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Abstract
We study the achievements of quantum circuits comprised of several one- and
two-qubit gates subject to dissipation and dephasing. Quantum process matrices are
determined for the basic one- and two-qubit gate operations and concatenated to
yield the process matrix of the combined quantum circuit. Examples are given of
process matrices obtained by a Monte Carlo wavefunction analysis of Rydberg
blockade gates in neutral atoms. Our analysis is ideally suited to compare different
implementations of the same process. In particular, we show that the three-qubit
Toffoli gate facilitated by the simultaneous interaction between all atoms may be
accomplished with higher fidelity than a concatenation of one- and two-qubit gates.
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1 Introduction
Since the first proposals were made to use quantum effects for computing purposes there
has been a strong focus on how errors and imperfections may harm and even prevent suc-
cessful application of quantum computing. A simple estimate suggests that if each single
operation in a computation entails an error with a probability p >  then the application of
k operations will lead to a useful outcome with a probability that decreases exponentially
∼(–p)k . Error correction codes have provided away to correct these errors up to a certain
probability threshold, thereby allowing scalable, fault-tolerant quantum computing [, ].
The errors occurring in a single computational step such as a one- or two-qubit gates are

often characterized by a single number, typically related to the overlap between the desired
and actual output state, averaged over all input states. There is no guarantee, however,
that such a number encapsulates the accumulation of errors in a quantum circuit, where
the output state of one operation serves as the input to the next. Errors may build up
coherently, so that error probabilities grow quadratically rather than linearly with time,
or so that they compensate each other, cf., bang-bang control and composite pulses [–
]. Thus, a concatenation of two imperfect gates can lead to either unusable results or a
correcting mechanism.
Consider the action of a quantumprocess that takes an input densitymatrix ρ describing

a physical system with Hilbert space dimension D to an output density matrix. Such a
process is described as a completely-positive linear map E : ρ → E(ρ), where E(ρ) can be
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Figure 1 Concatenation of gates carried out in parallel on
different qubits (a), and in serial on the same qubits (b) in a
quantum computer. Expressions for the resulting process
matrices χ (1,2) are discussed in Section 3.

written []

E(ρ) =
∑
mn

χmnEmρE†
n, ()

by introducing a complete basis ofD operators {En} on theHilbert space. The coefficients
χmn constitute the process matrix χ .
In quantum computing we aim to implement definite gate operations yielding, ideally, a

unitary transformation, E(ρ) =UρU†. Expanding U =
∑

m ηmEm, this corresponds to Eq.
() with χmn = ηmη∗

n. The process matrix of an experimental gate implementation differs
from this form due to dissipation and decoherence. In this article, we will show that, pro-
vided dissipation and decoherence acts locally and is uncorrelated over the quantum com-
puting register χ -matrices calculated once for one- and two-qubit gates can be concate-
nated, see Figure , to characterize circuits built frommany of these gates. This assumption
may be well justified in our example, which concerns neutral atom quantum computing,
where the Rydberg blockade mechanism is used for two-qubit quantum gates [, ].
The paper is organized as follows. In Section , we review the definition of χ -matrices

and how theymay be computedwithMonteCarlowave function simulations. In Section ,
we describe how χ -matrices for simple processes on few particles are concatenated to
characterize large quantum circuits. In Section , we introduce the Rydberg blockade gate
scheme for quantumcomputingwith neutral atoms. In Section , we concatenate one- and
two-qubit gate χ -matrices in a neutral atom system to characterize the circuit performing
a Toffoli gate. This we compare to a direct multi-atom Rydberg mediated implementation.
In Section , we conclude and present an outlook.

2 Process matrix identification
Many techniques now exist to experimentally determine χ . Standard quantum process
tomography [, , ] successfully reproduces χ by measuring all output states via quan-
tum state tomography [, ]. This has been demonstrated in NMR [, ], optical [,
], and atomic systems []. Alternately, χ may be obtained making use of an ancillary
system [, ] or avoiding state tomography altogether through the use of suitable ‘probe’
systems [–].
If the system is subject to known dissipation and decoherence mechanisms, the quan-

tum system evolution may be modeled theoretically and the process matrix be calculated
by solution of the quantum master equation. A gate operation typically involves applica-
tion of time dependent laser pulses. Therefore, it is valuable to determine how losses and
errors accumulate and contribute to different types of errors in the output. To theoretically
characterize a complete quantum circuit is a formidable task and is ultimately at odds with
using a physical system to solve computationally hard problems. Still, a theoretical analysis
of how errors propagate and accumulate in small systemsmay guide efforts to pick among
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different implementations of gates and assess optimal strategies for error correction. Such
detailed studies may also serve to confirm the values of experimental parameters [, ].
In a recent publication [], we described how to characterize a quantum controlled-

phase gate subject to decay and dephasing. Instead of simulating the evolution of a com-
plete set of D input states we gain access to all elements of χ by evolving a single maxi-
mally entangled pure state of the system and an idle ancilla system of the same Hilbert
space dimension []. The system is propagated stochastically using the Monte Carlo
wave function method, which on average reproduces results of a master equation evo-
lution [–]. Process characterization using this approach has a number of advantages:
First, for large D, an adequate ensemble of wave functions is easier to store and evolve
than density matrices. Second, obtaining χ through the output state data from an ensem-
ble of wave functions is less costly, numerically, than from a density matrix []. Third, the
stochastic evolution consists of a deterministic smooth evolution interrupted by ‘quantum
jumps’. Since useful quantum gates require excellent fidelity, jumps are rare and a single
deterministic ‘no-jump’ wave function suffices to provide a good estimate and rigorous
bound on the process matrices describing the evolution [].

3 The process matrix for a quantum circuit
Suppose the quantum circuit performing a computational task is composed ofN physical
units. The Hilbert space of the entire system is then a tensor product of N Hilbert spaces,
each of dimension d. An implementation of a quantum process often requires using more
than just the qubit states. However, since the physical units only process binary informa-
tion we shall refer to them as qubits, even if we exploit states from a space larger than
dimension . On each qubit Hilbert space we assume the complete operator basis {eni}.
By merely forming tensor products of the basis operators, we obtain a complete opera-
tor basis {En = en ⊗ · · · ⊗ enN } for the N qubits, where the single index n represents all
values of the set n, . . . ,nN . The operator tensor product structure provides a convenient
representation of the D = dN operators Em (E†

n) in Eq. ().
If we assume that process matrices χ correctly describe processes acting separately on

one and two qubits of the circuit, then the application of several one- and two-qubit opera-
tions is exactly represented by an appropriate concatenation of the corresponding process
matrices.

3.1 Parallel concatenation
Suppose two subsystems are simultaneously subjected to processes independent of each
other. These processes E () and E () may be described by the process matrices χ () and χ ()

respectively, illustrated as two- and one-qubit gates in Figure (a). The combined three-
qubit process matrix χ (,) is simply the tensor product of the independent χ matrices.
Other systems may be present but idle during the gate operation. They are then repre-
sented by the identity operator in the process matrix tensor product.

3.2 Serial concatenation
Most quantum algorithms make use of many computational steps, where the output of
every step serves as the input to the subsequent one. In Figure (b) we illustrate this sit-
uation for two consecutive three-qubit operations E () and E () characterized by χ () and
χ () respectively. If the output E ()(ρ) of the input density matrix ρ becomes the input of
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E (), what is the resulting χ matrix? Formally, the output of the sequential application of
the operations is given by

E ()(E ()(ρ)
)
=

∑
pq

χ ()
pq Ep

(∑
mn

χ ()
mnEmρE†

n

)
E†
q . ()

Since the operators Er form a complete set, any product EpEm can be expanded on these
operators, that is, EpEm =

∑
r crpmEr and E†

nE†
q =

∑
s(csqn)∗E†

s . Equation () then becomes

E ()(E ()(ρ)
)
=

∑
rs

χ (,)
rs ErρE†

s , ()

where

χ (,)
rs =

∑
mn,pq

crpmχ ()
mnχ

()
pq

(
csqn

)∗. ()

Note that although two consecutive processes may act on different subsets of somemulti-
qubit system both operations may be reformulated to act on the entire system through
parallel concatenation.
It now becomes apparent that once the process matrices of all contributing gates in a

circuit have been computed conclusively, we limit the cost of finding χ (,) and thus of
process matrices for larger quantum circuits. The assessment of how errors accumulate
becomes a function of the width and depth of the quantum circuit.

3.3 Example: Toffoli gate
The Toffoli gate, or CNOT gate, performs a controlled NOT operation on a target qubit
based on the state of two control qubits. The Toffoli gate may be implemented as a se-
quence of six two-qubit C-NOT gates and nine one-qubit Hadamard and T = exp(iπσz/)
and T† phase gates, see Figure (a). The gate and its generalization to higher numbers of
control qubits (Ck-NOT) have applications as sub-modules in different quantum comput-
ing algorithms. Thus, it is relevant to determine the process matrix for its implementation
in realistic systems.
In the analysis of the Toffoli gate process matrix we first simulated the propagation of

quantum states in the full three-qubit Hilbert space through the sequence of one- and

Figure 2 The Toffoli gate: (a) The three-qubit Toffoli gate on the left may be reproduced by a circuit of
C-NOT, Hadamard (H), T = exp(iπσz/8) and T† gates, shown to the right. (b) The process matrix χ (left),
characterizing the Toffoli gate may be calculated by concatenation of one- and two-qubit process matrices
(right). The process matrices χC , χH , χT and χT† characterize the C-NOT, Hadamard, T and T† gates
respectively. The ‘identity’ process matrix χI indicates an idle qubit.
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two-qubit gates. Such a calculation, e.g. using Monte Carlo wave functions to include dis-
sipation, yields the full circuit process matrix χcir. Next, we apply the concatenation rules
to obtain the circuit’s process matrix χcat. Its repeated use of the same C-NOT χ matrix
(cf. Figure (b)), which only needs a single calculation on a two-qubit system, attests to
the advantage of the latter approach.

4 Rydberg blockade quantum gates
A promising candidate for quantum computing involves neutral atoms held at closely
spaced sites in far-off-resonance optical traps. The atoms may be individually addressed
with laser fields and excited into high lyingRydberg states that feature strong, long distance
dipole and van der Waals forces that can be used to mediate two-qubit interactions [, ,
].
In Rubidium atoms, a convenient choice for the qubit states are the hyperfine ground

states |〉 ≡ |s/,F = ,mF = 〉 and |〉 ≡ |s/,F = ,mF = 〉. They can be selectively
excited to the Rydberg state |r〉 = |d/,mj = /〉 by a two photon process using a -
nm (-nm) laser field, tuned by an amount � to the red (blue) of the intermediate |p〉 ≡
|p/,F = 〉 state. The Rabi frequency associated with the red (blue) detuned laser is �R

(�B), illustrated in Figure (a). An atom that achieves excitation to the Rydberg state shifts
the |r〉 state energy of all other atoms within the so-called blockade radius by an amount
B. Thus, one excited atom can prevent the resonant excitation of its neighboring atoms
and this is the basis for effective quantum gates between them.
Dephasing of theRydberg level normally associatedwithmagnetic field noise and atomic

motion is modeled by the operator L̂γd = √
γd(1 – |r〉〈r|), where γd is the dephasing

rate and 1 is shorthand for the identity operator. Spontaneous decay from a state |y〉 to
a lower lying state |z〉 at a rate γy is modeled by the jump operator L̂γy =

√
γy|z〉〈y|. The ef-

fects of both dissipation mechanisms are simulated using the Monte Carlo wave function
method []. Characteristic parameters are summarized in Table .
Adiabatic elimination by the effective operator formalism detailed in Ref. [] provides

a mechanism to decouple the intermediate optically excited state and describe the coher-
ent and incoherent dynamics within the subspace of |〉, |〉 and |r〉. The system is then
described by a Hamiltonian coupling a selected qubit state to |r〉 by an effective Rabi fre-

Figure 3 Simulation and characterization of the C-NOT gate: (a) The red (lower) and blue (upper) laser
fields drive |0〉, via |p〉, into the Rydberg state |r〉 by two-photon absorption. (b) Implementation of the C-NOT
gate involves a sequence of two-photon π -pulses: In pulse 1 the control atom makes the transition |0〉 to |r〉.
The target atom then makes the transitions |0〉 ↔ |r〉 (pulse 2), |1〉 ↔ |r〉 (pulse 3) and finally |0〉 ↔ |r〉 (pulse
4). In pulses 2-4 the target atom’s states |0〉 and |1〉 are swapped, but only if the control atom is not in |r〉.
Finally, in pulse 5 the control atom is driven from |r〉 back to |0〉. (c) Trace distance (see text in Section 4.1)
between the ideal C-NOT process matrix and the process matrix calculated for the implementation shown in
panel (b), with the parameters listed in Table 1. The trace distance is shown as a function of the blue laser Rabi
frequency �B .
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Table 1 Physical parameters for our simulations based on values discussed in Refs. [30, 31]

Experimental parameter Symbol Value

Detuning �/2π 2.0 GHz
Red Rabi frequency �R/2π 118 MHz
Blue Rabi frequency �B/2π 10-100 MHz
Rydberg blockade B/2π 20 MHz
Decay rate of |p〉 γp/2π 6.07 MHz
Decay rate of |r〉 γr/2π 0.53 kHz
Dephasing rate of |r〉 γd/2π 1.0 kHz

quency. The formalism also provides an effective form for the operators describing deco-
hering processes [].

4.1 Rydberg blockade C-NOT gate
In atomic quantum computing proposals, single qubit gates amount to fast, resonant tran-
sitions within single atoms and can be made with high precision. Thus, for the purpose
of this study we assume that the χ matrices associated with one-qubit gates are identical
to the desired ones. The two-qubit C-NOT gate depends on finite interactions between
excited state atoms, lengthening gate time and making it prone to dissipation and deco-
herence.
Figure (b) illustrates how a unitary C-NOT gate between two atoms can be imple-

mented by a sequence of five perfect π-pulses. First transferring the control qubit’s pop-
ulation from |c〉 to |rc〉 (pulse ), then transferring the target qubit’s population between
|t〉 and |t〉 via the state |rt〉 (pulses -) and finally returning the control qubit’s popu-
lation from |rc〉 to |c〉 (pulse ). If the control qubit initially populates the state |c〉 the
Rydberg blockade prevents any transfer during pulses -. Thus, a NOT operation on the
target qubit is conditioned on the control qubit initially populating the state |c〉, defining
it to be a C-NOT operation.
Monte Carlo wave functions were used to simulate the five π-pulse implementation of

the C-NOT gate (Figure ) with the parameters of Table . The performance of the gate
was investigated as a function of the blue laser Rabi frequency �B. To provide a simple
quantitative measure we applied the trace distance measure T(χsim,χid) between the sim-
ulated and ideal process matrix, where T(A,B) ≡ 

‖A – B‖tr and ‖C‖tr = Tr(
√
C†C) is the

trace norm. Note that this distance measure is less ‘forgiving’ than, for example, measures
based on the trace overlap []. In Figure (c) we show the trace distance between a sim-
ulated C-NOT gate process matrix and the ideal, unitary process matrix. At low values of
�B the gate experiences greater dephasing errors from population in the Rydberg state,
due to long gate times. At large �B the blockade mechanism becomes inefficient. Thus,
the optimum Rabi frequency lies between these two regimes.

5 The Toffoli gate by Rydberg blockade
We demonstrate the characterization of the Toffoli gate resulting from simulation in Fig-
ure . The process matrix χcat of the Toffoli gate in the circuit implementation (Figure )
may be obtained without further simulation by a concatenation of the single qubit process
matrices and the C-NOT process matrix of Section .. Alternatively, wemay simulate the
circuit implementation in the full three-qubit Hilbert space to obtain χcir. In the simula-
tion of a Rydberg mediated gate, the characterization of a single qubit has a Hilbert space
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Figure 4 Trace distance between the process matrix χid for the ideal Toffoli gate and the process
matrices for Rydberg interaction implementations subject to dissipation and decoherence. The results
are shown as a function of the Rabi frequency �B of the |p〉 → |r〉 (blue) laser coupling. The dashed curve is
obtained by simulating all three qubits as they evolve under the sequence of gates in the Toffoli circuit shown
in Figure 2(a). The top solid curve uses concatenation of the one- and two-qubit process matrices to compute
the Toffoli circuit process matrix. The bottom (solid) curve results from simulating the multi-qubit
implementation shown in Figure 5. In all calculations 500 Monte Carlo trajectories were used with the
parameters listed in Table 1.

dimension of d = , which translates into a  problem for the three qubit circuit char-
acterization. We observe that the Toffoli gate consists of six C-NOT gates and the trace
distance to the ideal gate is, indeed, roughly six times the one shown in Figure (c).
The top dashed (solid) curve in Figure  illustrates trace distance between the full cir-

cuit χcir (concatenated χcat) process matrix to the ideal process matrix χid, plotted as a
function of �B. Since the decay and decoherence processes apply to the individual atoms,
the successive treatment of the evolution of the atoms acted upon by the laser fields and
concatenation of the resulting one- and two-qubit process matrices should yield the same
results as the solution on the full-register Hilbert space.
Each point in both curves is determined by propagating n =  wave function trajec-

tories, and the minor discrepancy between the two curves is due to the use of the MCWF
method. Thefinal number of propagatedwave functions imposes a statistical error∼ /

√
n

on both curves. Furthermore, it imposes a small systematical error in the construction of
χcat, because the same simulated C-NOT process matrix is applied several times to form
the concatenated process matrix (see Ref. [] for an analysis of a similar situation). The
discrepancy between the curves in Figure  depends on �B. For low values of �B, and
thus slow gate operation, decay and dephasing dominate the error. More random quan-
tum jumps occur and the resulting scattering of Monte Carlo wave functions explains the
relatively large discrepancy between Tr(χcat,χid) and Tr(χcir,χid). For high values of �B,
imperfect blockade dominates the gate error. This corresponds to a unitary term in the
state evolution which is well represented by a single wave function, and the discrepancy
between Tr(χcat,χid) and Tr(χcir,χid) decreases for large �B.
A Rydberg excited atom blocks excitation of any number of atoms within the Rydberg

interaction blockade radius, which may be of order  μm. Thus, it is possible to contain
an entire qubit register within a single blockade radius, allowing implementation of multi-
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Figure 5 Multi-qubit Rydberg blockade implementation of a CkNOT gate. Each control atom is
sequentially excited from |0〉 to |r〉 in k π -pulses. Next, the target atom qubit states are swapped as in
Figure 3(b), via the Rydberg state |r〉 (conditioned on no control atom populating the state |r〉). The control
atoms are then returned to their original state in reverse order. The trace distance between the process matrix
using this implementation for k = 2 and the ideal Toffoli gate is shown as the lower curve in Figure 4.

qubit gate operations which are faster than the circuit equivalent []. One such protocol
is the CkNOT gate operation, illustrated in Figure  [].
For k =  the gate becomes the Toffoli gate and calculation of the process matrix is only

possible by solving the master equation for the complete qubit register. In this paper, sim-
ulation of the process, including the decay and decoherence mechanisms detailed above,
was carried out using the Monte Carlo method. The trace distance between the process
matrix resulting from simulation and the ideal process matrix is shown as the lower, black
curve in Figure . Remarkably, the multi-qubit implementation, with interactions allowed
between all three atoms, performs markedly better than the Toffoli circuit consisting of
one- and two-qubit operations. In comparison with the C-NOT gate, the minimal trace
distance here is approximately . times larger. This is consistent with using  π-pulses
rather than the  needed for a single C-NOT gate.

6 Conclusion
In conclusion, we have presented an efficient method to compute the accumulation of er-
rors in quantum circuits comprised of several few-qubit gates. We have shown that a set
of concatenation rules on the appropriate few-qubit gate process matrices is enough to
reproduce the process matrix of the entire circuit. To demonstrate the method’s efficiency
at calculating process matrices of large systems we considered the three-qubit Toffoli gate.
The Toffoli gate may be implemented as a circuit of one- and two-qubit gates and simula-
tions show that the process matrix obtained via concatenation is in good agreement with
the result achieved by propagation through the entire circuit.
Our theory allows comparison of different implementations of gates. In particular, we

compared a multi-qubit implementation of the Toffoli gate with its one- and two-qubit
circuit implementation. For the parameters chosen, the factor determining gate fidelity
was the number of laser π-pulses. More gates lead to a lower fidelity, with a dependence
that is almost linear. In this way, our analysis provides the necessary information to choose
between different gate implementations. A theory of full error correction may benefit sig-
nificantly from knowledge of the precise nature of errors incurred, potentially leading to
higher thresholds for errors that can be remedied by appropriate error correction. The
full process matrix, which remains at our disposal, may be further applied to optimally
combine the Toffoli gate with previous and subsequent gate operations along the lines of
NMR composite pulses [].
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Our analysis quantifies how erroneous states prepared by one gate are the input states to
the subsequent ones and how the resulting accumulation of errors cause the full register
quantum state to stray away from the ideal unitary evolution. The calculations assumed a
quantum optical master equation with independent Lindblad type relaxation terms. This
is well justified for Rydberg blockade quantum computing with optical excitation of neu-
tral atoms, but it also applies for a number of quantum computing proposals with simi-
larly isolated and identifiable qubits. However, if the deleterious interaction between the
quantum register and its environment is subject to correlations between qubits and non-
Markovian effects, more care must be exercised in the assessment of how errors accumu-
late, and how they may be corrected [, ].
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