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Abstract The discrete SIR (Susceptible–Infected–Recovered) model is used in many studies
to model the evolution of epidemics. Here, we consider one of its dynamics—the exponential
decrease in infected cases I (t). By considering only the I (t) dynamics, we extract three
parameters: the exponent of the initial exponential increase γ ; the maximum value Imax; and
the exponent of the final decrease Γ . From these three parameters, we show mathematically
how to extract all relevant parameters of the SIR model. We test this procedure on numerical
data and then apply the methodology to real data received from the COVID-19 situation
in France. We conclude that, based on the hospitalized data and the ICU (Intensive Care
Unit) cases, two exponentials are found, for the initial increase and the decrease in I (t). The
parameters found are larger than reported in the literature, and they are associated with a
susceptible population which is limited to a sub-sample of the total population. This may be
due to the fact that the SIR model cannot be applied to the covid-19 case, due to its strong
hypotheses such as mixing of all the population, or also to the fact that the parameters have
changed over time, due to the political initiatives such as social distanciation and lockdown.

1 Introduction

Among the different models that have been proposed for epidemic evolution, the SIR model
is one of the most studied. In its continuous version, it is a system of coupled differential
equations indicating the evolution of three quantities: the number of “susceptibles” S(t) of
a population corresponding to individuals that can be infected but are not yet infected by
a disease; the number of infected people I (t) and the number of recovered people R(t)
[1]. In its original and simple version, this model assumes an homogeneous mixing in the
population, so that contact is possible between any member of the S population and the I
population. The R population has immunity and cannot be infected again.

a e-mail: francois.schmitt@log.cnrs.fr (corresponding author)

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-021-02237-7&domain=pdf
http://orcid.org/0000-0001-6733-0598
mailto:francois.schmitt@log.cnrs.fr


   57 Page 2 of 16 Eur. Phys. J. Plus          (2022) 137:57 

There is a total of N elements, and the sum of each subpopulation is stable: S+ I+R = N .
The system of evolution equations can be written as:

S′(t) = −β
S(t)I (t)

N

I ′(t) =
(

β
S(t)

N
− α

)
I (t)

R′(t) = α I (t)

(1)

where S′ = dS/dt , β > 0 and α > 0 are parameters and N � 1 is the total size of the
population. The parameter β characterizes the intensity of the infection, and α the intensity
of recovery. Since N , S, I and R have all the same dimension (number of individuals), for
the equilibrium of dimensions the parameters β and α have both a dimension of 1/time.
TI = 1/α is the mean time spent in the I class [2]. In Eq. (1), we can focus only on the first
two lines, since the dynamics of R = N − S − I is deduced from the values of S and of I .

This model has been studied in many textbooks and review articles [2–7]. The initial expo-
nential increase in I (t) has been well documented, together with S monotonous decreasing,
and R monotonous increasing. However, to our knowledge from studying the literature, the
exponential decrease in I (t) has not been closely studied. Here, in the next section, we esti-
mate the coefficient of the exponential decrease, showing that its value is not the same as
the initial exponential increase. Using only the I (t) dynamics, and more precisely the two
values of the exponential slopes (for increase and decrease) and of the maximum value of
I , we further show that all parameters of the SIR model can be estimated numerically. In a
further section, we numerically check this procedure and show that all parameters can indeed
be estimated with a rather good precision. Finally, we apply this procedure to the COVID-19
pandemic in France, assuming that it corresponds to a SIR model with constant parameters.

2 Theory

2.1 Initial exponential increase in I (t) and its maximum value

First, we will recall how the initial exponential is obtained. This is classical work and is here
quickly reviewed.

There is a initial small number of infected people:

I (t = 0) = I0 � N (2)

We can also assume that R = 0 initially, and that S = N − I − R is very close to N , so that
initially S/N ≈ 1. Then, Eq. (1) has the following form for small time periods:

d I (t)

I (t)
= (β − α)dt (3)

giving an exponential initial increase for the infected population:

I (t) = I0 exp
[
γ t

]
(4)

where the exponent is:

γ = β − α (5)
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Fig. 1 Maximum value of Imax
N given by Eq. (10)

The growth rate needs to have β > α to have an exponential increase. The following notation
is classical, introducing the basic reproduction number R0:

R0 = β

α
(6)

so that the condition β > α may be written R0 > 1. When this number is larger than 1, there
is an exponential increase in the infected population.

Let us divide the second line of Eq. (1) by its first line. We obtain:

I ′

S′ = d I

dS
= −1 +

(
αN

β

)
1

S
(7)

Hence, the evolution of I (S) (time vanished) is the following:

I (S) = −S + N

R0
log S + C (8)

where C is a constant obtained considering for t = 0, I (t) = I0 and S(t) ≈ N . Hence,
C = N + I0 − N

R0
log N . This then gives, negating the term I0/N which is very small

compared to other terms:

I (S)

N
= − S

N
+ 1

R0
log

S

N
+ 1 (9)

I first increases, then decreases. The maximum value Imax is found for S = Smax = N
R0

, and
we have for Imax:

Imax

N
= 1

R0
(R0 − 1 − log R0) (10)

The maximum value of the rescaled Imax depends only on R0. The curve which is obtained
is shown in Fig. 1. We see that it increases nonlinearly with R0.
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Fig. 2 An example of dynamics of S(t), R(t) and S(t), chosen for the parameters I0 = 2, N = 100, 000,
β = 1.5 and R0 = 2. This illustrates the fact that I (t) → 0 and S(t) → Se , as t → ∞

2.2 The end of the epidemic

We know that at infinite time, we have limit values denoted Se, Ie, Re.
By dividing the first line of Eq. (1) by the third line, solving the differential equation

obtained, we find finally the evolution of the proportion of S versus R:

S

N
= exp

[
−R0

R

N

]
(11)

showing that there is an exponential decrease in susceptible population with respect to the
recovered population. We also have:

S

N
= exp

[
−R0

R

N

]
> exp [−R0] > 0 (12)

since R < N . This shows that S is decreasing and is minored by a positive value, hence
Se > 0. An example of dynamics of S(t), R(t) and S(t), chosen for the parameters I0 = 2,
N = 100, 000, β = 1.5 and R0 = 2 is shown in Fig. 2. This illustrates the fact that I (t) → 0
and S(t) → Se, as t → ∞. Below we show how Se can be estimated.

First, let us do as in [2], and consider Eq. (1) integrated:∫ ∞

0
S′(t)dt = − β

N

∫ ∞

0
S(t)I (t)dt (13)

giving:

N − Se = β

N

∫ ∞

0
S(t)I (t)dt >

β

N
Se

∫ ∞

0
I (t)dt (14)
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Fig. 3 Solving the equation f (x) = 1
R0

log(x) + 1 − x = 0 for each value of R0: here, three examples with
R0 = 1.5, 2 and 2.5. The intersection of the horizontal axis gives the value of Se/N

This shows that I is integrable, hence for its limit value: Ie = 0. This corresponds to the end
of the epidemic. The corresponding value of Se can be found by taking I = 0 in Eq. (9) and
is given by:

Se
N

= 1

R0
log

Se
N

+ 1 (15)

This is an implicit relation providing Se/N for a given value of the parameter R0. We can
consider 1 < R0 ≤ 10 and solve numerically the implicit relation: find the solution of
f (x) = 1

R0
log x + 1 − x = 0 giving the value of x = Se/N . The result is shown in Fig.

3. Three curves are shown, for R0 = 1.5, 2 and 2.5. The value of Se/N is the intersection
with the horizontal axis. Doing this numerically for a number of values of R0, we obtain the
curves given in Fig. 4 providing Se/N vs. R0. On the left panel, we show a log-plot, together
with the fit Se/N = exp

(−3.9(
√
R0 − 1)

)
. This fit is excellent until a value of R0 
 4.5.

For R0 large, Se/N is small.
When x � 1, we have f (x) 
 1

R0
log x + 1 and hence, the solution of f (x) = 0 gives

x = Se/N = exp(−R0). The curve Se/N = exp(−R0) is also shown in Fig. 4, we see that
it is approximately valid for R0 ≥ 5.

Since R + I + S = N , for the end point for which Ie = 0 we have Re/N + Se/N = 1;
hence, the relative frequency of recovered people Re/N at the end of the epidemic is Re

N =
− 1

R0
log Se

N .

2.3 Analytical expression for the decrease in I (t)

This part and the following are the main contributions of the present work. There is no
known analytical expression for the behavior of I (t) for all values of t . We know that there
is an exponential increase for small values of t , then a maximum, then a decrease in I (t).
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Fig. 4 Solving the equation log(x)/R0 + 1 − x = 0 for each value of R0 we have the curve Se(R0). Left:
linear plot; right: log-linear plot to emphasize the asymptotic exponential curve

Considering Eq. (1), we see that when S is approaching its final value S 
 Se, we have d I/I
approaching a constant value proportional to dt :

d I

I



(
β
Se
N

− α

)
dt (16)

Let us introduce the following constant:

Γ = −β
Se
N

+ α = β

(
1

R0
− Se

N

)
(17)

Hence, we have as a limit law an exponential decrease in I (t) with characteristic exponent
Γ :

I (t) = Ce−Γ t ; t � 1 (18)

where the value of the constant C > 0 cannot be directly deduced from the SIR model. It is
proved in the appendix that Γ > 0 when R0 > 1 and β > 0.

Using the numerical extraction of Se for each value of R0, let us plot the curves for the expo-
nents γ /β and Γ/β. This is shown in Fig. 5. The first exponent is increasing monotonically,
whereas the second one reaches a maximum value of Γmax 
 0.2984 for R0 max 
 2.15, after
which it decreases. Since Γ is estimated through a nonlinear and implicit relation between
Se/N and R0, an explicit analytical expression for the values of Γmax and R0 max is not
available.

We also see that we always have γ > Γ , showing that the two exponents are different as
far as R0 > 1. The shape of I (t) is always asymmetric. To our knowledge, this is the first
time the slopes γ and Γ have been proved to be different and compared for the SIR model.

2.4 An algorithm for SIR parameters extraction using only the I (t) curve

From the previous relations, we can propose here an algorithm to extract all SIR parameters
only from the infected population dynamics. We assume here that we have experimental
data providing the curve I (t) of infected people. This is the easier to measure, since the
S population is not clearly defined (say, all the population of a country, or a sub-sample
perhaps?). The I (t) curve is typically bell-shaped, with an increasing part, a maximum value
and a decreasing part. As seen in the previous section, this curve is asymmetric: it decreases
more slowly than it increases, but visually using a linear plot, this asymmetry is not always
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Fig. 5 Plot of γ /β and Γ/β versus R0. The first exponent is increasing monotonically, whereas the second
one reaches a maximum value of 0.2984 for R0 
 2.15, after which it decreases. We also see that we have
always γ > Γ

very clear. Our objective here is, assuming a SIR model, to extract all relevant parameters
only from this curve. There are three parameters needed to fully define this model: R0, β,
and N (α is deduced when R0 and β are known). Indeed, N is a priori unknown since we do
not know what the subsample of the total population is which is interacting homogeneously
to obtain the I (t) dynamics. Se/N will also be a relevant value to be estimated, since it is
included in the exponential decrease: it is deduced from the value of R0. Here, we provide a
recipe for estimating all these parameters only from the I (t) curve.

(1) The first step is to estimate the coefficient of the exponential increase at the start,
I (t) = I0 exp

[
γ t

]
. The numerical estimation of the slope γ gives:

γ = β

(
1 − 1

R0

)
(19)

The exponential decrease I (t) = Ce−Γ t provides the value of the parameter Γ :

Γ = β

(
1

R0
− Se

N

)
(20)

(2) For the second step, R0 is estimated. We consider the ratio ρ = γ /Γ for which there
is no more dependence on the parameter β:

ρ = γ

Γ
= R0 − 1

1 − R0
Se
N

(21)

The ratio depends only on R0 and Se/N , but the latter is related to R0 through a nonlinear
relation plotted in Fig. 3, and hence, the R0 value can be estimated from ρ using a nonlinear
relationship which is shown in Fig. 6. From the nonlinear relationship represented in this
figure, we can deduce the experimental value of R0. When R0 is large, we know from Fig. 4
that Se/N � 1, and hence, using Eq. (21) ρ simplifies into:
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ρ = R0 − 1; R0 ≥ 6 (22)

which is also shown in the same figure as an asymptotic relation. In such cases, when R0 ≥ 6,
we simply have R0 = ρ + 1 (and also Γ = α; β = Γ R0) or otherwise R0 is estimated by
an interpolation of the plot of this nonlinear curve.

(3) From this, using Eq. (19) the value of β = γ /(1 − 1
R0

) is estimated. From the value
of R0, we can also estimate Se/N using the plot shown in Fig. 3.

(4) A last step is the experimental estimation of the maximum value Imax of I (t), which
gives the value of N through the following relation:

N = R0 Imax

R0 − 1 − log R0
(23)

3 Results: numerical validation and case study using France’s COVID-19 data

In this section, the above algorithm is applied to two cases: first numerical simulations of the
model; and then data from the real world.

3.1 Numerical validation of the procedure

In this subsection, numerical simulations are performed in order to check the algorithm which
has been proposed here. The simulations are done numerically by running the SIR model with
given values for the parameters β, α, R0, and N ; choosing an initial value of I0. Subsequently,
the algorithm proposed above is applied exclusively on the I (t) curve, in order to consider
if the estimated parameters are close to the ones used to perform the simulation. This is a
consistency test.

Taking I0 = 2, N = 100, 000, and different values of R0 and β, let us first consider
R0 = 2.0 and β = 1.5. Figure 7 shows the evolution numerically of I (t). We see an
increase, then a decrease in the curve of infected people. On the right panel, the curve is
shown in log-linear plot. Straight lines indicate an exponential initial increase then decrease.
We see that the shape is not symmetrical. The decrease is slower than the increase. The values
of γ and Γ are extracted from these curves by a best fit of the exponential law, for the region
where straight lines are visible.

This has been done keeping β constant and varying the value of R0. The result is shown
in Fig. 8, in log-linear plot to emphasize the exponential curves, for the value β = 1.5, but
other values have of course been tested. All curves have similar behavior, with different time
values for the maximum, and also different decrease and increase slopes.

Let us now consider the numerical values found for simulations with a fixed value for β

(β = 1.5, 2 and 3) and values of R0 from 2 to 5. Using the procedure described above, we
estimate the value of Imax, the slopes γ and Γ , their ratio ρ, and obtain the value of R0, β,
and N . All the values for the examples shown are visible in Table 1. We see that using this
procedure the values of the parameters R0 and β are estimated with an error below 1%, and
N with an error of a maximum of 5%, and most of the time below 2% . It is also visible that
estimated values of β and N are very slightly decreasing with increasing values of R0. This
numerical test shows that the procedure proposed here is able to extract the correct values of
parameters, with a very good precision, probably not accessible from experimental data. In
the next section, this procedure is applied to real-world data.
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Fig. 6 Plot of the ratio ρ = γ /Γ : we see an almost linear increase, for values of R0 larger than 6, with an
asymptotic value of R0 − 1 as expected. When the two exponents are known and estimated, this ratio can be
used to extract directly the value or R0

Fig. 7 Plot of I (t) for I0 = 2, N = 100, 000, R0 = 2.0 and β = 1.5. Right: a log-linear plot showing the
exponential increase and decrease

3.2 A test using experimental data from the COVID-19 2020 pandemic

In order to test the proposed procedure from real-world data, and in the framework of the
COVID-19 crisis, we have chosen here data from the COVID-19 pandemic in spring 2020
in France. The sources come from the French government (data publicly available from
dashboard.covid19.data.gouv.fr). A confinement of the population was effective on March
17, 2020 and lasted for almost 2 months, with a progressive opening of the country beginning
on May 11, 2020. The data of March 17 are taken as day 0 in the data reported, and two series
are considered consecutively as I curves: first the total hospitalized people due to COVID-19
and then, the total Intensive Care Unit (ICU) people due to COVID-19; both recorded daily.
In each case, 100 days are considered.
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Table 1 Chosen values for a numerical test of the procedure described in the text. The values of β, R0, and
N are given choices, and the values with ∗ are numerical estimates. We see that the parameters β and R0 are
retrieved with a high precision of a maximum of 1 % error, and for N , with an error of a maximum of 5%,
and most of the time below 2%

Simulation Estimation of parameters

β R0 N γ ∗ Γ ∗ I∗max ρ∗ R∗
0 β∗ N∗

1.5 2 105 0.747 0.447 15,371 1.672 1.982 1.508 102,270

1.5 3 105 0.995 0.412 30,105 2.414 2.974 1.499 101,270

1.5 4 105 1.118 0.346 40,418 3.232 3.969 1.495 100,861

1.5 5 105 1.193 0.290 47,894 4.111 4.963 1.494 100,677

2 2 105 0.993 0.596 15,380 1.665 1.973 2.014 103,400

2 3 105 1.320 0.550 30,124 2.400 2.957 1.995 102,060

2 4 105 1.482 0.462 40,440 3.208 3.942 1.986 101,530

2 5 105 1.578 0.387 47,920 4.077 4.926 1.980 101,260

3 2 105 1.488 0.897 15,400 1.659 1.964 3.032 104,680

3 3 105 1.978 0.827 30,160 2.393 2.947 2.994 102,610

3 4 105 2.222 0.694 40,490 3.203 3.935 2.980 101,810

3 5 105 2.368 0.581 47,980 4.075 4.923 2.972 101,410

Fig. 8 Plot of I (t) for β = 1.5 and different values of R0. We see that all curves have similar behavior, with
different time values for the maximum, and also different decrease and increase slopes

Let us call IH (t) the number of hospitalized people, and see if the model described can
fit the data. Figure 9 shows the plot of I (t), having the correct shape. We find a maximum
value for t = 28 (April 14), with IH−max = 32, 292. The exponential fits are the following:
exp(0.162T + 8.1) for the initial increase, and exp(−0.021T + 11.15) for the decrease,
where T is the time in days. This gives γH = 0.162 and ΓH = 0.021. Hence, the ratio is
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Fig. 9 Plot of IH (t) of the total hospitalized people in France due to COVID-19. Left panel: linear coordinates
with exponential fits; right panel: log-linear plot with the two fits as straight lines

Fig. 10 Plot of Iicu(t) of people in intensive care unit in France due to COVID-19. Left panel: linear
coordinates; right panel: log-linear plot. The log-linear plot shows two exponential behavior

γH/ΓH = 7.714 which is very large. We are here in the regime where γ /Γ = R0 − 1;
hence, R0−H = 8.7. This gives also βH = γH/(1 − 1/R0−H ) = γH × 1.13 = 0.183. And
αH = βH/R0−H = 0.021. This means that the mean time in the infected state is 47 days.
This large value comes from the fact that the exponential decrease is moderately slow. We
also have Se/NH = 1.64 10−4 and NH = 1.57IH−max = 50709.

We then also consider another classification, when the curve I is Iicu—the number of
people in intensive care units (ICU) in France since the beginning of the pandemic. This is
shown in Fig. 10, where the double exponential behavior is also found. The two slopes are
here γicu = 0.16 and Γicu = 0.0346; and also the value Iicu−max = 7148. We thus obtain
γicu/Γicu = 4.62, which is quite large again. This gives R0−icu = 5.52. We conclude with
the following values: βicu = γicu × 1.22 = 0.195, αicu = 0.0354 giving a mean residence
time of ICU state of 28 days; and also Nicu = 1.96 × Iicu−max = 14000.
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4 Discussion

4.1 About the R0 estimation and its values found in previous works devoted to COVID-19

For a given epidemic situation, the basic reproduction number R0 can be defined indepen-
dently of the model considered: it is the average number of secondary cases in the infected
population [8,9]. The significance and estimation of the basic reproduction number is a mat-
ter of great interest [8–13]. This number is difficult to measure directly and is a complex
metric [13].

We have shown here how to obtain it directly in the framework of the SIR model, when
the infection curve dynamics is known. R0 is directly and precisely estimated from the ratio
ρ = γ /Γ of initial and final exponential slopes of I (t). The estimation has been shown to be
quite precise. Other methods have been proposed to extract R0: first, α can be estimated as the
inverse of the mean residence time in the infected situation for a given individual. However,
this method requires the information about the situations of a large number of individuals,
which is not always the case or possible. Next, parameters are extracted by performing a “best
fit,” guessing first some values, and then performing an optimization through a nonlinear fit
[2]. Other more complex methods define a next-generation operator and extract R0 from the
eigenvalues of this operator [11,14].

Since the outbreak of the COVID-19 pandemic in China late 2019, a huge number of
works have been submitted and published: in March 2020, there were already 500 papers in
the press [15]. Among them, many have been devoted to applying the SIR model to different
cities or countries: to several countries [16]; to Wuhan administrative region [17]; to Italy
[18]; to Brazil [19]; among others. Other variants have also been proposed, such as the SEIR
model for the USA [20], or the stochastic SIR model [21].

Very early in the COVID-19 outbreak, some papers have tried to estimate R0. For example,
there is a highly cited work that was accepted at the end of January 2020, and since published,
that estimated the value of R0 from Wuhan data, using Laplace transform of a function, which
is modeled in an ad hocway, assuming a Gamma probability density function [22]. This work
proposes values of R0 from 2.24 to 3.58, but the important role of the assumptions should
not be forgotten. There are other works that have proposed some basic fits of the exponential
initial growth of the epidemic and found values of, e.g., 3.1 for Italy [23] or 4.5 for France
[24]. Concerning France, some other works have already addressed the French COVID-19
pandemic outbreak and the estimation of R0: see, e.g., [25,26], where values from 1.7 to 4.2
have been reported.

Some papers have proposed meta-analysis of published works. For example, [27] con-
sidered as early as February 7, 2020, 12 studies and found values of R0 ranging from 1.4
to 6.49, obtained using methods varying from the stochastic Markov chain model and SEIR
to compartmental models and stochastic simulations. The same type of work was done in
March, 2020, concerning 23 studies that found R0 values ranging from 1.9 to 6.49 [28].

4.2 About the relatively large values of R0 found using our algorithm

We see that ordinarily when a SIR or a similar model is used, the nonlinear fits—other
complicated methods—are employed on the growth part but do not use the information
provided by the decreasing part of the infection curve. Our argument here is that both of
these should be considered, as they are part of the same dynamics. But of course, in our
method, we need to assume (1) that the SIR model is the correct one to model the pandemic
and (2) that parameters have not changed in time. Indeed the initiative of political authorities
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has been, all around the world, trying to decrease R0 by social distancing and sometimes
lockdown of the population during weeks or months. These political decisions may change
the parameters of the model and correspond to limits in the application of our method.

Using our algorithm, we have found two different R0 values. First, by considering the
hospitalized population (due to COVID-19) in France, we found R0−H = 8.7, βH = 0.183,
αH = βH/R0−H = 0.021, and NH = 50709. This is found assuming that this SIR model
is valid to describe the IH dynamics, and that the parameters have not changed during
the lockdown. With this assumption, we find a SIR model with quite a large R0 value and a
susceptible population (S value), initially around 50,000 people, far from the about 67 million
approximate population of France. Let us recall that this model assumes a homogeneous
mixing of the infected and susceptible populations. This means that this model could work
here, if we consider only a sub-population who are concerned with being in contact with the
infected population.

The second set of values was found by applying the model to the section of the infected
population who were put in intensive care units (ICU). Let us recall that the lockdown was
decreed in France (as in other countries such as China, Italy, and Spain, at that time) by the
French government in order to maintain the number of ICU at a given limit (5000 at the
time), and avoid loosing control of the situation in hospitals. In this framework, to consider
the SIR model with I being the ICU part of infected people, has some justification. Then,
the S part of the population is here the hospitalized population: they are susceptible to going
from the hospitalized state to the ICU state. Using the algorithm, we found R0−icu = 5.52,
βicu = 0.195, αicu = 0.0354, and Nicu = 14, 000. This means that, if this model is correct
and if the parameters have not changed during the 100 days of the study, there were 14,000
susceptible people that could have gone to the ICU state. We also remark that the two estimates
of β are quite close, whereas for α there is a difference, and the mean duration for an individual
in the H -state is TH = 1/αH = 47 days, whereas Ticu = 1/αicu = 28 days. These numbers
seem realistic and translate the fact that the decreasing exponentials are rather slow. There is
a long memory in both curves.

Are such large values of R0 realistic? First, let us note that in their review, Delamater
et al. [13] mention relatively large values of R0, going from 12.5 for measles in the USA
(1912–1928); 13.7 to 18 for measles again in England and Wales in 1944-1979; and values of
12 to 17 for pertussis in England Wales and the USA in the same periods. The values found
here for COVID-19 in France are much lower.

Furthermore, it has been already mentioned that there is a higher contact rate for high
density population [29]. This may also be supported by recalling that in Eq. (1) the coefficient
β corresponds to a contact rate between the S and I populations. In the field of turbulent
particle dynamics (which could be an analogy with human movements in an active society),
when there is a large concentration of particles, it has been shown that the contact rate is
multiplied by a new factor corresponding to this accumulation, and that this factor can be as
large as 10 [30,31]. This means that when there is an accumulation of particles, the contact
rate increases with a factor that can be explained and modeled. It is known that human
population is not uniform in space; there are large inhomogeneities in human population
density, in a way which has been characterized as multifractal, i.e., highly concentrated: see,
e.g., [32] for an analysis of the French population density. Such accumulation may explain
the large values for the contact rate, and hence, the large value of R0 found here.

However, associated with this large R0 value is the fact that the N population is rather
limited, meaning that most of the population is not concerned with the risk of infection: there
is a huge concentration of the transmission from a limited number of infected people to an
also limited number of susceptible people.
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Finally, we need to emphasize again that this application to real-world data is valid only
on the hypothesis that the SIR model is correct and has constant parameters.

Conclusion and perspectives

The algorithm proposed here in the framework of the SIR epidemic model needs to know the
maximum value of the infected population Imax, the exponential slope for the initial increase
γ and the exponential slope of the final decrease in the I dynamics Γ . From these three
empirical estimations, we first compute the ratio ρ = γ /Γ and from it, using a nonlinear
curve, the basic reproduction number R0 is directly estimated. From R0 and γ , the value of
β is extracted, as well as the α parameter. Then, the total number N corresponding to the
initial susceptible population S0 is estimated from Imax and R0.

This algorithm has been tested using different values of the parameter R0. It has also been
applied to a situation of real-world data, for the COVID-19 situation in France. The value of
R0, which was found to be 8.7 for the hospitalized population and 5.52 for the ICU population,
is larger than other estimates where R0 is between 2 and 3. However, this may be linked with
the applicability of the SIR model, since our data analysis is valid only for this model. What
has been shown, is that, if the SIR model can be applied to the COVID-19 infectious dynamics
in France, with fixed values of its parameters, then the R0 value is relatively large. It may be
that the lockdown had changed the behavior of the population, and that the parameters had
changed over time. Other more complex models than the SIR may also be applied to these real-
world data, e.g., taking into account the stratification of the population, SIR model with time
changing parameters, or the heterogeneity of the population. The quality of the experimental
data is also an issue. Indeed, real data of infected and recovered people are hugely biased,
since, e.g., many people have been infected and then recovered without leaving any record.
There is a large uncertainty in the application of statistical physics to societal phenomena,
including epidemics measurements.

Let us finally remark that in the SIR model the decline of the epidemics depends on the
depletion of the susceptible population. At the scale of a country, this decline is possible
either by limiting the contacts between individuals, so that the total concerned individuals N
is much smaller than the total population of the country. Another approach, done in 2021 all
over the world, is to diminish the susceptible population through the vaccination.

The perspectives of this work may be to extend the approach to other famous epidemic
models, such as the SEIR (where another state is introduced—the “exposed” population,
which is infected but not infectious). This introduces a delay in the dynamics, and the calcu-
lation performed here would need to be revised.

Acknowledgements Peter Magee of www.englisheditor.webs.com is thanked for the paper’s English
proofing.

Appendix: Proof of Γ > 0

In this appendix, we prove the following theorem: Γ = β
(

1
R0

− Se
N

)
> 0 when β > 0 and

R0 > 1.
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Proof SinceΓ = β
(

1
R0

− Se
N

)
, the conditionΓ > 0 is equivalent to state that 1/R0 > Se/N .

The value of Se/N is the solution 0 < x < 1 of:

1

R0
log x + 1 − x = 0 (24)

We need to show that this solution verifies R0x < 1.
It is a standard relation to consider that one has for y > −1 [33]:

y

1 + y
≤ log(1 + y) ≤ y (25)

By writing x = 1 + y, we have for x > 0:

x − 1

x
≤ log x (26)

Using Eq. (24), we have:

x − 1

x
≤ R0(x − 1) (27)

Since x − 1 < 0, this gives R0 ≤ 1
x .

We still need to exclude the equality R0x = 1. For this, let us note that if R0x = 1,
inserting x = 1/R0 in Eq. (24) gives an equation for R0: − log R0 + R0 − 1 = 0. Its only
solution is R0 = 1. Since we assume here that R0 > 1, we may write that R0x 
= 1.

Hence, it is proved that R0x < 1, implying Γ > 0. ��
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