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Abstract
We show theoretically that a properly chosen one-dimensional array of coupled
photonic resonators (cavities) may possess localized zero-dimensional topological
modes bearing resemblance with the corresponding edge modes/Majorana states in
semiconductor nanowires atop a superconducting substrate. These modes constitute
a manifold of degenerate states and are robust to the geometrical characteristics of
the array, to the dielectric properties of the cavities and of the host medium. Such
arrays can be realized in the laboratory as chains of microwave cavities within a
metallic wire-network or as lattices of sinusoidally curved dielectric waveguides in the
optical regime.
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1 Introduction
The topological properties of the quantum states define a new paradigm in the descrip-
tion and classification of condensed matter. Namely, atomic crystals possessing a topo-
logically nontrivial electronic band structure constitute a new class of materials whose
salient properties are robust to phase transitions which modify the symmetry order of the
atomic solid. Typical examples of such topological solids are the integer/fractional quan-
tum Hall (I/FQHE) systems and the topological insulators. Well-known examples of topo-
logical properties are the existence of chiral edge states in QHE systems and the presence
of gapless surface states in topological insulators which are both insensitive to the presence
of randomness/disorder.

Over the years there has been a continuous transfer of ideas and phenomena from
atomic solids to their man-made electromagnetic (EM) counterparts, i.e., photonic crys-
tals and metamaterials. Among several phenomena in traditional condensed matter
physics which have found their analogues in artificial electromagnetic systems, the topo-
logical properties of matter have been the focus of intensive research in the past years
motivated by two main scopes: the investigation of new states of photons in the context
of quantum simulation and the design of disorder-immune integrated photonic devices.
Examples of topological electronic systems which have been simulated in photonics are
D lattices of gyromagnetic cylinders simulating the integer QHE [–], metamaterials
simulating topological insulators [–], metamaterial-based microwave networks sim-
ulating the fractional QHE [], and many others.
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The main application in topological condensed matter comes from the presence of elec-
tron states at the boundaries of finite solids, i.e., chiral edge states in D systems (e.g.,
quantum spin Hall effect) and gapless surface states in D systems (topological insula-
tors), which are robust to disorder. In finite one-dimensional (D) systems with non-trivial
topology, zero-dimensional localized states may appear in model Hamiltonians such as Ki-
taev’s model []. In particular, Kitaev predicted that when a semiconductor nanowire is
placed atop a superconducting substrate, Majorana-type fermionic states emerge at the
edges of the nanowire; this is a phenomenon with important application in topologically
fault-tolerant quantum computing [–]. Unfortunately, a proof-of-principle experi-
ment for these zero-dimensional edge states requires a highly sophisticated laboratory
setup. Unlike electron systems, topological zero-dimensional states can more easily sim-
ulated with photons either in the microwave regime with coupled-cavity arrays [] or in
the optical regime with arrays of metallic nanoparticles [, ]. Namely, the EM Green’s
tensor describing the coupling among the electric dipoles either in EM cavities [] or
nanoparticles [] as well as the derived photonic frequency bands are in analogy with
Bogoliubov-de Gennes equations of Kitaev’s model of Majorana edge states in semicon-
ductor nanowires. Besides classical electrodynamics, quantum simulators for Majorana
states have been proposed in the context of cold atoms [] and trapped ions [].

In the present work we show that an array of coupled cavities immersed in a chiral host
medium may support a manifold of zero-dimensional EM modes similarly to the fractional
QHE, with obvious application in fault-tolerant quantum computing which is a non-local,
decoherence-free type of quantum computing [–]. We note that we are working in a
regime of high EM-radiation intensity in which case the classical theory of light (Maxwell’s
equations) is applicable. However, for low intensities where the quantum nature of light
(photons) is employed, additional phenomena based on quantum correlations may arise
which can possibly enrich the range of applications of the presented system such as, e.g.,
in multipartite entanglement []. The paper is structured as follows. Section  presents a
tight-binding coupled-dipole formalism which, for suitable EM designs, transforms a clas-
sical electrodynamic problem described by Maxwell’s equations to an eigenvalue problem
equivalent to an electronic tight-binding Hamiltonian of ordinary atomic solids. Section 
applies the formalism of Section  to a coupled-cavity array design which exhibits nontriv-
ial topological frequency bands. Section  discusses the emergence of zero-dimensional
edges modes in a coupled-cavity array. Section  assesses possible experimental realiza-
tions of topological coupled-cavity arrays and Section  concludes the paper.

2 Tight-binding coupled-dipole method
The EM crystals under study here are amenable to a photonic tight-binding description
within the framework of the coupled-dipole method []. The latter is an exact means
of solving Maxwell’s equations in the presence of nonmagnetic scatterers. We consider a
lattice of cavities within a lossless metallic host. The ith cavity is represented by a dipole
of moment Pi = (Px;i, Py;i, Pz;i) which stems from an incident electric field Einc and the field
which is scattered by all the other cavities of the lattice. This way the polarization vectors
of all the cavities are coupled to each other and to the external field leading to the coupled-
dipole equation

Pi = αi(ω)
[

Einc +
∑
i′ �=i

Gii′ (ω)Pi′
]

. ()
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Gii′ (ω) is the electric part of the free-space Green’s tensor and αi(ω) is the polarizability of
the ith cavity. Equation () is a N ×N linear system of equations where N is the number
of cavities of the system.

For a particle/cavity of electric permittivity ε embedded within a material host of
permittivity εh, the polarizability α is provided by the Clausius-Mossotti formula α =
(V /π )(ε–εh)/(ε+εh), where V is the volume of the particle/cavity. For a lossless Drude-
type (metallic) host i.e., εh(ω) =  – ω

p/ω (where ωp is the bulk plasma frequency), the
polarizability α exhibits a pole at ω = ωp

√
/(ε + ) (surface plasmon resonance). By mak-

ing a Laurent expansion of α around ω and keeping the leading term [], we may write
α = F/(ω – ω) ≡ F/� where F = (V /π )ωε/(ε + ). For sufficiently high value of the
permittivity of the dielectric cavity the electric field of the surface plasmon is much local-
ized at the surface of the cavity. As a result, in a periodic lattice of cavities, the interaction
of neighboring surface plasmons is very weak leading to much narrow frequency bands. By
treating such a lattice in a tight binding (TB) manner [], we may assume that the Green’s
tensor Gii′ (ω) does not vary much with frequency and therefore, Gii′ (ω) � Gii′ (ω). In this
case, Eq. () becomes an eigenvalue problem

∑
i′ �=i

Gii′ (ω)Pi′ = �Pi, ()

where F has been absorbed within the definition of Gii′ (ω) and we have set Einc =  in Eq.
() as we seek the eigenmodes of the system of cavities. In the following, we will be dealing
with cavities lying in the same plane. We can, therefore, treat separately the case where
the electric field lies is perpendicular to the chain axis (transverse modes) from the case
where the electric field is parallel to the chain axis (longitudinal modes). In what follows,
we will only deal with transverse modes.

In this case, Pi = (Px;i, Py;i) and the Green’s tensor Gii′ (ω) is given by

Gii′ (ω) = Fq
C

(
q|rii′ |

)
I ()

with rii′ = (xii′ , yii′ , zii′ ) = ri – ri′ , q = ω
√

εh(ω)/c and I is the  ×  unit matrix. The
vectors ri denote the position of the cavities. Since we focus our attention around the
surface plasmon frequency ω, we operate in the subwavelength regime where q|rii′ | � .
In this regime, the function C(q|rii′ |) is written as

q
FC

(
q|rii′ |

) � q
F exp

(
iq|rii′ |

)
/
(
q|rii′ |

)
= tii′ exp(iφii′ ), ()

where tii′ and φii′ are real numbers. In what follows, the cavities are connected via coupling
elements, i.e., waveguides or transmission lines, in which case the phase factors φij are
not necessarily related with the wavevector of the host medium εh and can therefore be
considered as independent parameters.

For a D lattice of cavities, we assume the Bloch ansatz for the polarization field, i.e.,

Pi = (Px;i, Py;i) = Pnβ = exp(ikRn)Pβ . ()



Yannopapas EPJ Quantum Technology  (2015) 2:6 Page 4 of 9

The cavity index i becomes composite, i ≡ nβ , where n enumerates the unit cell and β the
positions of inequivalent cavities in the unit cell. Also, Rn = na, n = –∞·· ·∞, denotes the
lattice vectors (a is the lattice period) and k is the Bloch wavevector. By substituting Eq.
() into Eq. () we finally obtain

∑
β ′

G̃ββ ′ (ω, k)Pβ ′ = �Pβ , ()

where

G̃ββ ′ (ω, k) =
∑

n′
exp

[
ik(Rn – Rn′ )

]
Gnβ ;n′β ′ (ω). ()

Solution of Eq. () provides the transverse frequency band structure of a D periodic sys-
tem of cavities.

We note that in the Green’s tensor of Eq. () the Drude metal within which the cavities
are formed is an isotropic medium. Since the case of a isotropic chiral host medium []
will be needed in what follows, we provide the corresponding Green’s tensor for the case
of a D chain,

Gii′ (ω) = Fq
C

(
q|rii′ |

)
I – zii′ iησy, ()

where η is the chiral parameter of the host medium and σy is the corresponding Pauli
matrix.

3 Topological frequency bands
Next we derive the EM Green’s tensor for the D chain of Figure . Namely, we assume
that the nearest neighbor (NN) hopping strengths are complex with alternating opposite
arguments, t exp(±iφ), i.e., the phase factors in the hopping strengths in the chain alternate
as, +φ, –φ, +φ, –φ, +φ, –φ, . . . .

We note that in EM lattices such as those considered here, a negative phase –φ can be
easily achieved when the cavities are connected e.g., by D left-handed transmission lines,
i.e. transmission lines supporting backward-propagating waves where the phase velocity
is opposite to the group velocity [, ]. Alternatively, the cavities may be connected by
waveguides loaded with a left-handed metamaterial. Obviously, a positive phase +φ can be
achieved by similar means (right-handed transmission lines or waveguides loaded with a
right-handed material). For the D chain of Figure , the Green’s tensor of Eq. () becomes,

G̃ββ ′ (k) =

(
 G̃AB

G̃∗
AB 

)
, ()

Figure 1 1D chain of cavities coupled with
complex NN hopping strengths. The arrows
denote the sign of the phase factor of the (complex)
hopping strengths. Due to the dissimilar (opposite)
phases in the hopping strengths between a cavity
and its left/right first neighbours, the unit cell contains a ’diatomic’ basis of length a.
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Figure 2 Frequency band structure for φ = π /2, l
= 0.3a of the chain of Figure 1 where the cavities
are embedded in a chiral (η = 0.5 - solid lines)
and non-chiral (η = 0 - dashed lines) host
medium. The thick straight line at � = 0
corresponds to the manifold of degenerate
zero-dimensional modes.

where

G̃AB = t[exp(iφ) + exp
[
–i(ka + φ)

]
I – iη

[
(l – a) + l exp(–ika)

]
σy ()

and  is the  ×  zero matrix.
For a non-chiral medium (η = ) the (doubly degenerate) eigenvalues of Eq. () (fre-

quency bands) are

�±(k) = ±t cos(ka/ + φ). ()

For η �= , the expressions for the frequency bands are much more involved and will not
be presented here - we only depict them graphically in what follows.

In Figure  we show the frequency bands for φ = π/ and for a nonchiral (η = ) and a
chiral (η = .) medium hosting the cavities with l = .a. Evidently, a Dirac point [, ]
is present at k =  irrespective of the (nonzero) value of φ. For a non-chiral host medium,
the introduction of chirality (η = .) opens up a frequency gap in place of the Dirac point.

4 Zero-dimensional topological modes
The topological nature of the EM modes of the D chain of cavities under study can be
revealed by assessing the modes of finite chains of Figure . The modes of a finite chain of
N cavities are found by dropping the Bloch anzsatz of Eq. () and by diagonalizing instead
the corresponding real-space N × N Green’s tensor Gr

Gr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Gi,i Gi,i+    · · ·   
Gi–,i Gi,i Gi,i+   · · ·   

 Gi–,i Gi,i Gi,i+  · · ·   
... 

. . . . . . . . . · · · Gi–,i Gi,i Gi,i+

 · · · · · · · · · · · · · · ·  Gi–,i Gi,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, ()

where

Gi,i =

(
 B
B∗ 

)
, Gi,i+ =

(
 

B∗ 

)
, Gi–,i =

(
 B
 

)
()
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Figure 3 The manifold of degenerate
zero-dimensional modes for a chain of 4 cavities. The
arrows denote the polarization at a particular cavity. Each
row represents a different mode of the manifold.

and

B = t exp(iφ)I + iη(a – l)σy. ()

By calculating the eigenspectrum of Eq. () we find that half of the eigenmodes, i.e.,
N modes, are ordinary chain modes spread all over the chain whilst the other N modes
constitute a manifold of modes which are degenerate at � =  (thick straight line at � = 
in Figure ). A similar manifold of states is met in the ground state of a fractional QHE
system [] and in quantum-optics based simulators of the fractional QHE []. Each of
the degenerate modes is localized at a single cavity as illustrated in Figure . Namely, each
row of Figure  corresponds to a different mode of the chain wherein the polarization
vector is zero at all cavities except from one. A similar picture ( degenerate states) holds
when the polarization vectors are normal to the page. All these states constitute a manifold
of degenerate states of the chain. The above degenerate zero-dimensional modes may find
application in quantum-computing devices with multipartite entangelement [].

We note that the above zero-dimensional modes are present with (η �= ) or without
the presence of chirality (η = ) in the host medium. In the non-chiral case, however,
these modes may be fragile since they have a infinitesimal frequency difference from the
EM modes spreading over the entire chain (and correspond to the Dirac-cone frequency
bands). It is therefore mandatory to generate a frequency band gap at � =  to isolate the
degenerate manifold of states from the rest of states. And of course, the band gap should be
also topologically nontrivial in order to preserve the degenerate zero-dimensional states.
This is achieved by introducing chirality in our system (by assuming that η �=  in Eqs. ()
and ()), which is the optical analogue of spin-orbit coupling in electron systems [].
Due to the non-trivial topological nature of these zero-dimensional EM modes, they are
immune to the presence of disorder and/or possible fabrication imperfections [, ]
facilitating this way their experimental observation. We note that, similarly to the Majo-
rana edge states in Kitaev’s model, the observed emergence of zero-dimensional modes
in the middle of the frequency gap of Figure  signifies the non-trivial topology of the
corresponding frequency bands of Figure  [].

5 Physical realisation
In order to realize the proposed coupled-cavity arrays in the laboratory, it is important
to create a negative phase (argument) of the hopping strength. As stated in Section , a
negative phase can be achieved in a medium supporting backward-propagating waves, i.e.
waves where the phase velocity is opposite to the group velocity. Such media are the so-
called negative refractive-index metamaterials or left-handed metamaterials which are ar-
tificial dielectrics supporting backward-propagating waves. Therefore, in order to achieve
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Figure 4 Microwave design for a 1D
coupled-cavity array with topological properties:
cuboid dielectric cavities joined together with
metamaterial-based coupling elements and
embedded within a 3D network of metallic wires
(artificial plasma). The coupling elements are
alternately of positive and negative refractive index.

Figure 5 Optical design for a 1D coupled-cavity
array with topological properties: a 1D periodic
array of sinusoidally curved waveguides.

a negative phase coupling, i.e., exp(–iφ), between two NN cavities, the latter must be
physically connected via a metamaterial element. Such can be a waveguide loaded with
a negative-index metamaterial or a left-handed transmission line [].

A feasible coupled-cavity array design with desired properties is the one depicted in
Figure . As our model system requires dielectric cavities within a homogeneous plasma,
a lattice of cavities formed within a homogeneous Drude-type metal, e.g., a noble metal
(Au, Ag, Cu), would be the most suitable candidate []. However, the plasmon bands are
extremely lossy due to the intrinsic absorption of noble metals in the optical regime. In-
stead, one may use an artificial plasmonic medium operating in the microwave regime
where metals are perfect conductors and losses are minimal. Artificial plasma can be cre-
ated by a D network of thin metallic wires of a few tens of μm in diameter and spaced
by a few mm []. Such a network is background medium hosting the cavity in Figure .
The dielectric cavities in Figure  are the flat cuboids which are connected via waveguide
elements. The waveguide elements are alternately loaded with materials of positive and
negative refractive index mimicking the alternation of positive and negative phases. As
suggested above, instead of metamaterial-loaded waveguide elements, one can use trans-
mission lines to mimic the phase alteration from cavity to cavity, when operating in the
microwave regime []. We note that the desired chirality in the host medium can be in-
troduced either by coating the wires with a twisted-nematic liquid crystal with a long pitch
or by fabricating a network of metallic helices [, ] instead of straight wires.

An alternative EM design which can potentially highlight the topological features stud-
ied here has been recently realized in the laboratory [, ]. Namely, the dispersion rela-
tion of Figure  with the Dirac singularity (the curve corresponding to η = ) has been re-
produced by a D periodic array of sinusoidally curved waveguides [] (see Figure ) de-
signed so that effective coupling coefficients between adjacent waveguides are alternately
positive and negative []. The alternative negative and positive coupling is designed by al-
ternating the distances between adjacent waveguides. The sinusoidally curved waveguides
are single-mode and are realized by femtosecond direct-writing fabrication []. Although
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the topological nature of the corresponding waveguide modes had not been spotlighted
in Refs. [, ], an experimental verification of the Dirac singularity in the dispersion
relation was achieved by means of D conical diffraction []. We can therefore hope that
a verification of manifold of degenerate zero-dimensional modes reported here is experi-
mentally feasible with the system of Figure .

6 Conclusion
We have presented a one-dimensional photonic system, namely an array of coupled cav-
ities in a chiral medium, which is topologically non-trivial and exhibits a manifold of de-
generate zero-dimensional modes which are reminiscent of the Majorana states in semi-
conducting nanowires in touch with a superconducting substrate. This exotic photonic
simulator can be realized and probed experimentally system with already fabricated struc-
tures such as arrays of sinusoidally curved dielectric waveguides or with cavities coupled
with metamaterial elements or transmission lines, embedded in metallic wire networks.
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