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Abstract
Numerical methods for the 1-D Dirac equation based on operator splitting and on the
quantum lattice Boltzmann (QLB) schemes are reviewed. It is shown that these
discretizations fall within the class of quantum walks, i.e. discrete maps for complex
fields, whose continuum limit delivers Dirac-like relativistic quantum wave equations.
The correspondence between the quantum walk dynamics and these numerical
schemes is given explicitly, allowing a connection between quantum computations,
numerical analysis and lattice Boltzmann methods. The QLB method is then extended
to the Dirac equation in curved spaces and it is demonstrated that the quantum walk
structure is preserved. Finally, it is argued that the existence of this link between the
discretized Dirac equation and quantum walks may be employed to simulate
relativistic quantum dynamics on quantum computers.

Keywords: quantum walks; Dirac equation; lattice Boltzmann; operator splitting

1 Introduction
A quantum walk (QW) is defined as the quantum analogue of a classical random walk,
where the ‘quantum walker’ is in a superposition of states instead of being described by
a probability distribution. One of the earliest realization of this concept was proposed by
Feynman as a discrete version of the massive Dirac equation []. In recent times, there has
been a surge of interest for this topic, due to the conceptual and possible practical import
of QW’s as discrete realizations of stochastic quantum processes and because they can
solve certain problems with an exponential speedup, i.e. using exponentially less opera-
tions than classical computations []. Moreover, QW’s are amenable to a number of ex-
perimental realizations, such as ion traps [–], liquid-state nuclear-magnetic-resonance
quantum-information processor [], photonic devices [] and other types of optical de-
vices []. As a result, they hold promise of playing an important role in many areas of mod-
ern physics and quantum technology, such as quantum computing, foundational quantum
mechanics and biophysics [].

One of the most interesting features of discrete QW’s is their continuum limit, which
recovers a broad variety of relativistic quantum wave equations [–]. As stated earlier,
this was first discussed by Feynman and is now known as Feynman’s checkerboard [].
This was originally formulated for the free Dirac equation but extensions of these ideas,
which include the coupling to external fields, have been investigated [–]. Pioneering
work have been performed in which the Dirac equation is related to cellular automata
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[, ]. Lately, the link between QW’s and the Dirac equation have been discussed exten-
sively [–, ]. In these studies, the starting point is a general QW formulation from
which the continuum limit is evaluated and then related to the Dirac equation.

In this article, QW’s and their relations to some known numerical schemes of the Dirac
equation are reviewed from a slightly different perspective: it will be demonstrated that
the most general QW’s are obtained from lattice discretizations of the relativistic quan-
tum wave equation for spin-/ particles. More precisely, starting from the continuum
Dirac equation, it is shown that QW’s can be placed in one-to-one correspondence with
numerical schemes based on operator splitting and the QLB scheme. These numerical
methods have been developed and employed as efficient numerical tools to solve relativis-
tic quantum mechanics problems on classical computers [–]. They have a number of
interesting properties: they are easy to code, they can be easily parallelized and are very
versatile. Moreover, their mathematical structure and the fact that the time discretization
is realized by a set of unitary transformations makes the link to QW’s possible. This con-
nection is explored below and represents one of the main purposes of this article. Much
of the material discussed here, in particular the numerical simulations, is not completely
new, which is in line with the main purpose of this paper, namely an attempt to bridge the
techniques utilized in numerical analysis and (quantum) Lattice Boltzmann theory to the
language of quantum computing.

This article is organized as follows. In Section , a general formulation of QW is pre-
sented, where the transfer matrix is time and space dependent. In Section , the split op-
erator method for the Dirac equation is presented, along with its exact correspondence
with QW. Section  is devoted to the QLB method and connections with QW. Section 
is devoted to a qualitative discussion of the link between these numerical schemes and
quantum computation. In Section , the schemes are casted in the form of a propagation-
relaxation process and the notion of quantum equilibrium is introduced. Based on the
analogy between QW and QLB, a new QLB scheme for the (+) Dirac equation in curved
space is proposed in Section . Finally, the generalization of these methods to many di-
mensions is briefly discussed and numerical results are presented in Section .

2 Quantum walks
Let us consider a ( + ) quantum walk on the line for a pair of complex wave functions (bi-
spinor ψ ), obeying a discrete space-time evolution equations described by the following
discrete map [–, ]:

[
ψn+

,j

ψn+
,j

]
= Bj,n

[
ψn

,j–

ψn
,j+

]
. ()

Here, the indices j, m ∈ N ⊗ Z label points on a discretization of space and time, respec-
tively. The object Bj,n is a two-by-two matrix with components []

Bj,n := e–iξj,n

[
eiαj,n cos θj,n eiβj,n sin θj,n

–e–iβj,n sin θj,n e–iαj,n cos θj,n

]
. ()

This matrix is a U() operator (B ∈ U()) parametrized by the three space-time dependent
Euler angles θj,n, αj,n, βj,n and a space-time dependent phase ξj,n. The latter is relevant when
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it depends on time and space, i.e. when it is local. If it is global (ξj,n = ξ ), it disappears from
any observables and becomes unimportant. This occurs because when the phase is space-
time dependent, it does not commute with the time and space translation operators.

The matrix obeys B ∈ SU() only when ξj,n = kπ for all j, n, with k ∈ Z. Thus, this for-
mulation is slightly more general than QW’s considered in [, , ] where B ∈ SU()
is studied. As seen in the next section, the choice B ∈ U() will be important to have a
general connection between mass terms of the Dirac equation and QW’s. Finally, the U()
QW can also be implemented on quantum computers because the matrix B is a unitary
transformation: it represents the most general QW consistent with quantum computa-
tions.

In the above, the amplitudes ψ, code for the probability of the quantum walker to move
up (down) along the lattice site j ∈ Z at the time step n ∈ N. This is a very rich structure,
which has been shown to recover a variety of important quantum wave equations, as soon
as the Euler angles are allowed to acquire a space-time dependence []. In addition, it
provides a wealth of potential algorithms for quantum computing. This was studied exten-
sively in [–] by analysing the continuum limit of these QW, yielding different versions
of the Dirac equation. In this work, the opposite path is taken: it is shown that specific
discretizations of the Dirac equation, using either a split-operator approach or the lattice
Boltzmann technique, naturally lead to a QW formulation.

3 Split-operator and quantum walks
The starting point of this discussion is the -D Dirac equation in Majorana representation
written as (in units where c = � = ):

i∂tψ(z, t) =
[
–iσz∂z + M(z, t)

]
ψ(z, t), ()

with the bi-spinor ψ ∈ L(R,C). The generalized ‘mass’ matrix M is space and time de-
pendent and may include contributions from the physical mass, the coupling to an elec-
tromagnetic potential or any other type of coupling. One requirement, however, is that M
is a Hermitian local operator without any derivatives. Generally, it can be written as

M(z, t) = IM(z, t) + σ · M ()

= IM(z, t) + σxMx(z, t) + σyMy(z, t) + σzMz(z, t), ()

where I is the two-by-two identity matrix, (σi)i=x,y,z are Pauli matrices and the coefficients
M,x,y,z represent the time- and space-dependent external fields which couple to the spinor.

The formal solution of Eq. () is given by

ψ(z, t) = T̂ exp

[
–
tσz∂z – i

∫ t

t

M
(
z, t′)dt′

]
ψ(z, t), ()

where T̂ is the time-ordering operator, t is the initial time and 
t = t – t. Using an op-
erator splitting technique, the solution in Eq. () can be approximated by []

ψ(z, t) = exp
[
–i
tM(z, t)

]
exp[–
tσz∂z]ψ(z, t) + O

(

t). ()
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The first exponential is a translation (streaming) operator which shifts the spinor compo-
nents according to:

exp[–
tσz∂z]ψ(z, t) =

[
ψ(z – 
t, t)
ψ(z + 
t, t)

]
. ()

This suggests to use a spatial discretization where 
z = 
t (this corresponds to a Courant-
Friedrichs-Lewy (CFL) condition C = c
t/
z = , c being the speed of light) such that the
translation is exact on the lattice. Equation () can then be written as:

[
ψn+

,j

ψn+
,j

]
= exp[–i
tMj,n]

[
ψn

,j–

ψn
,j+

]
, ()

where we defined the following quantities on the lattice: Mj,n := M(n
t, j
z) and ψn
j :=

ψ(n
t, j
z). This last equation yields a numerical scheme to solve the Dirac equation.
This numerical scheme has interesting properties, as discussed extensively in [, , ]:
it can be extended to higher order accuracy, it can be easily parallelized and it can be
easily coded on a computer. In the following, it is also demonstrated that it is completely
equivalent to the U() QW described in the last section.

Equation () is in the form of Eq. (). Moreover, the exponential is also a unitary matrix:

B′ := exp[–i
tMj,n] ∈ U(), ()

and thus, there clearly exists a connection between B and B′. They are expressed in dif-
ferent representation: B uses the Euler angle parametrization while B′ is expressed in the
canonical representation obtained by the exponential mapping of the Lie algebra. The lat-
ter is given explicitly by

B′ = exp[–i
tM,j,n] exp[–i
tσ · Mj,n] ()

= exp[–i
tM,j,n]
[
I cos

(|Mj,n|
t
)

– i
σ · Mj,n

|Mi,m| sin
(|Mj,n|
t

)]
, ()

where

|Mj,n| =
√

M
x,j,n + M

y,j,n + M
z,j,n. ()

It is well-known that parameterizations of U() matrices are related to each other [] and
it can be determined that the mapping between both representations is given by

ξj,n = M,j,n
t, ()

tan(αj,n) = –
Mz,j,n

|Mj,n| tan
(|Mj,n|
t

)
, ()

tan(βj,n) =
Mx,j,n

My,j,n
, ()

tan(θj,n) = tan
(|Mj,n|
t

)√√√√ M
x,j,n + M

y,j,n

|Mj,n| + M
z,j,n tan(|Mj,n|
t)

. ()
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When M = , one recovers the SU() QW because then, B̃ := B′|M= ∈ SU(). These
last equations give a one-to-one correspondence between the QW formulation, charac-
terized by the parameters αj,n, βj,n, θj,n, ξj,n, and the discretization of the Dirac equation
with a generalized mass term Mj,n. Therefore, the last results show that in the continuum
limit, every space-time dependent QW on the line becomes a time-dependent -D Dirac
equation with a specific mass matrix. A given QW can thus be fully characterized by the
relativistic dynamics of an electron coupled to a space-time dependent external field. This
occurs because there is an equivalence between the discretization of the Dirac equation,
based on operator splitting, and the QW formulation. Moreover, this connection may be
the base for the implementation of a quantum algorithm that solves the Dirac equation on
quantum computers.

The operator splitting technique presented here also bears a close relationship with the
QLB technique, to which we now turn.

4 Quantum lattice Boltzmann, operator splitting and quantum walks
The QLB was inspired by a direct analogy between the way the Dirac equation goes to
the Schroedinger equation in the limit v/c → , and the way that the Navier-Stokes equa-
tions of classical fluid-dynamics emerge from the Boltzmann equation in the limit of small
Knudsen number, Kn → , where Kn = l/L is the ratio of the molecular mean free path to
the typical macroscopic scale. In both cases, the smallness parameter controls the enslav-
ing of the fast modes to the slow ones: non-equilibrium to equilibrium for the classical
case, versus excited states to ground state in the quantum one. Of course, the quantum
case shows no genuine relaxation since its dynamics is reversible. Yet, enslaving can be
interpreted in the sense of fast oscillations around a local quantum equilibrium (Zitterbe-
wegung), which average out once time is coarse-grained on a scale larger than the period
of the fast oscillations. So, Zitterbewegung may be regarded as the quantum relativistic
analogue of classical non-equilibrium fluctuations.

Based on this analogy, QLB was formulated as a lattice Boltzmann analogue of the Dirac
equation in the Majorana representation, where the streaming matrix is real. To obtain the
QLB scheme, it is convenient to write the Dirac equation as

[∂t + va∂z]ψa(z, t) = –i
∑

b

Mab(z, t)ψb(z, t), ()

where a, b are spinor indices and the ‘microscopic velocities’ are given by v, = ±. This
is clearly in a ‘Boltzmann-like’ form with two discrete velocities and a collision term M.
When QLB is employed in fluid mechanics to solve the continuum equations of motion,
there is a family of possible numbers of discrete velocities for a given lattice [] and each
choice yields a different numerical scheme (for instance, the  velocities scheme in -D
and the  velocities scheme in -D are popular choices on square lattices []). For the
Dirac equation, this choice is dictated by the mathematical structure of the equation.

The lattice Boltzmann equation is then written as [, ]

ψi(z + va
t, t + 
t) = ψa(z, t) – i
t
∑

b

Mab(z, t)ψb(z, t) + O
(

t). ()

As for the splitting method described in the last section, this suggests to use a space dis-
cretization where 
z = 
t. Using a ‘naive’ approach in line with LB methods in fluid me-
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chanics, the last equation would become

[
ψn+

,j+

ψn+
,j–

]
=

[
ψn

,j

ψn
,j

]
– i
tMj,n

[
ψn

,j

ψn
,j

]
. ()

Then, the matrix –iM on the right acts as collision operator while the streaming is exe-
cuted by the left part of the equation. This scheme is derived by using the formal analogy
between the Dirac equation, the Boltzmann equation and the LB technique. However, the
resulting numerical method is unstable and the L norm is not preserved [].

It is possible, however, to recover a stable and norm-preserving method. Instead of using
the ‘naive’ LB equation discretization given in Eq. (), the mass term on the right-hand
side of Eq. () is discretized by using an implicit Crank-Nicolson average:

iM(z, t)

[
ψ(z, t)
ψ(z, t)

]
=

i


Mj,n

{[
ψn+

,j+

ψn+
,j–

]
+

[
ψn

,j

ψn
,j

]}
. ()

Reporting this into Eq. (), one obtains the second order accurate QLB scheme:

[
ψn+

,j+

ψn+
,j–

]
= Tj,n

[
ψn

,j

ψn
,j

]
+ O

(

t), ()

where the transfer matrix is given by

Tj,n =
[
I + i


t


Mj,n

]–[
I – i


t


Mj,n

]
. ()

To link these results with the ones of the last sections, it is convenient to shift the spinor
components by one lattice point (we let ψ,j+ → ψ,j and ψ,j– → ψ,j). Then, the QLB
scheme becomes

[
ψn+

,j

ψn+
,j

]
= Tj,n

[
ψn

,j–

ψn
,j+

]
+ O

(

t), ()

which is in the same form as the QW and the splitting method presented previously. The
transfer matrix can be evaluated explicitly. It is given by

Tj,n =


Cj,n

[
 – i
tMz,j,n + 
t

 M
j,n –
t(iMx,j,n + My,j,n)

–
t(iMx,j,n – My,j,n)  + i
tMz,j,n + 
t

 M
j,n

]
, ()

where Cj,n =  + i
tM,j,n – 
t

 M
j,n and M

j,n = M
,j,n – M

j,n. It can be readily verified that
Tj,nT†

j,n = I. As a consequence, the transfer matrix is unitary Tj,n ∈ U(), for any size of
the time step and thus, conserves the L norm. Moreover, just like the splitting method,
there exists a correspondence with QW’s because both have U() collision matrices. The
identification with the general QW in Eq. () yields

tan(ξj,n) =
Im(Cj,n)
Re(Cj,n)

=

tM,j,n

 – 
t
 M

j,n

, ()
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tan(αj,n) = –

tMz,j,n

 + 
t
 M

j,n

, ()

tan(βj,n) =
Mx,j,n

My,j,n
, ()

tan(θj,n) = –
t

√√√√ M
x,j,n + M

y,j,n

( + 
t
 M

j,n) + 
tM
z,j,n

. ()

These relations give a correspondence between the QLB technique and the QW. They are
similar to the ones for the splitting method displayed in Eqs. () to () and actually serve
the same purpose: they allow to map a numerical scheme to the QW. The differences are
obviously due to the fact that QLB is based on a LB formulation combined with a Crank-
Nicolson average to insure stability while the splitting scheme separates the Dirac equation
into different operators which can be integrated exactly. However, both methods share the
same general structure where a streaming step is followed by a collision step.

4.1 An explicit example: the free case
The Dirac equation for the massive and free case (no external field coupling) is

i∂tψ(z, t) = [–iσz∂z + σym]ψ(z, t), ()

where My = m is a physical fermion mass. This representation of the Dirac equation yields
real spinor components, as readily seen by writing the equation componentwise:

(∂t + ∂z)ψ(z, t) = –mψ(z, t), ()

(∂t – ∂z)ψ(z, t) = +mψ(z, t). ()

The QLB scheme, for the massive and free case, reads as follows []:
[
ψn+

,j

ψn+
,j

]
= Tfree

[
ψn

,j–

ψn
,j+

]
, ()

where the transfer matrix is can be obtained from Eq. () by setting M = Mx = Mz = 
and My = m:

Tfree :=

[
a(m) b(m)

–b(m) a(m)

]
=


 + 
tm



[
 – 
tm

 –m
t
m
t  – 
tm



]
. ()

It is readily seen that a(m) and b(m) are second-order Pade’-like approximants of cos(m)
and sin(m), respectively. This is the natural consequence of the implicit time-marching
(Crank-Nicolson) scheme as applied to the ( + ) Dirac equation in Majorana form.

For a free particle, the correspondence to QW is particularly simple and is given by

ξ = α = β = , ()

tan(θ ) = –
m
t

 – 
tm


. ()

This mapping of the QLB to the QW is exact for any value of m.
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5 Prospects for quantum simulation
The numerical methods described in Sections - can be straightforwardly implemented
on classical computers. However, the stream-collide structure of these numerical schemes
makes them suitable for an efficient implementation on quantum computers as well. In
particular, they can be written as:

ψn+
j = Bj,nSjψ

n
j , ()

where Sj is the shift operator, defined as:

Sjψ
n
j =

[
ψn

,j–

ψn
,j+

]
. ()

This shift operator is a unitary operation and it can be realized experimentally by using
fundamental quantum gates [, ]. The rotation operator Bj,n belongs to U() and there-
fore can also be realized by these quantum gates, as any other unitary transformations
[]. Therefore, it is possible to map the numerical methods to quantum walks, which can
be implemented efficiently on quantum computers. This mapping is possible because each
step of the scheme is a unitary transformation: this makes these schemes norm-preserving
and sets the link with quantum computations.

The latter would be particularly useful for the study of relativistic quantum systems
where a time-dependent solution of the Dirac equation is required, such as in very high
intensity laser physics [] or graphene physics [].

Another subject of major interest for future research is the extension of the QLB
methodology to quantum many body systems and quantum field theory, two paramount
sectors of modern physics which are particularly exposed to the limitations of classical
(non-quantum) electronic computing. Progress in this direction depends on the ability to
replace the quantum wavefunction by the corresponding second-quantized quantum op-
erators, and show that the dynamics of the second-quantized QLB scheme still preserves
the appropriate equal-time commutation relations. Preliminary efforts along this line have
been developed in [] in  +  dimensions. Extensions to strongly non-linear field theories
in d >  remain to be explored. As to quantum-many body problems, LB-like methods have
been recently adapted to electronic structure simulations []. In this work, a classical LB
scheme is employed to solve the Kohn-Sham equations of density functional theory in the
form of diffusion-reaction equations in imaginary time. Allied QLB schemes could prove
very useful to solve the corresponding real-time quantum many-body transport problems
within the framework of time-dependent density functional theory.

Finally, we wish to point out the intriguing possibility of realizing both quantum and
classical LB schemes on quantum analogue simulators, as recently explored in [].

6 Quantum equilibria
In view of quantum computing implementations, it is of interest to cast the Dirac equation
in the form of a propagation-relaxation process, where the collision matrix is now inter-
preted as a scattering process, relaxing the spinor component around a local quantum
equilibrium.
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For this purpose, it is useful to reconsider the -D Dirac equation in the form:

[∂t + va∂z]ψa(z, t) = –i
∑

b

Mab(z, t)ψb(z, t). ()

Then, it is formally possible to define a local equilibrium as:

ψeq(z, t) := Uψ(z, t), ()

where U is a unitary matrix that depends on M. This transformation is chosen to recast
the Dirac equation in relaxation form:

[∂t + σz∂z]ψ(z, t) = –�
[
ψ(z, t) – ψeq(z, t)

]
, ()

where � = iM[I + U]–. The explicit value of U , � is not unique but a convenient choice
is U = eiMτ .

In this vest, the Dirac equation looks formally like a linear Boltzmann equation for two-
component models in the single relaxation time approximation []. Therefore, it can be
interpreted as a propagation-relaxation process in imaginary time, whereby collisions, im-
plemented by the scattering operator �, drive oscillations around the equilibrium distri-
bution ψeq. By defining a post-collision wavefunction as:

ψ ′(z, t) := ( – 
t�)ψ(z, t) + 
t�ψeq(z, t), ()

the Dirac equation takes the most compact form

ψ(z + va
t, t + 
t) = ψ ′(z, t). ()

This is particularly suitable to quantum computing implementations in the form of a
classical stream-collide dynamics. The collision (relaxation) gate transforms the pre-
collisional spinor ψ into the post-collisional state ψ ′, and the streaming gate moves the
post-collisional spinor to its destination location z ± 
z. Both operations are unitary and
can be encoded in logical gates for quantum computing purposes [, ].

The expression () shows that the local equilibria are linear functions of the actual
wavefunction ψ , hence itself a function of space and time.

The question is: will the actual wavefunctions ever reach this moving target, i.e.,
ψ = ψeq?

Based on its definition, this can only occur once ψeq lies in the null-space of the scatter-
ing matrix M, namely:

Mψeq = . ()

For the case of a free massive particle, it can be checked explicitly that the only solution is
the trivial vacuum ψeq ≡ .

This means that the spinorial wavefunction is a superposition of (both slow and fast)
zero-average oscillations around a local equilibrium which, consistently with the re-
versible nature of quantum mechanics, is actually never attained.
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Although this remains to be checked in detail, we conjecture that the same holds true
for the case of a massive particle in an external potential, because in this case the Dirac
equation is still linear.

Based on (), the condition for the local equilibrium to depart from a trivial vacuum
is that the matrix M be singular, i.e. the local equilibrium is a zero-mode of the scattering
matrix.

Non-trivial quantum zero-modes, ψeq �= , may indeed arise for non-linear quantum
wave equations, such as the Gross-Pitaevski or the mean-field version of the Nambu-Jona-
Lasinio model, to be dicussed shortly. A non-trivial local equilibrium would then signal
a spontaneously broken symmetry, which is indeed the distinctive trait of the aforemen-
tioned non-linear quantum wave equations.

Even though the notion of quantum equilibrium remains purely formal in nature, it is
argued that it might nonetheless facilitate quantum computing implementations based on
the compact expressions () and (). This stands out a very interesting topic for future
research.

7 QLB in curved space-time
Quantum walks have been shown to map into Dirac-like equations in curved space as
well by evaluating the continuum limit of certain QW’s [, ]. Here, in the same spirit
as other sections, a QW structure is obtained by discretizing the Dirac equation in curved
space time using a QLB-like approach. However, because the wave function propagates on
a curved manifold, the structure of the resulting QW is different from Eq. () and should
include a residency matrix that corrects the streaming step, which is strictly valid only in
flat space. This is different from the result obtained in [, ].

The Dirac equation in a static ( + ) curved space writes as:

γ a[eμ
a (∂μ – iAμ)

]
ψ +




g–/∂μ

(
g/eμ

a
)
ψ)] = –imψ , ()

where a = ,  and μ = t, z. In the above eμ
a is the two-dimensional vierbein (zweibein)

relating the components of the locally tangent Minkowski space basis (e, e), described
by the metric ηab, to the global space basis (et , ez), described by the general metric gμν .
Also, g := det(gμν) is the determinant of the metric tensor.

The general form of the corresponding partial differential equation is

∂tψ + σzA(z)∂zψ = Q(z, t)ψ , ()

with A(z) ∈R a function of space and Q(z, t) the two-by-two gravitational collision matrix
associated with Eq. (). This becomes a hyperbolic system of equations where the advec-
tion speed A(z) should not be confused with the vector electrodynamic potential. Since
the advection term is heterogeneous, a strict QLB structure, i.e. streaming along constant
lightcones 
z = ∓c
t, is no longer viable. Here, the situation is very similar to classical
LB schemes on non-uniform grids (unsurprisingly, since in dimension D = , gravity is
basically a stretching of the metric). For this purpose, several finite-volume LB (FVLB)
schemes have been formulated, whose main outcome is that the streaming operator is no
longer a diagonal matrix with eigenvalues ±, as required by the formal QLB structure
[, ].
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In this respect, a finite-volume QLB scheme for the Dirac equation in curved space can
be obtained by writing the Dirac equation as

∂tψ + ∂z
[
σzA(z)ψ

]
= Q′(z, t)ψ , ()

with Q′(z, t) := Q(z, t) +∂zA(z)σz . Then, this equation is integrated over a control volume V
(enclosed by a surface S), extending from (j – 

 )
z to (j + 
 )
z. Finally, applying a Crank-

Nicolson time-marching and combining with upwind finite-differences, the discretized
equation is given by

ψn+
,j – ψn

,j +

c

∮
Aψ dS

=


c
(
Q′

,j–ψ
n
,j– + Q′

,jψ
n+
,j

)
+


c

(
Q′

,j+ψ
n
,j+ + Q′

,jψ
n+
,j

)
, ()

ψn+
,j – ψn

,j –

c

∮
Aψ dS

=


c
(
Q′

,j+ψ
n
,j+ + Q′

,jψ
n+
,j

)
+


c

(
Q′

,j–ψ
n
,j– + Q′

,jψ
n+
,j

)
, ()

where c := 
z/
t is the uniform lattice light speed (or CFL condition). The boundary
integrals are given by

∮
Aψ, dS = [Aψ,]j+ 


– [Aψ,]j– 


, ()

an thus, require an interpolation from the cell centers j, to the north and south bound-
aries at j ± /, respectively. Following a common practice in finite-volume formulations
of hyperbolic problems, the flux terms are approximated by []:

[Aψ]j+ 


= Ajψ
n
,j, ()

[Aψ]j– 


= Aj–ψ
n
,j–, ()

[Aψ]j+ 


= Aj+ψ
n
,j+, ()

[Aψ]j– 


= Ajψ
n
,j. ()

As a result:
(

 –
Q′

,j

c

)
ψn+

,j –
Q′

,j

c
ψn+

,j

=
(

 –
Aj

c

)
ψn

,j +
(Q′

,j–

c
+

Aj–

c

)
ψn

,j– +
Q′

,j+

c
ψn

,j+, ()

(
 –

Q′
,j

c

)
ψn+

,j –
Q′

,j

c
ψn+

,j

=
(

 –
Aj

c

)
ψn

,j +
(Q′

,j–

c
+

Aj+

c

)
ψn

,j– +
Q′

,j+

c
ψn

,j+. ()

It is readily seen that this reduces to a standard QLB in the limit of a uniform grid, when
Aj/c = . In this case the streaming is diagonal with speed ±c and the spinors at (j, n + ) are
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Figure 1 Sketch of the transfer and residency matrix elements.
T11 is the fraction of up-moving spinor jumping from j – 1 at time n – 1
to j at time n, while R11 is the fraction left in j – 1. T22 and R22 bear the
same meaning for the down moving spinor.

connected to the corresponding spinors at (j ± , n) by a local  ×  matrix, which can be
readily inverted to deliver a fully explicit map. However, when Aj/c �= , the spinors at (j, n)
also enter the map, so that local inversion delivers a slightly more elaborated structure,
namely:

ψn+
j = (R + TS)ψn

j , ()

which can be written more explicitly as

[
ψn+

,j

ψn+
,j

]
= R

[
ψn

,j

ψn
,j

]
+ T

[
ψn

,j–

ψn
,j+

]
. ()

In the above T is the local  ×  transfer matrix including collisions, S is the streaming
operator and R the local residency matrix, expressing the fraction of spinors which are
left in the cell centered about z as the quantum system advances from t to t + 
t. This is
depicted in Figure .

Clearly, the residency matrix vanishes in the case of a uniform mesh, i.e. no gravity. The
mapping () represents the ‘gravitational’ QLB. The detailed expressions of the streaming
and residency matrices depend on the specific form of the metric tensor and associated
vierbeins. Moreover, this analysis concentrates on the mathematical structure (streaming
and collision steps) of the resulting scheme rather than on its numerical properties (con-
vergence, stability, etc.). These topics shall make the object of a future publication.

8 Multi-dimensions
The discretization presented in this work extends to the D+ dimensional case by applying
the notion of operator splitting. This implies the inclusion of a new dynamic step which
is entirely quantum: namely a ‘rotation’, designed so as to keep the spin aligned with the
momentum along each of the three spatial directions. Schemes using this strategy can be
found in [, ] and in [] for higher order splittings.

It might be that such rotation is not needed by formulating the Dirac equation as a ran-
dom walk on other lattice with more natural topologies (the diamond) lattice. The QLB-
QW equivalence in multi-dimensions will be discussed in a future publication. However,
to demonstrate the strength of the numerical schemes presented here and to show some
possible applications for quantum computing, numerical results in -D are presented in
the following.

8.1 Numerical results
As an example of possible applications of QLB scheme, we present two representative
simulations: Klein tunnelling in the presence of random impurities and Dirac equation
with Nambu-Jona-Lasinio (NJL) interactions in  +  space-time dimensions. Details on
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Figure 2 Wave packet density ρ at times = 0, 900, 1,500, and 1,800 (lattice units) for a Gaussian wave
packet propagating through a graphene sample with randomly distributed impurities. The simulation
is performed with impurity percentage C = 0.5% and impurity potential V = 50 MeV.

the numerical methods used to obtain these results are given in [, , ]. Also, these
results are not completely new as similar systems have been studied in [, ].

.. Graphene with random impurities
In the first numerical test, the propagation of a Gaussian wave packet through a graphene
sample with randomly distributed impurities is simulated []. In Ref. [], simulations
are performed for different values of the impurity concentration and the potential barrier,
in order to provide an estimate of the effect of impurity concentration on the conductivity
of the graphene sample. In Figure , we report some representative snapshots of the first
, time steps of the simulation, at an impurity percentage = .% and V =  MeV.
A lattice of size , ×  cells is used and the cell size is chosen to be 
z = . nm,
while the spreading of the initial Gaussian wave packet is σ =  (in numerical units),
leading to a Fermi frequency kF = . ( MeV in physical units). In this simulation, a
fully relativistic particle (m = ) is considered.

From Figure , we can see that the wave packet is scattered by the impurities, giving
rise to a plane front out of the initial Gaussian configuration. As a consequence of the
randomness induced in the wave function by the disordered media, there is a momentum
loss and therefore the motion of the wave packet is found to experience a corresponding
slow down. It is also found that the wave packet takes more time to regroup as the impurity
concentration and impurity potential are increased.
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.. Nambu-Jona-Lasinio interaction
As a second example, we present a  +  space-time simulation of the Dirac equation with
a Nambu-Jona-Lasinio (NJL) interaction []. The Dirac equation with a NJL interaction
term driven by the coupling parameter g , reads as follows

(
iγ μ∂μ – m

)
ψ + g

(
(ψ̄ψ)ψ +

(
ψ̄γ ψ

)
γ ψ

)
= , ()

where ψ = (ψ,ψ,ψ,ψ)T , γ  ≡ iγ γ γ γ  and ψ̄ = ψ†γ .
This model represents a paradigm for dynamic mass acquisition via spontaneous sym-

metry breaking due to the non-linear interactions.
Let us consider an initial condition given by the following Gaussian minimum-

uncertainty wave packet:

G(z, y) =
(
πσ )–/

exp

(
–

z + y

σ 

)
, ()

centered about (z, y) = (, ), with initial width σ . Let kz and ky be the initial energy of the
wave packet and impose the following initial condition:

u(z, y) = u(z, y) = CuG(z, y) exp
(
i(kzz + kyy)

)
,

d(z, y) = d(z, y) = CdG(z, y) exp
(
–i(kzz + kyy)

)
,

()

where coefficients Cu and Cd obey the condition C
u + C

d = , so that ρ = |ψ| + |ψ| +
|ψ| + |ψ| = |G|.

A grid size of Nz × Ny = , elements is used and the initial wave packet spread is set
at σ = , a fully relativistic particle (m = ) is considered.

In these simulations, we impose g =  and g = , and vary the initial energy of the
wave packet k ≡ kz = ky in order to inspect the effect of this parameter on the wave packet
separation, which, in turn, informs on the effective mass acquired by the up and down
propagating modes.

In Figure , the wave function density at time t =  for k = ., . and .
is shown for g =  and g = ,, respectively. The figure shows that sufficient energy,
k > ., is needed to observe the splitting of the wavepacket. The effects of non-linear
interactions, fringes and distortions, are also well visible in the right column of Figure .
A quantitative analysis in the one-dimensional case led to satisfactory agreement with
asymptotic solutions for the dynamic mass as a function of the interaction strength g .
A similar analysis in two spatial dimensions remains to be developed.

9 Summary and outlook
Summarizing, we have reviewed discretizations of the Dirac equation and described their
mapping into QW’s. These relations may allow the solution of the Dirac equation on quan-
tum computers. In the first part, a general argument is given, using the operator splitting
method. Then, the QLB scheme is studied within the same perspective and a similar rela-
tion is found. We have also shown that a similar structure remains in curved space, using
a scheme based on a finite volume formulation, with the important caveat that the ex-
act nature of the streaming operator, typical of QLB, is no longer preserved. Rather, one
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Figure 3 Wave packet density ρ = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2 for the scheme solving Dirac equation
with NJL interaction. These snapshots are taken at time t = 200 for k = 0.004, 0.04 and 0.4 (from top to
bottom). The figure shows how the initial energy affects the separation phenomenon. In particular, at low
energy, k = 0.004, no splitting of the wavepackest is observed.

sees the appearance of the residency matrix, which characterizes the fraction of spinor
which is left in the cell after one step in the time evolution. This scheme, along with its
generalization to many dimensions, will be studied in future work.
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8. Engel GS, Calhoun TR, Read EL, Ahn T-K, Mančal T, Cheng Y-C, Blankenship RE, Fleming GR. Evidence for wavelike

energy transfer through quantum coherence in photosynthetic systems. Nature. 2007;446(7137):782-6.
9. Giulini D, Joos E, Kiefer C, Kupsch J, Stamatescu I-O, Zeh HD. Decoherence and the appearance of a classical world in

quantum theory. Berlin: Springer; 2003.
10. Aharonov Y, Davidovich L, Zagury N. Quantum random walks. Phys Rev A. 1993;48:1687-90.
11. Di Molfetta G, Debbasch F. Discrete-time quantum walks: continuous limit and symmetries. J Math Phys.

2012;53(12):123302.
12. Di Molfetta G, Brachet M, Debbasch F. Quantum walks in artificial electric and gravitational fields. Phys A, Stat Mech

Appl. 2014;397(0):157-68.
13. Gersch HA. Feynman’s relativistic chessboard as an Ising model. Int J Theor Phys. 1981;20(7):491-501.
14. Bialynicki-Birula I. Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys Rev D.

1994;49:6920-7.
15. Meyer D. From quantum cellular automata to quantum lattice gases. J Stat Phys. 1996;85(5-6):551-74.
16. Arrighi P, Nesme V, Forets M. The Dirac equation as a quantum walk: higher dimensions, observational convergence. J

Phys A, Math Theor. 2014;47(46):465302.
17. Fillion-Gourdeau F, Lorin E, Bandrauk AD. Numerical solution of the time-dependent Dirac equation in coordinate

space without fermion-doubling. Comput Phys Commun. 2012;183(7):1403-15.
18. Succi S, Benzi R. Lattice Boltzmann equation for quantum mechanics. Phys D, Nonlinear Phenom.

1993;69(3-4):327-32.
19. Fillion-Gourdeau F, Herrmann HJ, Mendoza M, Palpacelli S, Succi S. Formal analogy between the Dirac equation in its

Majorana form and the discrete-velocity version of the Boltzmann kinetic equation. Phys Rev Lett. 2013;111:160602.
20. Chandrashekar CM, Srikanth R, Laflamme R. Optimizing the discrete time quantum walk using a su(2) coin. Phys

Rev A. 2008;77:032326.
21. Lorin E, Bandrauk A. A simple and accurate mixed solver for the Maxwell-Dirac equations. Nonlinear Anal, Real World

Appl. 2011;12(1):190-202.
22. Gilmore R. Lie groups, Lie algebras, and some of their applications. New York: Dover; 2012.
23. Qian YH, D’Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhys Lett. 1992;17(6):479.
24. He X, Luo L-S. Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann

equation. Phys Rev E. 1997;56:6811-7.
25. Succi S. The Lattice-Boltzmann equation. Oxford: Oxford University Press; 2001.
26. Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech. 1998;30(1):329-64.
27. Succi S. Kinetic approach to lattice quantum mechanics. In: Cellular automata. Berlin: Springer; 2002. p. 114-22.
28. Kaye P, Mosca M, Laflamme R. An introduction to quantum computing. Oxford: Oxford University Press; 2006.
29. Di Piazza A, Müller C, Hatsagortsyan KZ, Keitel CH. Extremely high-intensity laser interactions with fundamental

quantum systems. Rev Mod Phys. 2012;84:1177-228.
30. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183-91.
31. Succi S. Lattice Boltzmann method for quantum field theory. J Phys A, Math Theor. 2007;40(26):559.
32. Mendoza M, Succi S, Herrmann HJ. Kinetic formulation of the Kohn-Sham equations for ab initio electronic structure

calculations. Phys Rev Lett. 2014;113:096402.
33. Mezzacapo A, Sanz M, Lamata L, Egusquiza I, Succi S, Solano E. Quantum simulator for transport phenomena in fluid

flows. arXiv preprint, arXiv:1502.00515 (2015).
34. Meyer D. From quantum cellular automata to quantum lattice gases. J Stat Phys. 1996;85(5-6):551-74.
35. Boghosian BM, Taylor W IV. Simulating quantum mechanics on a quantum computer. Phys D, Nonlinear Phenom.

1998;120(1-2):30-42.
36. Di Molfetta G, Brachet M, Debbasch F. Quantum walks as massless Dirac fermions in curved space-time. Phys Rev A.

2013;88:042301.

http://arxiv.org/abs/arXiv:1502.00515


Succi et al. EPJ Quantum Technology  (2015) 2:12 Page 17 of 17

37. Ubertini S, Bella G, Succi S. Lattice Boltzmann method on unstructured grids: further developments. Phys Rev E.
2003;68:016701.

38. Nannelli F, Succi S. The lattice Boltzmann equation on irregular lattices. J Stat Phys. 1992;68(3-4):401-7.
39. LeVeque RJ. Finite volume methods for hyperbolic problems. vol. 31. Cambridge: Cambridge University Press; 2002.
40. Palpacelli S, Romatschke P, Succi S. One-dimensional quantum lattice Boltzmann scheme for the nonlinear Dirac

equation. Int J Mod Phys C. 2013;24(12):1340001.
41. Palpacelli S, Mendoza M, Herrmann H, Succi S. Klein tunneling in the presence of random impurities. Int J Mod Phys

C. 2012;23(12):1250080.
42. Nambu Y, Jona-Lasinio G. Dynamical model of elementary particles based on an analogy with superconductivity. I.

Phys Rev. 1961;122:345-58.


	Quantum lattice Boltzmann is a quantum walk
	Abstract
	Keywords

	Introduction
	Quantum walks
	Split-operator and quantum walks
	Quantum lattice Boltzmann, operator splitting and quantum walks
	An explicit example: the free case

	Prospects for quantum simulation
	Quantum equilibria
	QLB in curved space-time
	Multi-dimensions
	Numerical results
	Graphene with random impurities
	Nambu-Jona-Lasinio interaction


	Summary and outlook
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


