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Abstract Recent experiments in the river Seine have revealed the presence of persistent large rolls. This finding has motivated the
present numerical study of a turbulent open channel flow. Our pseudo-spectral direct numerical simulations are aimed at understanding
how the shear at the surface, for instance produced by an external wind, can change vortical structures in the bulk. Simulations
are run at a Reynolds number in the range [5 × 103 ÷ 104], in line with similar laboratory experiments. We investigate how flow
structures located near the bottom wall, near the surface or inside the bulk are modified by a surface shear. Statistical signatures are
extracted through Fourier analysis of the simulated fields, and typical wavelengths of vortices or streaks are computed. Moreover,
instantaneous fields are used to show the existence of upwelling and downwelling motions. These motions can be hindered by the
presence of a large enough surface shear. This condition turns out to be necessary for the existence of streaks at the surface as well.
Our investigation clarifies the dynamics of vortices in an open channel flow at moderate Reynolds number, indicating that unsteady
vortex structures are indeed present, but the existence of long coherent rolls cannot be accounted for by the sole presence of shear
at the surface. Numerical studies with a much longer domain and possibly at higher Reynolds numbers are needed to provide a firm
answer to the question.

1 Introduction

The presence of coherent structures in turbulent flows has motivated a huge research effort in the last decades [1–3]. While coherent
structures are also present in isotropic flows [4], we focus here on the properties of coherent vortices in the presence of physical
boundaries, and in particular for the archetypal case of an open channel flows. Vortical structures can manifest either as a permanent
secondary flow in a cross-stream direction or as an instantaneous pattern of the flow dynamics. In both cases, they are particularly
important in environmental situations, since they may play a major role in sediment transport and dispersion [5].

Triggered by the influential work of Barenblatt [6], a major effort has been made to understand better wall flows at moderate
and high Re numbers. In such flows, experiments and numerical simulations revealed the existence of different near-wall vortical
structures, spatially correlated and with different temporal persistency [7, 8]. Particularly interesting for boundary layers are the
long streamwise elongated vortices [9–11]. These streamwise structures seem to be 100–1000 long in terms of the wall unit distance
[12], defined as the viscous scale δν � ν/uτ where ν is the kinematic viscosity and friction velocity is uτ � √

τw/ρ, based on the
averaged wall stress τw and the fluid density ρ. Along the spanwise direction, these vortices generate streaks that generally extend
over distances of approximately 100 wall unit distance or less.

More recently, visualizations, experiments and numerical studies have revealed an even more complex situation with the existence
of large-scale (LS) and very-large-scale motions (VLS) [13–15]. The typical length scale of these structures is the outer scale h rather
than the viscous scale, and they can extend over very long distances in the streamwise direction (even up to 10h). It is worth noting
that all these structures may be energetically important, but they are generated randomly in time and space, and are instantaneous
representation of the Reynolds stress dynamics [16].

In hydraulic flows, such as open channels, the situation is less clear-cut. In rough open channels, there is some evidence that
large structures are present as streamwise rotating rolls, which actively participate to the bed dynamics [17–20]. Smooth channels
are equally relevant when the interaction with the rough bed may be neglected. In this case, the presence of streaky structures at the
bottom has been corroborated by many studies [21, 22]. Similar low- and high-speed streaks have also been found in free surface
flows [23–25]. Streaks exist at the free surface at least when some large enough external shear is imposed at the free surface. This
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result is non-trivial since, contrary to a solid wall, vortex lines can attach at a free surface and a wall-normal vorticity component can
exist. This is one classical instance of modification of vorticity dynamics by a free surface [26]. Similarly to what was proposed for
closed wall flows, some authors have linked the presence of streaks near the surface to vortical motions spanning the entire channel
height in the cross-stream direction rather than being localized near boundaries [27–32].

In addition, in smooth open channel flows, some in situ experiments have pointed out the presence of vortices, which look like
secondary flows [33] in the transverse plane, i.e., contrary to LS and VLS in pipe and boundary layer flows, they are not random in
space and time. Under which conditions these vortices are encountered in natural flows, and what is their impact on sediment/species
transport, hydraulic resistance, mixing and morphodynamics are still a matter of debate that requires further analyses [19, 33].

To provide some insights on this issue, in the present work, we study numerically an open channel flow, focusing in particular on
the upwelling and downwelling motions of fluid, and investigating whether there exists a clear statistical signature of rolls scaling
with the height of the channel. Some recent works have particularly motivated the present one. Experiments by Chauvet et al. [34]
have analyzed velocity and vorticity in the river Seine. Through Doppler measurements, these authors have provided evidence of
a secondary flow in the transverse plane. More precisely they have measured a time-averaged vertical velocity, thus showing the
existence of a typical wavelength along the spanwise direction that may be related to the presence of large circulation rolls. These
structures appear to be robust, yet they are of much smaller amplitude than the main streamwise component: For the river Seine,
the average speed is of about 1.6 [ms−1], whereas the vertical velocity turns out to be of the order of 0.510−2 ms−1. How these
structures are formed is not yet clear. Of even more interest for the present work, Zhong et al. [35] recently studied the dynamics of
large vortical structures performing laboratory experiments in a smooth and large open channel (i.e., with a large width-to-height
aspect), at Reynolds numbers similar to those used in our study. Given the close similarity with our study, we will make explicit
reference to Zhong et al. [35] in discussing our results.

In this context, as pioneering shown by Lam and Banerjee [24] and Pan and Banerjee [36], direct numerical simulations
(DNS)—because of the large amount of data and information that generate—can be a valuable tool to probe the physics of turbulent
open channel flow and to test hypotheses and theories. The major disadvantage of DNS is the limited value of the Reynolds number
that can be achieved, which is typically rather small compared to that of geophysical flows. This has motivated the use of large-eddy
simulations (LES) [37, 38] for large-scale geophysical flow simulations, despite the tendency of LES to smoothen out streaky
structures [39].

The main goal of the present work is thus to provide a careful statistical analysis of a turbulent open channel flow, in order to
understand whether large vortices appear and whether their manifestation may be linked to the presence of streaks at the surface. For
such a purpose, we decided to run DNS. The setup and the value of the main parameters of the simulations are consistent with those
of similar laboratory experiments [32, 35]. Because of the moderate Reynolds number considered here, the work is intended firstly
as a complement to these ones. Furthermore, as in 2D simulations at low Re [40], several shear rates are imposed at the surface
via the boundary conditions to assess the possible effect of the shear stress in triggering the growth of large vortices. As mentioned
above, the ratio between the amplitude of the rolls and the mean flow is quite small in natural conditions, and therefore, we have
performed simulations at high external shear compared to natural configurations, to improve the signal/noise ratio in the hope of
better revealing such structures.

2 Methods

Let us consider a turbulent open channel flow driven by a mean pressure gradient, which is formerly equivalent to study the case of
a free surface flow flowing by gravity over an inclined plane. The geometric configuration is represented by a rectangular domain
of length L̂ x along the streamwise direction, height L̂ z and width L̂ y . We assume:

L̂ x � 4π ĥ, L̂ y � 2π ĥ and L̂ z � 2ĥ, (1)

where ĥ is the half channel height (Fig. 1), symbol ·̂ indicating dimensional quantities. A Cartesian frame is used, where the
streamwise, spanwise and normal coordinates are denoted, respectively, x̂ , ŷ and ẑ. The flow is assumed to be incompressible:

∂ û j

∂ x̂ j
� 0, (2)

and governed by the Navier–Stokes equations

∂ ûi
∂ t̂

+ û j
∂ ûi
∂ x̂ j

� − 1

ρ̂

∂ p̂

∂ x̂i
+ ν̂

∂2ûi
∂ x̂ j∂ x̂ j

, (3)

where û ≡ û1, v̂ ≡ û2 and ŵ ≡ û3 are the streamwise, spanwise and normal velocity components and p̂ pressure. Fluid density
ρ̂ and kinematic viscosity ν̂ are assumed to be constant. Periodic conditions are imposed along the spanwise direction ŷ, so to
mimic a flow that is contained in a channel but located away from lateral walls and therefore not much influenced by them. Along
the streamwise direction x̂ , periodicity is also imposed for the velocity field. For pressure, we assume that there exists a constant
mean pressure gradient �̂ and that pressure perturbations around the mean value are periodic along the streamwise x̂ and spanwise
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Fig. 1 Sketch of the flow
configuration. The fluid domain is
rectangular of length L̂ x , width
L̂ y and height L̂ z . The origin is
located at (x̂ , ŷ, ẑ) � (0, 0, 0) so
that bottom and surface are
situated, respectively, at ẑ � −ĥ
and ẑ � ĥ, and horizontal
coordinates x̂ , ŷ are positive

ŷ directions. The mean pressure is related here to boundary conditions, but it could be also introduced from constant forces in
Eq. (3) representing the gravity component along the bed. A larger length is imposed along x̂ to take into account the correlation
of streamwise vortices [12]. In our simulations, a no-slip condition is imposed at the bottom, i.e., (û, v̂, ŵ) � (0, 0, 0) at (x̂ , ŷ,
−ĥ) and the free surface displacements along the vertical direction are assumed to be small with respect to the channel depth. This
implies that the vertical velocity component and the vertical surface displacements can be neglected: ŵ � 0 at ẑ � ĥ. This rigid-lid
approximation eliminates surface waves. While the presence of waves may add important effects [41, 42], this choice is considered
as an adequate first order model for the purpose of the present work [43, 44], which considers flow at moderate Reynolds numbers.
For streamwise and spanwise velocity components, we impose at the surface ẑ � ĥ either a free-slip condition (FSC) or an imposed
stress condition (ISC). The FSC corresponds to a free surface with no imposed shear (that is, neglecting the shear imposed by the
atmosphere). This leads to the following conditions at the free surface:

μ̂
∂

∂ ẑ
û(x̂ , ŷ, + ĥ) � 0 and μ̂

∂

∂ ẑ
v̂(x̂ , ŷ, + ĥ) � 0, (4)

where μ̂ � ρ̂ν̂ is the dynamic viscosity. For the ISC, we impose a shear τ̂s �� 0 at the free surface plane ẑ � ĥ which is directed
along the stream and results in the following conditions at the free surface:

μ̂
∂

∂ ẑ
û(x̂ , ŷ, + ĥ) � τ̂s and μ̂

∂

∂ ẑ
v̂(x̂ , ŷ, + ĥ) � 0. (5)

Because of the presence of a mean pressure gradient and of an imposed shear at the surface, this flow may be called a turbulent
Poiseuille–Couette flow. For the FSC, the global equilibrium of forces between mean pressure gradient �̂ and the mean shear stress
at the bottom wall τ̂w gives τ̂w � −2ĥ�̂. For the ISC, the mean pressure gradient is always balanced by a combination of the shear
at the bottom τ̂w and the shear at the surface τ̂s , that is, τ̂w − τ̂s � −2ĥ�̂.

The system is solved in dimensionless form by introducing a characteristic length [L] and velocity [U]. The length [L] is based

on the half channel height ĥ and the velocity on the mean pressure gradient, i.e., [U ] �
√

ĥ
ρ̂

| �̂ |. The following dimensionless

variables are thus defined: (x , y, z) � 1
[L] (x̂ , ŷ, ẑ), (u, v, w) � 1

[U ] (û, v̂, ŵ), t � 1
[L][U ]−1 t̂ , p � 1

ρ̂[U ]2 p̂, τ � 1
ρ̂[U ]2 τ̂ . In

dimensionless form, the computational domain becomes x : [0, 4π], y : [0, 2π] and z : [−1, +1], and the governing Eqs. (2) and
(3) read:

∂u j

∂x j
� 0, (6)

∂ui
∂t

+ u j
∂ui
∂x j

� − ∂p

∂xi
+

1

Re

∂2ui
∂x j∂x j

. (7)

where the Reynolds number is defined Re ≡
ĥ

√
ĥ
ρ̂
|�̂|

ν
.

Several other Reynolds numbers can be introduced. First, a bulk Reynolds number,

Rem � 2umRe, with a bulk velocity um ≡ 1

2

∫ 1

−1
〈 u 〉 dz, (8)

where angular brackets 〈〉 denote averaging in time and over the homogeneous directions x and y. Second, a friction Reynolds

number Reτ ≡ ĥûτ /ν̂, based on the bottom friction velocity ûτ ≡
√

τ̂w

ρ̂
. For FSC, the dimensionless bottom friction velocity is

equal to uτ ≡ ûτ /[U ] � √
2 so that Reτ � √

2Re. For the ISC, uτ � √
2 + τs with τs ≡ τ̂s

ρ̂[U ]2 leading to Reτ � √
2 + τsRe. For a

standard Poiseuille flow, the shear at the surface is opposite to that at the bottom τs � −τw , and thus, uτ � 1. Finally, a Reynolds
number Reτs � uτs Re, based on the friction velocity uτs ≡ √| τs | at the surface.

From a numerical point of view, Eqs. (6) and (7) are solved via a standard pseudo-spectral method [45, 46]. Further details on
the numerics can be found in Appendix A.
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Table 1 Mean flow parameters: the Reynolds number; the mean bulk velocity um; the associated bulk Reynolds number Rem; the measured square of bottom
friction velocity u2

τ ; the associated friction Reynolds number Reτ ; the square of surface friction velocity u2
τs ; and the associated surface friction Reynolds

number Reτs

Re um Rem u2
τ Reτ u2

τs Reτs

FSC 180 25.35 9.127 × 103 1.955 254.6 0 0

ISC0 180 13.80 4.968 × 103 0.843 165.3 1.157 193.6

ISC1 180 19.09 6.875 × 103 1.286 204.1 0.714 152.1

ISC2 180 27.24 9.807 × 103 2.249 269.9 0.272 93.8

ISC3 180 33.30 1.199 × 104 3.209 322.4 1.201 197.3

Table 2 Flow conditions in dimensional units: ĥ is the height, ν the kinematic viscosity, Ŵ the channel width, Ŵ/ĥ the aspect ratio. To make the comparison,
we have used the definitions from Zhong et al. [35].Note that, for this reason, the Reτ here corresponds to the double of that obtained in Table 1

ĥ(cm) ν (cm2/s) Ûm (cm/s) ûτ (cm/s) Ŵ/ĥ Rem Reτ

Present (FSC) 3.35 9.5 × 10−3 26.0 1.70 – 9127 594

Zhong et al. [35] 3.35 9.5 × 10−3 29.2 1.81 9.0 10297 638

We present five numerical simulations of the turbulent Poiseuille–Couette flow: a single FSC and four ISC simulations. In each
ISC simulation, the imposed shear stress τs corresponds to a given mean streamwise velocity Vs at the surface. These simulations are
sorted in ascending order according to the imposed shear stress τs . Simulation ISC0 with the imposed velocity value Vs � 0 is similar,
but not identical, to a standard Poiseuille flow since, differently for the standard Poiseuille flow, the stream- and spanwise velocity
components can fluctuate at the top surface. ISC0 and ISC1 correspond to a negative shear τs while ISC2 and ISC3 correspond to
a positive shear τs . The different parameters are presented in Table 1. In order to indicate which real experiment could be directly
related to our results, we present in Table 2 the case without shear applied at the surface with typical dimensional units, together
with the parameters of the experiments reported in [35].

To run the above simulations, we proceed as follows. We start from a realization of a closed channel flow, we changed the
boundary condition at the top wall from a no-slip boundary into a free-slip one (FSC), and we let this new simulation to evolve until
a statistically steady state is reached. We then use a single realization of this field as initial condition for the other simulations. For
each simulated case, after an initial transient, the flow attained a new statistically steady state, in which statistics can be computed.
All the statistics that will be shown below have been checked to be converged with respect to the number of mesh points and time
discretization.

3 Results

3.1 Analysis of velocity statistics

Since we are particularly interested in coherent structures, we decided to present most of our results concerning classical statistics in
appendix (see appendix B–C). As a brief statement, current results confirm previous analyses carried out at lower Reynolds numbers
[24, 36]. For instance, we clearly observe (see Table 1) that, compared to FSC, the mean streamwise velocity um decreases for ISC0

and ISC1, and increases for ISC2 and ISC3. The boundary condition at the top surface influences the local gradient of 〈u〉 near the
bottom. Compared to FSC, we find larger (respectively, smaller) bottom shear stress when the imposed mean surface velocity Vs
is larger (respectively, smaller) than the mean surface velocity of FSC. The wall-normal profile of the dimensionless mean shear
stress, given by:

τ (z) � 1

Re

d〈u〉
dz

− 〈u′w′〉, (9)

with velocity fluctuations u′
i � ui − 〈 ui 〉, is expected to be τ (z) � τs + (1 − z) and τw � τs + 2, where τw ≡ τ (−1) and

τs ≡ τ (1). The agreement of the numerical shear stress with the profile given by Eq. (9) is excellent (see appendix B). This result
constitutes also a check of the statistical convergence of our computations. To properly quantify the effects due to viscosity near the
two boundaries, we can further analyze the mean stress by decomposing it into its viscous and turbulent part and by rescaling the
viscous and turbulent stresses as follows.
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Fig. 2 Behavior of viscous and
Reynolds stress (both normalized
by the total mean shear stress) as a
function of the wall-normal
coordinate. Panel a: Situation near
the bottom wall, as a function of
z+. Panel b: situation near the
surface, as a function of z+

s . Case
FSC is not computed at the
surface, and therefore, it is plotted
only in panel (a)

For the bottom boundary, the distance from the bottom is measured in wall units as

z+ ≡ 1

δν

(z + 1) with δν ≡ 1

Reτ

, (10)

with δν the characteristic length scale of the viscous sublayer. Quantity z+ can be viewed as a local Reynolds number based on
velocity uτ and distance from the wall (z + 1). In the same manner, we measure the distance from the surface in surface units as

z+
s ≡ 1

δνs

(1 − z), with δνs ≡ 1

Reτs

(11)

with δνs the viscous sublayer length scale at the surface. In Fig. 2, the ratio Re−1

τ (z)
d〈u〉
dz (respectively, − 1

τ (z) 〈u′w′〉) of the viscous
stress (respectively, Reynolds stress ) to mean shear stress τ (z) is plotted with emphasis on the viscous layer near the bottom (as
a function of z+) and near the surface (as a function of z+

s ). Near the bottom boundary, these profiles nicely collapse regardless of
the imposed τs . A similar behavior is found near the surface boundary for the different ISC, with the possible exception for ISC2,
which corresponds to the smallest imposed shear τs . ISC2 is probably a limit case where the surface does not differ much from a
solid wall. For FSC, the structure of shear is different near the surface since both viscous and Reynolds stress are zero at the surface,
(Hence, it is not shown in Fig. 2b.)

These results together with the statistical analysis of mean streamwise velocity and fluctuations (see Appendix B–C) allow us
to conclude the following: (i) Considering previous results obtained at lower Re number, no appreciable Reynolds number effect is
found on the main statistics of the flow, at least for the range of Reynolds number considered here; (ii) the flow near the surface is
similar to a boundary layer, as far as the mean velocity is concerned; (iii) the same conclusion applies to fluctuations statistics; and
(iv) the stresses, upon proper rescaling, appear independent of the imposed external shear.

3.2 Flow structures at the bottom boundary

We switch now to the main focus of this work, namely coherent flow structures. Due to the significant shear stress present at the
bottom boundary, the near-wall region is dominated by local streamwise vortices and low-speed streaks (velocity deficits). These
structures have also been widely observed in laboratory experiments [47, 48] and reproduced in numerical simulations at low
Reynolds number [24]. To characterize the near-wall dynamics in the present problem, in Fig. 3 we plot the contour maps of the
fluctuations u′ of the streamwise velocity on the plane z+ � 5 at the upper limit of the viscous sublayer. Results are shown for the
cases ISC0, FSC and ISC3 only, and only a part of the domain is shown to highlight the structures (in appendix D, the plots of all
cases and in the entire domain can be found). Figure 3, as well as the subsequent plots displaying instantaneous fields, presents the
general behavior. The flow has similar characteristics for all cases, with the presence of low- and high-speed streaks populating the
near-wall region. However, the length and width of these streaks do depend on the applied shear. In particular, the width of streaks
decreases with decreasing the bottom shear. A more quantitative indication of the streak separation is obtained from the average
Fourier spectrum of the vertical velocity component w as a function of the spanwise wavelength λy . This quantity is computed at
z+ � 5 and averaged in space (along the x direction) and in time (Fig. 4).

For all cases, the spectrum displays a peak that represents a characteristic wavelength λy : 0.53 for ISC0, 0.45 for ISC1, 0.39 for
FSC, 0.33 for ISC2, 0.28 for ISC3. Streaks exhibit a shorter separation as the shear stress at the bottom boundary is increased (which
is in turn a consequence of the increased module of the shear at the top surface). Nevertheless the same quantity normalized by
the shear velocity 〈 w̃ 〉/uτ and presented against the wavelength expressed in wall units λ+

y≡ 1
δν

λy , displays similar characteristic
separation λ+

y(z+� 5) ≈ 90 ÷ 100 for all cases, see also Fig. 6.
To get an idea on how these patterns are changing with respect to the distance from the wall, two pictures are presented. First

(Fig. 5), the instantaneous streamwise velocity u is plotted in the transverse plane y − z. Low-velocity streaks, having a height of
about 40–50 wall units, are observed for all cases. Second (Fig. 6), the average Fourier spectrum of 〈w̃〉/uτ is also presented at
three positions z+ within the buffer layer (z+ < 30), as a function of wavelength expressed in wall units λ+

y� 1
δν

λy . The separation
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Fig. 3 Fluctuation u′ of the instantaneous streamwise velocity, normalized by maxx , y| u′|, on the plane z+ � 5 located near the bottom boundary. Snapshots
have been taken after reaching the statistically steady state. Only a portion of the numerical domain is shown to highlight the structures. The color bar is
presented in quadratic scale. Top left figure, ISC0; Top right figure, ISC3; Bottom figure, FSC

Fig. 4 Fourier spectrum (averaged
in time and along the streamwise
direction x) of the vertical velocity
component as a function of the
spanwise wavelength λy
expressed in dimensionless outer
units (i.e., normalized by the half
channel height h). The analysis is
performed at the vertical location
z+ � 5

of streaks does not depend much on the different cases at any particular position z+. However, streaks spacing slightly increases
with the distance from the wall: λ+

y(z+� 5) ≈ 90, λ+
y(z+� 15) � 100, λ+

y(z+� 30) � 135. The λy values for the FSC case agree
with those obtained by Kim et al. [49], in particular λ+

y ≈ 100 for z+ � 10. Beyond the buffer layer, viscosity effects are negligible
and wall units cannot adequately characterize the flow. Hence, the dominant wavelengths λ+

y computed from the different cases do
not collapse when considering planes at z+ � 50. By contrast, for such planes, the wavelength at which the maximum amplitude is
reached is similar in terms of λy for the different cases (Fig. 7). Furthermore, for z+> 50 spectra are similar and amplitudes do not
change much. This confirms that streaks have a height of the order of 50 wall units.

3.3 Flow structures at the free surface

One issue concerns the interaction of turbulence with the free surface and the effect of the shear imposed at the surface on the flow
structures close to the surface. In Fig. 8 (and in appendix D), we present the fluctuations u′ of the streamwise velocity component
in the horizontal plane located at z+

s � 5 (in surface units) (but for FSC, for which the plot is at 1−z
δν

� 5). Streak-like patterns are
clearly visible for ISC0 and ISC3 (see Fig. 8 top and bottom, respectively), and also ISC1. For FSC (see Fig. 8 center) and ISC2, a
streak-like pattern is not observed. This suggests that flow streaks are likely to appear only when the shear exceeds a critical value,
as previously found by [24]. To quantify these observations, we compute (i) the average Fourier spectrum of the vertical velocity
component as a function of the spanwise wavelength λy (see Fig. 9 left) and (ii) the average Fourier spectrum of the vertical velocity
component normalized by the surface shear velocity uτs as a function of the wavelength in surface units λ+

y, s� 1
δνs

λy at z+
s� 5 (see

Fig. 9 right). One observes a dominant wavelength only for ISC0, ISC1 and ISC3 at λy � 0.45, 0.57, 0.48, respectively. This
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Fig. 5 Streamwise velocity
u normalized by maxy, z|u| in the
transversal plane y − z at the
lower half of channel z+ ∈ [0, 80].
Top panel, ISC0; Central panel,
FSC; Bottom panel, ISC3

Fig. 6 Fourier spectrum of the vertical velocity component (averaged in time and along the streamwise direction x, and normalized by the friction velocity)
as a function of the spanwise wavelength expressed in wall units, λ+

y . Different positions from the bottom in wall units z+ are presented: Left, z+ � 5; Center,
z+ � 15; Right, z+ � 30

Fig. 7 Fourier spectrum of the vertical velocity component (averaged in time and along the streamwise direction x, and normalized by the friction velocity)
as a function of the spanwise wavelength λy . Different positions from the bottom in wall units z+ are presented: Left, z+ � 60; Center, z+ � 70; Right,
z+ � 80

wavelength corresponds to a value λ+
y, s � 80, similar to the value obtained for the bottom streaks. As a consequence, elongated

structures of streamwise vorticity appear at the surface for ISC0, ISC1 and ISC3, but not for FSC and ISC2.
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Fig. 8 Instantaneous contour
maps of the fluctuation u′ of the
streamwise velocity, normalized
by maxx , y| u′|, at the horizontal
plane z+

s � 5, in surface units (but
for FSC, in which the plot is
located at 1−z

δν
�5). The color bar

is presented in quadratic scale. Top
panel, ISC0; Central panel, FSC;
Bottom panel, ISC3. Instantaneous
snapshots are taken after a
statistically steady state is reached

Fig. 9 Left panel: Average Fourier spectrum of the vertical velocity component as a function of the spanwise wavelength λy for ISC. Right panel: Average
Fourier spectrum of the vertical velocity component normalized by the surface friction velocity as a function of the spanwise wavelength in surface units
λ+
y, s . This analysis is performed at the vertical location z+

s � 5

3.4 Horizontal velocity divergence at the surface

To characterize further the interaction between the flow structures in the bulk of the channel and the free surface, we compute the
horizontal flow divergence:

∇H · u ≡ ∂u

∂x
+

∂v

∂y
(12)

at the surface, i.e., at z � 1. The two-dimensional flow divergence is associated with the exchange of mass between the surface and
the bulk of the flow [50]. Regions of positive horizontal divergence are regions of local flow expansion. These are due to incoming
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Fig. 10 Instantaneous contour
maps of the horizontal velocity
divergence ∇H · u at the surface
normalized by maxx , y|∇H · u| for
the different cases. The color bar is
displayed in quadratic scale. Top
panel: ISC0; Central panel, FSC;
Bottom panel, ISC3. Instantaneous
snapshots are taken after a
statistically steady state is reached

upwellings impinging on the free surface. Regions of negative horizontal divergence are regions of local flow compression, likely
responsible for subsequent downwelling events. Contour maps of the instantaneous distribution of ∇H ·u for the different flow cases
are shown in Fig. 10. When the shear at the surface is weak (ISC2) or vanishing (FSC), upwellings (red regions) and downwellings
(blue regions) are lumps of positive or negative ∇H · u with no specific spatial orientation. For ISC0, ISC1 (not shown for brevity)
and ISC3 in which a large shear is present, the situation changes drastically: Upwellings and downwellings appear as longitudinal
structures. These motions are hence distorted by the shear applied at the surface and tend to align with high- and low-speed streaks.
They are also weaker than for ISC2 (not shown for brevity) or FSC. Therefore, the presence of a shear is found to disrupt upwellings
and downwellings (large-scale flow events). This in turn allows the presence of streaks at the surface. To fully characterize the flow
structure near the upper surface, the concept of the flow compressibility is introduced. A dimensionless compressibility factor [51],
linked to the local flow divergence, can be computed on x − y planes at different z locations:

C �
〈
( ∇H · u )2 〉

(〈
∂u
∂x

2
〉

+
〈
∂u
∂y

2
〉

+
〈
∂v
∂x

2
〉

+
〈
∂v
∂y

2
〉) . (13)

This factor is nonzero because of the 3D incompressibility of the flow. Figure 11 shows its profile for the top half of the domain.
The free-shear case reproduces the result recently discussed by [50]. The value observed at the surface (z � 1) in these simulations
is C � 0.6, which is higher than that found in experiments and numerical simulations considering the free-shear surface of an
otherwise 3D incompressible turbulent isotropic flow [52]. In this case, the compressibility factor turns out to be C ≈ 0.5 [52]. The
value at the surface is close but higher also than the theoretical value C � 0.5 that characterizes the strong compressible Kraichnan
flow [53, 54]. This indicates an important compressibility effect in the surface case, even though it seems that time correlations
of real flows tend to weaken the compressibility effect with respect to the Kraichnan model [55]. However, this is still a matter of
debate, and the role of flow time correlations on the flow compressibility, and on the corresponding flow mixing, should be clarified
better [56].

The compressibility factor decreases to a value near C ≈ 0.2 in the bulk of the channel. This value is close to the value 1/6 which
is expected for a two-dimensional cut of a three-dimensional homogeneous, isotropic flow.
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Fig. 11 Compressibility factor C
(13) on the top half of the domain
for all the simulated cases

Fig. 12 Left column: Instantaneous vertical velocity w normalized by maxy, z|w| in a transversal plane y − z. Right column: Instantaneous vertical velocity
w normalized by maxx , y|w| at the center of the channel, i.e., in the horizontal plane z � 0. Top panels, ISC0; Central panels, FSC; Bottom panels, ISC3

The imposition of a shear (both positive or negative) does not modify the value of C in the channel core (z � 0) but strongly
reduces its value at the surface. Moreover, the value is decreased also in a large region below the surface 0.5 < z < 0.9. This should
be related to the distortion of the upwelling and downwelling motions operated by shear. The ISC2 case is the only one in which
the effect is smaller. In this case, the value of C is almost everywhere 0.2 as in the bulk. The results show a two dimensionalization
of the flow in the region below the surface in the presence of shear. Since streaks are quasi-2D structures, this finding is consistent
with the fact that streaks are only observed when a sufficiently high shear is present (otherwise they are not observed).

3.5 Flow structures inside the channel

We investigate now whether a shear applied at the surface promotes or hinders the formation of large-scale structures inside the bulk.
Away from the boundaries, the formation of recirculation cells may be identified by using the vertical velocity w in the transversal
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Fig. 13 Average Fourier spectrum of the vertical velocity component normalized by friction velocity as a function of the spanwise wavelength λy at z � −0.5
(left panel), the center of the channel, z � 0, (central panel) and at z � 0.5 (right panel)

y − z plane (Fig. 12, left column) and in horizontal x − y plane (Fig. 12, right column). Some difference between cases can be
pointed out. For FSC (and ISC2, not shown here), large-scale structures generated in the central region of the channel can extend up
to the surface (central panel in Fig. 12). They consist of adjacent upwelling and downwelling structures alternating in space. Without
a shear (or with a small positive one), these large-scale vertical motions occur with a rather random horizontal spatial distribution,
as highlighted in Fig. 12 (right column). A negative shear at the surface of the channel promotes the formation of smaller rollers
close to the surface, with the consequent weakening of the large-scale structures (see case ISC0, top panel in Fig. 12). The results
obtained in the ISC3 case (bottom panel in Fig. 12) might suggest that a strong positive shear increases the persistence along the
stream of large-scale rolls.

To quantify these observations, we compute the average Fourier spectrum (on a x − y plane) of the vertical velocity component
as a function of the spanwise wavelength λy . Results are shown in Fig. 13 for three different vertical positions (z � −0.5, z � 0
and z � 0.5). Regardless of the vertical location of planes, the dominant wavelength for the case of surface positive shear (ISC2

and ISC3) is at λy ∼ 2, i.e., the channel height. In addition, a positive shear seems to increase the amplitude of the large-scale rolls.
For negative shear cases (ISC0 and ISC1), the spectrum shows that the amplitude is reduced compared to the previous two cases
and the optimal length is also less pronounced as we approach the wall or the free surface (z � −0.5, z � 0.5). These evidences
corroborate the existence of some large-scale coherent dynamics, at least of modest intensity because of the relative importance of
the peak in the Fourier spectrum. In order to highlight whether the vertical movements are correlated in the horizontal direction,
the vertical velocity is visualized in the horizontal plane at the center of the channel (Fig. 12 right column). From these results, it
is possible to argue that large-scale structures might be also more correlated when a sufficient and positive shear is imposed at the
surface (ISC3), indicating that a strong favorable wind triggers the formation of large-scale vortices, as in similar hydrodynamic
unstable shear flows, i.e., Couette flows. Yet, the streamwise correlation remains poor, and results cannot be considered conclusive.

4 Discussion and conclusions

We have carried out a numerical analysis of the dynamics of vortical structures in turbulent open channel flows. This issue, which is
of great fundamental interest, is also relevant for river dynamics, for which experimental and numerical studies seem to highlight the
presence of large elongated rolls, whose size in the cross-plane scales with the river height h, and whose length can be several times
h. Our numerical experiments have been made with parameters that can be considered similar to the recent laboratory experiments by
Zhong et al. [35]. This numerical study complements those laboratory experiments, since numerical simulations have the advantage
of providing all possible information with great accuracy. We have carried out different simulations choosing different shears applied
at the surface, which mimic the presence of a wind, either opposite or along the streamwise direction. It is worth emphasizing that
our simulations are made in idealized conditions and comparison with field experiments, always at much higher Reynolds numbers,
must be taken cum grano salis. We discuss here our main points.

(i) Streaks at the surface are found only when a sufficient shear is imposed at the surface, and the separation of these streaks is
found to be of the order of 50 ÷ 100δν . In this context, our results confirm and extend previous results obtained at lower Re [36],
hence indicating, at least for the considered range of Reynolds numbers, very small (if any) Reynolds number effect. For the range
of parameters investigated here, the observed streamwise vortices seem to scale in inner units, as those encountered in near-walls
flows.

(ii) The boundary layer at the bottom is almost unaffected by the shear at the surface. Therefore, an external shear does not seem
to be responsible for important changes in the near-wall region (river bed).

(iii) We have investigated the dynamics of upwelling and downwelling motions, and the influence of the shear on them. Upwelling
and downwelling motions are always present along the full height of the channel, but the applied shear can modify their dynamics:
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While in the free shear or in the presence of a very low one, these motions are randomly organized in the horizontal plane, in the
other cases, these motions are more regular and oriented, and streaks are also more visible.

(iv) Our analysis indicates that the streaky structures, and in particular their size, are sensitive to varying the amplitude and the
direction of the shear. We have also tried to understand whether the structures, present along the vertical direction, extend also for
several channel height in the streamwise one. A strong positive shear seems to trigger the horizontal organization of large rolls. Yet
this result cannot explain the persistency of such vortices found in several in situ experiments. When a negative shear is present,
the vertical structures appear not to be well correlated in the streamwise direction. That seems to imply that a low negative shear
is probably necessary to deform the large upwelling and downwelling movements, but is not sufficient to justify the presence of
large-scale vortices. It is worth noting that the general case for in situ experimental observations would be of negative shear. In any
case, we have not found in our simulations sufficient signature of large elongated roll in smooth open channels due to shear. Those
large elongated rolls found by other authors are not produced by simple shear at the surface, at least in the conditions considered
here. Large rolls are in any case of small amplitude, an occurrence that makes their observation somehow tricky. Our results are in
agreement with recent laboratory experiments [32, 35], in which authors measured a small correlation in the vertical and longitudinal
plane, and linked it to large streamwise vortices. The experiments were performed at similar Reynolds numbers, but the domain was
longer, possibly allowing for the development of larger rolls. Our analysis of the correlation in the horizontal plane suggests that
these results cannot be considered conclusive for the existence of coherent large rolls.

According to our findings, the presence of a shear seems a necessary, but not sufficient, condition. Hence, large-scale structures
should arise via some other physical mechanisms. The first idea is to invoke the effect of very high Re number [15]. Unfortunately,
a parametric study of a well resolved long open channel at high Reynolds is prohibitive from the computational point of view.
Stratification may trigger also large convection rolls, but in hydraulic flows it would be stable in most of the cases, making this
hypothesis improbable. A promising perspective is to look at the possible effect of surface waves, which are known to be responsible
for large vortices, as the Langmuir circulation in oceans [57, 58]. We plan to make some numerical simulations with a moving free
surface, instead of using the rigid-lid approximation to analyze the effect of waves on the fluid motion.
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A Numerical method

The Navier–Stokes equations are solved applying the no-slip condition at the bottom, (u, v, w) � (0, 0, 0) at z � −1. At the top
surface z � 1, the rigid-lid condition becomes w � 0 and

∂

∂z
u(x , y, + 1) � 0,

∂

∂z
v(x , y, + 1) � 0, for FSC, (14)

∂

∂z
u(x , y, + 1) � Re τs ,

∂

∂z
v(x , y, + 1) � 0, for ISC. (15)

This set of governing equations is discretized using a pseudo-spectral method [45, 46], which is based on transforming the field
variables into wavenumber space, through Fourier representations for the (homogeneous) periodic directions x and y and Chebyshev
polynomials Tnz (z) � cos(nz arccos(z)) for the non-homogeneous wall-normal direction z

ui (x , y, z; t) ≡
∑
|nx |

∑
|ny |

∑
|nz |

ũi (kx , ky , nz ; t)Tnz (z) e
i(kx x+ky y). (16)

The summation is performed over the integer nx , ny and nz , which vary in the range −Nx/2 + 1 ≤ nx ≤ Nx/2, −Ny/2 + 1 ≤ ny ≤
Ny/2 and 0 ≤ nz ≤ Nz where Nx , Ny and Nz − 1 are powers of two. The associated spatial grid points are, respectively, Nx , Ny

and Nz along the x, y and z directions

x(i) � (i − 1)
Lx

Nx − 1
i � 1, 2, 3, ..., Nx (17a)
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Table 3 Summary of the main simulation parameters: the mean streamwise velocity at the surface Vs ; the Reynolds number; the grid resolution in the
streamwise direction in wall units 
x+ � 
x × Reτ , in the spanwise direction 
y+ � 
y × Reτ and in the normal wall direction 
z+ � 
z × Reτ

(minimum and maximum values are indicated); the number of points along each direction, Nx × Ny × Nz ; the time step 
t

Vs Re 
x+ 
y+ 
z+ Grid resolution 
t+

FSC – 180 12.5 6.11 0.019 – 3 256 × 256 × 257 1.5 10−4

ISC0 0 180 8 3.96 0.01 – 2 256 × 256 × 257 10−4

ISC1 10 180 10 4.9 0.015 – 2.5 256 × 256 × 257 10−4

ISC2 35 180 13.2 6.5 0.02 – 3.2 256 × 256 × 257 10−4

ISC3 50 180 15.8 7.7 0.0024 – 3.9 256 × 256 × 257 10−4

y( j) � ( j − 1)
Ly

Ny − 1
j � 1, 2, 3, ..., Ny (17b)

z(k) � cos

(
k − 1

Nz − 1
π

)
k � 1, 2, 3, ..., Nz . (17c)

Time advancement of the governing equations is achieved by a combination of an implicit Crank–Nicolson scheme for the viscous
terms and an explicit Adams–Bashforth scheme for the convective nonlinear terms. As commonly done in pseudo-spectral methods,
the convective nonlinear terms are first computed in physical space and then transformed in the wavenumber space using a de-aliasing
procedure based on the 2/3 rule [45]; derivatives are evaluated directly in the wavenumber space to maintain spectral accuracy. Further
details about the numerical approach can be found in the literature [24, 46]. As far as computational time is concerned, each of the 5
simulations has taken about 4 weeks using 256 cores on an Intel PC cluster. A summary of the main simulation parameters is given
in Table 3

B Mean velocity and stress

In Fig. 14a, we present the wall-normal behavior of the mean streamwise velocity profile 〈 u 〉 for all cases. Although the behavior
of the mean streamwise velocity for the case FSC is similar to that observed in one-half of a turbulent Poiseuille channel flow, there
exists a difference between the two cases: Vorticity is normal to the surface in FSC but not at the center of a turbulent Poiseuille flow.
For ISC, we observe (Fig. 14c) that the top boundary condition enables momentum transfer by diffusion at the free surface (boundary
layer behavior close to the free surface). At the free surface, the rigid-lid condition imposes a zero Reynolds stress (Fig. 14d) through
the prescription of w′ � 0. The mean streamwise velocity profile (see Fig. 15) is computed in wall units as:

u+ ≡ 〈 u 〉
uτ

� Re

Reτ

〈 u 〉. (18)

For all the cases, within the viscous sublayer (z+ < 5), u+ collapses onto the linear behavior u+ � z+ prescribed by the law of the
wall. In the core region (z+ > 30), the logarithmic law is satisfied up to 40% of the half channel height h, although with slightly
different values for the von Kármán constant κ and translation constant C for the various cases, as verified through data fitting. The
behavior is similar to what was found previously [24] at lower Reynolds number. In addition, there is no clear trend for the values
of κ and C for increasing uτ . For FSC, we found κ � 2.5−1 and C � 4.94: The value of κ is the same obtained by [24], and their
constant C � 5.1 is very slightly larger. That is probably within the combined error but it may also be due to the fact that present
simulations are at a higher Re.

We also characterize the mean streamwise velocity profile close to the free surface when a shear stress is applied (ISC cases). To
do this, the surface mean velocity 〈 u(1) 〉 ≡ Fs is subtracted to the total mean velocity profile. The velocity given by:

u+
s ≡ abs(〈 u 〉 − Vs)

uτs

. (19)

which is measured in surface units (Fig. 16). The velocity profiles follow the law of the wall with characteristic constants that depend
on the flow configuration. This means that the velocity profile can be approximated in the viscous sublayer, respectively, in the core
by

u+
s � z+

s respectively u+
s � 1

κ
ln z+

s + C. (20)

The viscous sublayer at the surface (0 ≤ z+
s � 3) is smaller than its counterpart at the bottom. Similarly, the characteristic coefficients

1
κ

and C are generally smaller than their counterparts at the bottom, but no clear trend is observed. From the above considerations,
we conclude that the flow near the surface is similar to a boundary layer as far as the mean velocity is concerned.
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Fig. 14 a Mean streamwise
velocity profile 〈 u 〉; b mean shear
stress τ ; and its decomposition in
viscous (c) and Reynolds stresses
(d). All cases are shown

Fig. 15 Wall-normal behavior of
the mean streamwise velocity
profile 〈u+〉 for the different cases
at Re � 180 (symbols). The best
fit to our data is also shown by the
dash dotted lines. Note that the
classical law of the wall [16]
usually prescribes a slope
κ−1 � 0.41−1 � 2.44 and an
offset C � 5.2

Fig. 16 Mean velocity profile u+
s computed from the surface boundary for the different ISC cases at Re � 180: a ISC0, b ISC1, c ISC2, d ISC3. The behavior

of the law of the wall is also shown for comparison (with parameters adjusted to fit to our data)
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C Statistics of velocity fluctuations

Regarding fluctuations statistics, we focus on the root mean square (RMS) ui rms ≡
√〈

u′
i

2
〉

of the velocity component ui . The
wall-normal behavior of ui rms for the three fluctuating velocity components normalized by the friction velocity uτ is shown in
Fig. 17 for a region close to the bottom wall 0 < z+ < 80 (the upper limit being about z ≈ 0.4). As commonly observed in
wall-bounded turbulence, the values of urms are larger than the corresponding values of vrms and wrms. For all cases, the urms/uτ

collapses for z+ ≤ 15 and reaches its largest value for z+ � 15, while the vrms/uτ and wrms/uτ profiles do not collapse. However,
they all agree with the analytic form imposed by the no-slip condition near the bottom boundary [16]

urms � b1z, vrms � b2z, wrms � c3z
2, (21)

where b1, b2, c3 are constant coefficients. Fluctuations of the three velocity components are also significant within the logarithmic
layer [24, 49], where they increase monotonically as the imposed shear increases. They remain proportional to the turbulent kinetic
energy with a constant of proportionality that does not change with uτ .

A similar analysis can be done near the top surface (0 < z+
s < 80). In that region (see Fig. 18), urms/uτ profiles of cases ISC0,

ISC1 and ISC3 reach a local peak at the surface, where momentum is injected by the imposed shear. This is an expected behavior,
since a Taylor expansion of the various stresses near the top boundary implies that

urms � a′
1 + c′

1z
2, vrms � a′

2 + c′
2z

2, wrms � b′
3z, (22)

where a′
1, a′

2, b′
3, b′

3 and c′
2 are constant coefficients. Similar to what was observed for the bottom boundary, fluctuations are also

significant within the logarithmic layer. The rms fluctuations remain proportional to the turbulent kinetic energy as for the bottom
wall, yet the constant of proportionality varies with uτ for the free surface.

Fig. 17 Root mean square of a streamwise, b spanwise, c wall-normal velocities, normalized by the friction velocity uτ and computed near the bottom
boundary
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Fig. 18 Root mean square of a streamwise,b spanwise, cwall-normal velocities normalized by the friction velocityuτs (respectively,uτ ) for ISC (respectively,
FSC), computed near the top surface. The curves of ISC (respectively, FSC) are plotted against z+

s (respectively, (1 − z)/δν ). All cases are shown, but ISC0

D Structures

In this section, we present some qualitative pictures of the flow structure observed at horizontal planes located near the bottom wall
(Fig. 19) and near the top surface (Fig. 20).
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Fig. 19 Fluctuation u′ of the instantaneous streamwise velocity, normalized by maxx , y| u′|, at the horizontal plane z+ � 5 located near the bottom boundary.
Instantaneous fields are taken at one representative time inside the statistically steady regime for a ISC0; b ISC01; c FSC; d ISC2. e ISC3. Color bar is
presented in quadratic scale
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Fig. 20 Fluctuation u′ of the instantaneous streamwise velocity, normalized by maxx , y| u′|, at the horizontal plane z+
s � 5 located near the surface (except

for the case FSC, for which the plot is located at 1−z
δν

� 5). Instantaneous fields are taken at one representative time inside the statistically steady regime for
a ISC0; b ISC01; c FSC; d ISC2; e ISC3. Color bar is presented in quadratic scale
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