lorentz-violating form is due to the
formation of GW-induced, CP-violating, gravitational-
anomaly condensates, implies CPT- and CP-violating
leptogenesis during the radiation era, in models includ-
ing right-handed-neutrino matter in their spectra [78–
82] (the latter are produced together with the rest of
chiral matter, at the exit of the GW-induced RVM infla-
tion [1]). Baryon-minus-Lepton (B-L)-number conserv-
ing sphaleron processes in the standard-model matter
sector, then, are responsible for producing baryogenesis.
In this sense, the observed matter-antimatter asymme-
try in the Universe is attributed to gravitational anoma-
lies during the GW-induced RVM-inflationary era. This
provides an affirmative answer to the question ‘do we
come from an anomaly?’ [3].

During the post-inflationary radiation- and matter-
dominated eras of the Universe, gravitational anoma-
lies are cancelled [1] by the chiral matter generated
at the exit phase of the GW-induced RVM inflation,
but chiral anomalies in general remain, which are then

responsible, through non-perturbative effects in the
gluon (Quantum Chromodynamics (QCD)) sector of
the model, for the generation of potentials for the axion
field, which thus behave as dark matter in modern
eras [2].

In the present epoch, the plethora of cosmological
data [75] suggest that the Universe re-enters a de Sit-
ter phase. One may assume several scenarios for the
onset of this second de Sitter phase in the history of our
stringy RVM. The simplest is to assume that there is an
underlying cosmological constant c0 (which is allowed
by the RG evolution of the RVM (cf. (1), (11) ). In
terms of microscopic string or brane models, underly-
ing the stringy-RVM, there is a plethora of reasons for
the appearance of such constant vacuum terms, rang-
ing form brane-Universe-tension contributions, to con-
densates of effectively point-like brane defects [90–95],
which can be fine-tuned to de dominant only in the cur-
rent era. We shall not go through them in this review.

What we shall assume instead, for the purposes of
this work, is that the conditions in the Universe just
before modern-era “cosmological-constant” dominance,
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are similar to the ones before the RVM-induced infla-
tionary phase, which favour GW condensation. Today,
matter started to be a subleading contribution to
the Universe energy budget compared to the vacuum
energy, and thus it is possible that gravitational anoma-
lies resurface. The latter are much weaker of course than
their ancient counterparts, but still they may lead to a
new inflationary de Sitter era, corresponding though
to the present-era Hubble parameter, H0 ∼ 10−60MPl,
which is much smaller than the RVM-inflationary epoch
Hubble parameter (82). As we discussed in [1], dur-
ing the modern era one can only phenomenologically
impose a slow-running with the cosmic time of the KR
axion,

ḃtoday ∼
√

2ε′ H0 MPl , (123)

where ε′ ∼ 10−1 to fit the data, i.e. we require it to be
of the same order as the ε of the early-Universe RVM-
inflationary era (80).19

In view of this, when the anomaly condensate forms,
the condition (77) for its constancy during the entirety
of the new inflationary period (cf. (76)) cannot be
satisfied, unless unnaturally large transplanckian val-
ues of the UV cutoff μ for the respective GW modes
are assumed. Hence, the Physics of this new inflation,
although formally resembling RVM, will be very dif-
ferent from the early inflationary epoch. It is not pos-
sible at present to predict the future of our Universe
within the stringy RVM effective formalism. This would
require a detailed microscopic knowledge of the under-
lying string/brane theory, which at present falls way
beyond the scope of our discussion.

We close by emphasising that the scenario we have
described here is not merely a theoretical proposal for
new physics in the very early universe that is able to
connect the physics of primordial gravitational waves
with the physics of inflation. If only for this, we believe
it would be of significant value. However, the new
“stringy RVM” indeed has two main phenomenological
implications for the current universe, to wit: (i) there
is an almost constant vacuum energy density (a bulk
cosmological constant term as in the ΛCDM) accom-
panied by a residual—kind of fossil [9]—dynamical DE,
which is reminiscent of extremely vigorous events that
occurred at early times (which generated most of the
entropy we now see) and presently showing up in
the manner of a mild time-evolving DE component
∼ νH2 (0 < ν � 1) which mimics quintessence; and
(ii) the KR axion from the bosonic part of the original
gravitational supermultiplet becomes the Dark Matter
axion, which through an appropriate mass generation
mechanism might be responsible for part or the whole
DM that is needed in our universe to explain struc-
ture formation. The first implication is common with

19 Some microscopic models for ε′, associated with cosmic
magnetic fields present in the current era have been pre-
sented in [1], but we have no way at present of estimating
the magnitude of such fields, and thus verifying the assump-
tion (123).

the original RVM, whereas the second is characteris-
tic of the stringy version. Both fossil remnants of the
very early universe may well be living testimonies of
the potential truth behind this fascinating story, which
might provide a consistent overarching view of the cos-
mological evolution.
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4. N.E. Mavromatos, J. Solà Peracaula, S. Basilakos, Uni-
verse 6, 218 (2020). arXiv:2008.00523

5. I.L. Shapiro, J. Solà, JHEP 0202, 006 (2002).
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Roy. Astron. Soc. 478, 4357 (2018). arXiv:1703.08218
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J. 811, L14 (2015). arXiv:1506.05793
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