
Eur. Phys. J. E (2021) 44:117
https://doi.org/10.1140/epje/s10189-021-00121-x

THE EUROPEAN
PHYSICAL JOURNAL E

Regular Article - Flowing Matter

A C++ expression system for partial differential
equations enables generic simulations of biological
hydrodynamics
Abhinav Singh1,2,3, Pietro Incardona2,3, and Ivo F. Sbalzarini1,2,3,4,a

1 Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
2 Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
3 Center for Systems Biology Dresden, Dresden, Germany
4 Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany

Received 29 January 2021 / Accepted 31 August 2021 / Published online 23 September 2021
© The Author(s) 2021

Abstract
We present a user-friendly and intuitive C++ expression system to implement numerical simulations of
continuum biological hydrodynamics. The expression system allows writing simulation programs in near-
mathematical notation and makes codes more readable, more compact, and less error-prone. It also cleanly
separates the implementation of the partial differential equation model from the implementation of the
numerical methods used to discretize it. This allows changing either of them with minimal changes to the
source code. The presented expression system is implemented in the high-performance computing platform
OpenFPM, supporting simulations that transparently parallelize on multi-processor computer systems. We
demonstrate that our expression system makes it easier to write scalable codes for simulating biological
hydrodynamics in space and time. We showcase the present framework in numerical simulations of active
polar fluids, as well as in classic simulations of fluid dynamics from the incompressible Navier–Stokes
equations to Stokes flow in a ball. The presented expression system accelerates scalable simulations of
spatio-temporal models that encode the physics and material properties of tissues in order to algorithmically
study morphogenesis.

1 Introduction

Numerical simulations of mathematical models of bio-
logical processes in space and time have become an inte-
gral part of studying the physical principles of living
systems [1]. An important class of models on the scale
of cells and multi-cellular tissues is continuum mod-
els, formulated as partial differential equations (PDE),
that account for the mechanical properties of living
matter [2–4]. Coupling biological hydrodynamics with
biochemical regulation, such models have been success-
ful at describing the physics underlying biological phe-
nomena such as cell division [5], zygote polarization
[6,7], epithelial tissue folding [8], and cellular symmetry
breaking [9].

Such mechano-chemical models of biological pro-
cesses are usually nonlinear, either due to nonlinear
chemical reaction terms or due to the hydrodynam-
ics itself, e.g., the nonlinear polarity-velocity coupling
in active polar fluids. While linear stability analysis
provides important information about the phase space
of these models [6,9,10], studying the full nonlinear
dynamics requires numerical solutions or computer sim-

a e-mail: ivos@mpi-cbg.de (corresponding author)

ulations of the models. Several simulation methods for
active fluids have therefore been developed, including
approaches based on finite-element methods [11,12],
hybrid particle-mesh methods [13], lattice-Boltzmann
methods [14], and agent-based simulations [15]. The
diversity and complexity of the corresponding computer
simulation programs, however, highlights the need for a
more intelligible syntax for large PDE models and for a
cleaner separation between the numerical method and
the PDE model in a software implementation.

Indeed, simulation software implementations are typ-
ically specific to a certain numerical method and a cer-
tain PDE model, with discretized differential operators
hard-coded in explicit program statements. Changing
the simulated model, for example to test new hypothe-
ses, therefore usually requires rewriting much of the
simulation program. This is not only time-consuming,
but also creates challenges in terms of code structure
and maintainability, as well as computational speed and
parallel scalability. There is thus a need for generic
simulation software platforms that separate the PDE
model to be simulated from the numerical methods and
that accelerate the implementation of efficiently scal-
able parallel computer programs.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epje/s10189-021-00121-x&domain=pdf
http://orcid.org/0000-0003-4414-4340
mailto:ivos@mpi-cbg.de


117 Page 2 of 14 Eur. Phys. J. E (2021) 44 :117

Here, we present such a generic simulation environ-
ment based on the OpenFPM parallel computing frame-
work [16]. It is based on a C++ template expression sys-
tem for PDEs. This expression system allows specifying
the PDE model to be simulated in near-mathematical
notation and, importantly, independently of the specific
numerical method to be used. The numerical method
is transparently selected via includes and template
parameters, which allows changing or further develop-
ing the numerical method without having to rewrite the
model specification. It also allows changing the model,
e.g., including additional terms in the PDE or changing
the geometry of the solution domain, without having
to change the implementation of the numerical solvers
(albeit one may have to switch to a different solver).
Our framework thus separates the specification of the
PDE model and of the numerical discretization method.
This leverages a principle from software engineering,
separation of concerns, which is usually not exploited
in numerical simulation codes.

The idea of achieving separation of concerns using
template expressions is not new and has already been
implemented decades ago, e.g., in the Par-EXPDE
project [17]. The present system, however, is not tied
to a certain computer architecture and is specifically
designed for continuum simulations of biological hydro-
dynamics. It therefore supports both particle-based and
mesh-based discretization, as well as hybrid particle-
mesh methods [18]. Our template expressions transpar-
ently work for scalar, vector, and tensor fields, encap-
sulate time integration methods, and can be used to
assemble equation systems for implicit solvers. Bas-
ing our system on OpenFPM renders it portable and
ensures computational efficiency and scalability [16,19].

After describing our framework, we illustrate how
separation of concerns simplifies the implementation
and maintenance of simulations of frequently occurring
PDEs in biological hydrodynamics and renders simu-
lation codes less error-prone. In the application exam-
ples, we show how our framework allows changing the
simulated model by altering just a few lines of code.
We do so by changing a simulation from solving the
incompressible Navier–Stokes equations, to simulating
active polar fluids in two dimensions, to Stokes flow in
a three-dimensional ball. We also show how our frame-
work allows to change the numerical method by pro-
viding examples using both grid-based finite-difference
methods and mesh-free particle methods.

2 The OpenFPM framework

The open framework for particles and meshes
(OpenFPM) is a fully templated C++ library to imple-
ment scalable parallel simulation codes on CPUs and
GPUs [16,19]. It is available as open source from http://
openfpm.mpi-cbg.de.

Codes written in OpenFPM have been shown to dis-
play computational performance and scalability on par
with or exceeding those of state-of-the-art hand-written

Fig. 1 Layer structure of the OpenFPM software stack

simulation programs [16]. But while hand-written codes
often require years of development time, OpenFPM-
based simulations can be instantiated within a few
days to weeks. To achieve this, OpenFPM provides a
higher level of abstraction. This hides the intricacies
and specifics of a computer architecture (e.g., CPU
vs. GPU) from the programmer by providing transpar-
ent data structures and operators [20–22].

These data and operator abstractions are internally
distributed over the processors of a parallel computer.
This distribution is invisible to the users, allowing
them to focus on the simulated model and on the
numerical method. Despite this high level of abstrac-
tion, OpenFPM maintains computational efficiency
by leveraging C++ template meta-programming for
compile-time generation of data-type, dimension-, and
hardware-specific implementations of the abstractions.
This enables abstractions over arbitrary data types,
including user-defined C++ classes, and in arbitrary-
dimensional spaces. Memory management, memory lay-
out, and communication of data between nodes of a
computer cluster, as well as to and from accelera-
tors and the file system, are automatically handled by
OpenFPM in an optimized way.

OpenFPM has a layered architecture as shown in
Fig. 1, with each layer increasing the level of abstrac-
tion. This allows programmers to choose the level of
abstraction appropriate to their needs by combining
OpenFPM functions from different layers. The “low-
est” (in the sense of closest to the operating sys-
tem) layers provide abstractions for memory alloca-
tion and memory layout. This allows, e.g., to dynam-
ically switch from an array-of-structures memory lay-
out to a structure-of-arrays layout when transitioning
data from the CPU to the GPU. Using these mem-
ory facilities, OpenFPM implements single-core data
structures on the next-higher layer. These include vec-
tors, tensors of arbitrary order, meshes, and sparse
grids in arbitrary-dimensional spaces carrying arbitrary
(also complex and composite as well as user-defined)
data types. Using domain-decomposition and network-

123

http://openfpm.mpi-cbg.de
http://openfpm.mpi-cbg.de


Eur. Phys. J. E (2021) 44 :117 Page 3 of 14 117

communication abstractions on the next layer, these
data abstractions are composited to multi-core and
distributed-memory versions that transparently scale
across multiple computing devices, complete with the
corresponding transparent iterators. Finally, the top
layer implements a library of common numerical meth-
ods based on the OpenFPM data structures. Examples
include finite-difference methods, multi-grid solvers,
mesh-free kernel methods, preconditioners, and time-
stepping methods for simulations. In addition, third-
party libraries such as PETSc [23], Eigen [24], Odeint
[25], and SPRNG [26] are wrapped and made available
to the user under a uniform interface. A profiling inter-
face and transparent in situ visualization of simulation
results [27] complete the framework.

3 C++ expression system for PDEs

The C++ programming language allows for custom
expression systems to be built using template expres-
sion parsing techniques [28]. We design and imple-
ment such a system for expressing PDEs in near-
mathematical notation as C++ code and to specify the
numerical methods to be used for their discretization
using include statements and encapsulated interfaces
to numerical solvers.

1 auto P=getV<Pressure>(particles);
2

3 Derivative x Dx;
4 Derivative y Dy;
5

6 auto expression = Dx(P) + Dy(P) + 5.0;

Listing 1 Syntax example of the present expression system
for the expression ∂P

∂x
+ ∂P

∂y
+ 5.0.

An example of the kind of code this allows one to
write is shown in Listing 1. In line 1, the getV func-
tion creates an alias for the field Pressure stored on
a set of discretization points called particles. This
alias is then assigned to an object P with automati-
cally inferred datatype. P can then be used as the pres-
sure field discretized on particles. In lines 3 and 4, two
derivative operators are declared, Dx and Dy of type
Derivative_x and Derivative_y, respectively. Math-
ematical expressions can then be written as shown in
line 6 for the example ∂P

∂x + ∂P
∂y +5.0, providing a human-

readable notation that automatically extends over the
potentially many points in the set particles.

These expressions are then analyzed and inlined by
the compiler in order to generate the standard C++
code to evaluate them. For this, each expression is rep-
resented as a tree whose leaves (i.e., terminal nodes)
are variables or numbers. Any interior (i.e., nontermi-
nal) node of the tree represents one mathematical oper-
ator. As an example, the expression tree for line 6 in
Listing 1 is shown in Fig. 2 on the left. This tree is sub-
sequently translated to C++ class nodes by code pro-
duction rules, which we adjust for our needs by operator
overloading. To do so, we define templated class nodes

Fig. 2 Tree representation of the expression ∂P
∂x

+ ∂P
∂y

+5.0

(left) and the resulting C++ template types (right)

representing the basic binary operators +, −, ∗, /, and
derivative operators. These are inserted at the locations
of the respective tree nodes in order to generate C++
types, as shown in Fig. 2 on the right.

Terminal nodes represent C++ objects linked to
a particular continuous field in the PDE or to a
numeric constant. They map to OpenFPM’s abstract
data types, such as distributed vectors (vector_dist
in Fig. 2) or meshes.

Each nonterminal node of the expression tree has
3 template parameters. For binary operators, the first
template parameter is the expression on the left-hand
side of the operator, the second parameter is the right-
hand side expression of the operator, and the third
parameter indicates the type of operation (e.g., +, −,
∗, /). An operator can either be applied to the result of
another operator or to a field or constant in a terminal
node. We implement binary operators and unary oper-
ators (e.g., derivatives). For the unary derivative oper-
ator, the second template parameter is the C++ class
encapsulating the code used to discretize the derivative,
i.e., the numerical method (Dcpse in Fig. 2).

For example, the production rule of the node + in the
expression ∂P

∂x + ∂P
∂y is implemented by overloading the

binary + operator for the two child nodes. In Fig. 2, both
child nodes are of type vector_dist_expression_op<
. . . > (purple and blue). This overloaded + operator
returns the type for the sum of the two derivatives
(green in Fig. 2). For objects of class Derivative,
we additionally overload the () operator. This enables
production rules for expressions like D(f) or D(f+g),
denoting the derivative operator applied to the expres-
sion given inside the parenthesis as an argument to the
unary () operator. This is how the purple and blue
types in Fig. 2 are created, which in turn serve as input
to the + operator.

In order to store the data of the simulation, each tree
node defines a function value. Evaluating the function
value of any node computes and returns the data at
this node. This is done by recursively evaluating the
operators on lower tree nodes as required by the nat-
ural tree traversal order. For computational efficiency,
all nested calls to value functions along the tree are
inlined. For the example from Listing 1, the data are
the appropriately processed values of the field variable
P at the locations of the discretization points in the set

123



117 Page 4 of 14 Eur. Phys. J. E (2021) 44 :117

particles. Therefore, evaluating the function value of
the root node of an expression tree produces the final
result of the numerical computation of the given expres-
sion. For convenience, e.g., to simplify the construction
of linear systems of equations, each node also provides
a function value_nz. This function returns only the
nonzero data of the respective node in a sparse matrix
data structure.

Using this C++ template expression system, com-
plex equations involving multiple discretized differential
operators can be numerically evaluated in a transparent
way. It is based on computational graphs constructed
from C++ expression templates, which are then trans-
lated to distributed computations on OpenFPM data
structures, such as OpenFPM vectors and grids, to
generate scalable parallel simulations. Implicitly, these
internally distributed C++ objects thus are symbolic
references to data, which enables expression-based com-
puting.

1 // Define symbolic references to...
2 auto P=getV<0>(particles); // ...a scalar field
3 auto V=getV<1>(particles); // ...a vector field
4 auto Stress=getV<2>(particles); // ...a tensor field
5 auto V star=getV<3>(particles); // ...a vector field
6

7 // Assign values to components of fields for all
particles

8 V[x]=1;
9 V[y]=0;

10 Stress[x][y]=5;
11

12 // Evaluate an expression and store the result
13 P = P + V[x]∗V[x] + V[x] − Stress[x][y];

Listing 2 Expression-based computing with symbolic
references.

An example of expression-based computing is shown
in Listing 2. It defines symbolic references for a scalar
field (line 2), a vector field (line 3), and a tensor
field (line 4) from the properties of corresponding
datatype stored on a set of discretization points called
particles. Scalar values are then assigned to the com-
ponents of the vector field (lines 7, 8) and to a compo-
nent of the tensor field (line 9) across all discretiza-
tion points. Components are selected by their sym-
bolic name passed to the overloaded unary [] oper-
ator. Finally, an expression is evaluated resulting in
a scalar field stored in P (line 12). At compile time,
this creates a computational graph and maps the com-
putations as required for efficient run-time evaluation.
This enables human-readable code for scalar, vector,
and tensor expressions.

These expressions can also contain continuous deriva-
tives, which are then automatically discretized using
a numerical method as specified by an include state-
ment. OpenFPM provides a library of frequently used
numerical differentiation methods, including finite dif-
ferences on regular Cartesian grids and the DC-PSE
method [29] on irregularly scattered discretization
points (see “Appendix A”). DC-PSE is a generaliza-
tion of finite differences to arbitrarily distributed dis-

cretization points, which are then called particles as
they do not need to form a lattice or mesh. This enables
straightforward simulations in complex geometries [30]
and Lagrangian simulations of hydrodynamics, where
the particles move with the local flow velocity in order
to simplify the governing equations [13]. Users can
implement additional discretization methods as plug-
ins, which can then be used in the present template
expression system as well.

A code example involving derivatives is shown in List-
ing 3, where the DC-PSE operator library is imported
in line 2. One can then instantiate correspondingly dis-
cretized versions of differential operators as shown in
lines 6–10 for different examples. The first argument in
the parentheses of the definition of a discretized deriva-
tive is the set of collocation points over which the oper-
ator is to be discretized. The second argument is a
positive integer specifying the order of convergence for
the discrete operator approximation. The third argu-
ment defines the cutoff radius for the operator sup-
port, i.e., the maximum distance around a discretiza-
tion point where neighboring points contribute to the
discrete operator. These discretized operators can then
be used in symbolic expressions as detailed above in
order to express derivatives (lines 13–15).

1 // Import the discretization method from OpenFPM
2 #include ”numerics/DCPSE op.hpp”
3 // Listing 2 is included here
4 ...
5 // Create discretized derivative operators
6 Derivative x Dx(particles,order,rCut);
7 Derivative y Dy(particles,order,rCut);
8 Gradient Grad(particles,order,rCut);
9 Laplacian Lap(particles,order,rCut);

10 Advection Adv(particles,order,rCut);
11

12 // Compute derivatives by applying these operators to
symbolic expressions

13 V = Grad(P);
14 V[x] = V[x] + Dx(Stress[x][x]);
15 V[y] = V[y] + Dy(Stress[y][y]);

Listing 3 Including a specific numerical method and using
correspondingly discretized differential operators.

This defines an expression system that enables con-
tinuous models to be written in near-mathematical
notation and to independently specify the numerical
method that shall be used to discretize them. This
cleanly separates the model definition from the imple-
mentation of the numerical methods, as was the main
motivation for our work. However, it so far only allows
to valuate explicit expressions, where the values can be
computed successively along the expression tree.

For implicit equations, such direct evaluation is not
possible. Instead, a numerical solver needs to be invoked
to solve for the unknown variables in the linear or
nonlinear equation system resulting from discretiza-
tion. This is, e.g., the case when using implicit time-
stepping methods or when solving for steady-state solu-
tions. Both involve assembling the system matrix and
the right-hand side vector of the linear system of equa-

123



Eur. Phys. J. E (2021) 44 :117 Page 5 of 14 117

tions to be solved. These are then passed to a numerical
solver, such as a multi-grid solver, an LU decomposi-
tion, or a Krylov subspace solver. Many such solvers
are implemented in numerical libraries like OpenFPM
[16], PETSc [23], Eigen [24], and others, to which our
framework provides access through a single, coherent
interface.

An example of how to use implicit solvers is shown
in Listing 4 to solve for the steady state of the Stokes
equation. It imports a linear system solver based on
DC-PSE in line 2. The solver is instantiated in line
9 for a simulation in two dimensions with two vari-
ables (2d2). The two equations for the two variables are
defined in lines 18–21, complete with their right-hand
sides. This uses the explicit symbolic expression system
described above. These equations are then imposed for
the two components x_comp and y_comp in the bulk of
the simulation domain (lines 24 and 25. The bound-
ary conditions are imposed in lines 27 and 28, here
homogeneous zero-value Dirichlet boundaries. Finally,
the numerical solver is executed in line 29, returning
the solution V_star[x,y].

1 // Import the solver from OpenFPM
2 #include ”numerics/DCPSE Solver.hpp”
3

4 // Listing 3 is included here
5 ...
6 // We assume that the indices of discretization points

are stored in the OpenFPM vectors ’boundary’
for the boundaries and ’bulk’ for the interior of
the simulation domain.

7

8 // Initialize a system of 2 equations in 2D
9 DCPSE scheme<equations2d2,particles> Solver(

particles);
10

11 // Set unique variable and equation IDs
12 V star.set var id(0);
13 eq id x comp, y comp;
14 x comp.setId(0);
15 y comp.setId(1);
16

17 // Expressions for the two equations and their right−
hand sides.

18 auto Stokes x=Adv(V,V star[x])+Lap(V[x]);
19 RHS[x]=Dx(P);
20 auto Stokes y=Adv(V,V star[y])+Lap(V[y]);
21 RHS[y]=Dy(P);
22

23 // Impose the equations in the bulk
24 Solver.impose(Stokes x,bulk,RHS[x],x comp);
25 Solver.impose(Stokes y,bulk,RHS[y],y comp);
26

27 // Impose Dirichlet boundary conditions
28 Solver.impose(V star[x],boundary,0,x comp);
29 Solver.impose(V star[y],boundary,0,y comp);
30 Solver.solve(V star[x],V star[y]); // Solve

Listing 4 Using a numerical solver for an implicit equation
with boundary conditions.

To change this from a DC-PSE solver for irregu-
larly scattered discretization points to a finite-difference

solver on a regular Cartesian grid, only the following
lines change:

1 // Changes in the initialization
2 #include ”numerics/FD Solver.hpp”
3 FD scheme<equations2d2,grid> Solver(ghost,grid);
4

5 // Changes in the solver interface
6 Solver.impose(Stokes x,start id,stop id,RHS[x],vx);
7 Solver.impose(Stokes y,start id,stop id,RHS[y],vy);
8 Solver.impose(V star[x],start id,stop id,0,vx);
9 Solver.impose(V star[y],start id,stop id,0,vy);

10 Solver.solve(V star[x],V star[y]); //Solve

Listing 5 Changes required to switch to a mesh-based
implicit solver using finite differences.

Instead of passing the OpenFPM distributed vec-
tors bulk and boundary, containing the indices of
the respective discretization points, we now pass an
OpenFPM mesh grid, where start_id and stop_id
are the grid point indices of the first and last points
of the bounding boxes of the respective mesh regions.
Alternatively, an OpenFPM mesh iterator can be used.
All symbolic expressions for the PDEs to be solved
remain unchanged, despite the fact that we now use
a fundamentally different numerical method, namely
a Cartesian mesh finite-difference solver instead of a
mesh-free DC-PSE solver

In summary, we provide a C++ template expres-
sion system for numerically solving PDEs using both
explicit and implicit methods. Our expression systems
cleanly separates the definition of the model to be sim-
ulated from the implementation of the numerical meth-
ods used to do so. This allows implementing new solvers
or changing the model without having to touch the
respective other parts of the code. It also provides an
almost mathematical notation for PDEs in C++ simu-
lation program codes. For implicit equations, numer-
ical solvers from different libraries are encapsulated
under a common interface. The code generated by our
expression system uses native distributed data struc-
tures from OpenFPM. This enables the resulting sim-
ulations to run in parallel on shared- and distributed-
memory computers as well as on graphics cards. Users
also benefit from the advanced visualization capabili-
ties of OpenFPM, e.g., to store simulation results in
portable VTK files or to remotely (over network) view
the progress of a running simulation using in situ visu-
alization [27].

4 Application examples

We test our implementation and demonstrate the use
of the presented expression system on three benchmark
problems: First, we consider the incompressible Navier–
Stokes equations, describing fluid flow at length scales
where inertial forces play a role. Examples include air
flow in the lungs [31] and blood flow in the heart
[32,33]. As a test case, we consider the nonlinear lid-
driven cavity problem, which is a classic benchmark to

123



117 Page 6 of 14 Eur. Phys. J. E (2021) 44 :117

check a simulation code’s ability to solve for steady-
state incompressible flow. As an algorithmic novelty,
we use our expression system to implement a mesh-free
simulation with pressure correction. We validate this
novel solver by comparing against data from Ghia et
al. [34]. Further, we use this test case to evaluate how
many lines of code need to be edited in order to change
the mesh-free simulation to a finite-difference simula-
tion on a regular Cartesian grid.

Second, we adapt the mesh-free solver with incom-
pressible pressure correction to simulating the time-
resolved dynamics of active polar fluids in two dimen-
sions. These coupled PDEs describe the mechanics of
active biological materials, such as the actomyosin cor-
tex in cells [5,6,10], in the long-time hydrodynamic
limit. We use this test case to demonstrate how to
use our expression system to discretize PDEs in a
Lagrangian frame of reference. We validate the result-
ing simulation code in a convergence study showing the
correct scaling of the numerical error. We further use
this second test case to benchmark the scalability of the
resulting OpenFPM simulation on a multi-core com-
puter, illustrating how well the code runs when dis-
tributed over multiple CPU cores.

As a third application example, we consider Stokes
flow in a three-dimensional ball to demonstrate the
versatility of the expression system for PDEs in non-
Cartesian domains without rewriting the PDEs them-
selves. We validate this case by showing convergence to
the analytical solution.

4.1 Incompressible Navier–Stokes

As a first test case we consider the nonlinear lid-driven
cavity problem governed by the incompressible Navier–
Stokes equations in the unit square [0, 1]2 with the top
boundary (i.e., the “lid”) moving at constant velocity
vb = (1, 0)� and the rest of the boundaries having no-
slip boundary conditions. The governing equations are:

v · (∇v) − 1
Re

Δv = −∇Π (1a)

∇ · v = 0 (1b)
v(xb, yb) = (0, 0), except v(xb, 1) = (1, 0) , (1c)

where xb, yb are the coordinates of the boundary, Π
is the pressure, and Re is the Reynolds number. We
numerically solve these equations in primitive vari-
ables, velocity, and pressure. The incompressibility con-
dition in Eq. (1b) is imposed using a pressure-correction
scheme [35]. We discretize the differential operators in
space using DC-PSE [29], which has previously been
used to solve Navier–Stokes problems using velocity–
vorticity correction [36,37]. However, to our knowledge,
it has never been used in a pressure-correction algo-
rithm.

Pressure correction [35] is a method from compu-
tational fluid dynamics to impose the incompressibil-
ity condition in numerical solutions of the incompress-

Fig. 3 Flow diagram of the pressure-correction algorithm
for steady-state incompressible Navier–Stokes simulations
with user-provided numerical tolerance ε

ible Navier–Stokes equation. Due to the nonlinearity
of Eq. (1a) in v, numerical solutions generally violate
incompressible continuity Eq. (1b), i.e., the flow veloc-
ity field is not guaranteed to be divergence-free. The
idea of pressure correction is to use the pressure field
as a Lagrange multiplier, which is determined such that
the velocity becomes exactly divergence-free. This algo-
rithm is illustrated in Fig. 3 for steady-state solutions.
It iteratively solves for the velocity field with a given
pressure field, then computes the correction potential
for incompressibility, corrects the velocity and the pres-
sure accordingly, and iterates until convergence. This
simulation algorithm has previously been used in con-
junction with moving least squares discretization meth-
ods [38].

We discretize the square two-dimensional domain
with collocation points arranged on a regular Carte-
sian lattice of 81 × 81 points. We use DC-PSE opera-
tors of convergence order 2 with an interaction cutoff
of 3.1 grid cells to build the system matrix. We use
the KSPGMRES solver from PETSc to solve the sys-
tem for the steady-state solution. When implemented
in our C++ expression system, the complete algorithm
requires 156 lines of code, not counting comments and
empty lines. A visualization of the simulation result is
shown in Fig. 4a. To validate the simulation, we com-
pare with reference simulation data from Ghia et al.

123



Eur. Phys. J. E (2021) 44 :117 Page 7 of 14 117

Fig. 4 Nonlinear lid-driven cavity problem of Reynolds
number Re = 100 solved on an 81 × 81 grid using the
pressure-correction algorithm from Fig. 3. a Visualization
of the velocity magnitude (color) and direction (arrows)
as computed by the implicit DC-PSE solver in the two-
dimensional simulation domain. b Velocity x-component
(blue) along the vertical line x = 0.5 (dashed in a) and
y-component (orange) along the horizontal line y = 0.5.
We compare the present solution computed using second-
order DC-PSE (solid lines) or finite differences (FD, dashed
lines) with the available reference data from Ghia et al. [34]
(crosses) for the same Reynolds number

[34], which is available for Reynolds number Re=100
for the x-component of the velocity along a vertical line
across the domain at x = 0.5 and the y-component of
the velocity along a horizontal line across the domain
at y = 0.5. Our results in Fig. 4b are indistinguishable
from the reference solution.

The lid-driven cavity is a popular test case because it
is challenging for numerical methods and yet the lam-
inar solution is steady. The main numerical challenges
are the nonlinearity of the equation and the fact that
the domain has sharp corners where stagnation points
or recirculation vortices develop. Since only the top

lid moves, with lateral and bottom walls stationary,
a global vortex develops in the flow field whose cen-
ter location depends on the Reynolds number. Indeed,
when we repeat our simulation for the Stokes limit
Re = 0, the center of the vortex is on the vertical mid-
dle axis at x = 0.5, while for Re = 100 it is shifted
towards the top-right quadrant (Fig. 4a).

We further use this test case to quantify how difficult
it is to change the simulation to using a different numer-
ical method. Therefore, we edit the code to use finite-
difference stencils instead of DC-PSE. This requires
deleting the boundary particle detection, changing the
declaration of the differential operators, and import-
ing the finite-difference OpenFPM library. Altogether,
it requires changing 21 lines of code. The overall simu-
lation logic and all PDE expressions remain unchanged,
and the solution still matches the benchmark data
(Fig. 4b, dashed lines). This illustrates how the present
expression system can accelerate the testing of alterna-
tive numerical methods in a simulation program.

4.2 Viscous active polar fluids

In the second test case we implement a solver for the
viscous active polar fluid equations [4] in two dimen-
sions and compare with a benchmark simulation [13].
The nonlinear, nonequilibrium hydrodynamics of vis-
cous active polar fluids is described by the following set
of PDEs in Einstein summation notation:

Dpα

Dt
=

hα

γ
− νuαβpβ + λΔμpα + ωαβpβ (2a)

∂βσαβ − ∂αΠ = 0 (2b)
∂γvγ = 0 (2c)

2ηuαβ = σ
(s)
αβ + ζΔμ

(
pαpβ − 1

2
pγpγδαβ

)

−ν

2
(pαhβ + pβhα − pγhγδαβ) (2d)

for the spatial components α, β, γ ∈ {x, y} denoted by
subscripts. Equation (2a) governs the dynamics of the
polarity field p = (px, py)�. The Lagrangian (or mate-
rial) derivative is defined as usual:

Dpα

Dt
=

∂pα

∂t
+ vγ∂γpα. (3)

The constant γ is the rotational viscosity, ν is the
coupling coefficient for polarity and mechanical stress,
and λ is the coefficient coupling the active chemical
potential Δμ with the polarization dynamics; uαβ =
1
2 (∂αvβ + ∂βvα) is the strain rate tensor and ωαβ =
1
2 (∂βvα − ∂αvβ) the vorticity tensor. The so-called
molecular field hα is the variational derivative of the
free energy density

f =
Ks

2
(∇ · p)2 +

Kb

2
(∇ × p)2 +

h0
‖
2

‖p‖2 (4)

123



117 Page 8 of 14 Eur. Phys. J. E (2021) 44 :117

with elastic constants Ks and Kb for the splay and
bending coefficients, respectively. The Lagrange multi-
plier h0

‖ enforces unit magnitude of the polarity. Equa-
tion (2b) is the force balance with the total stress ten-
sor σαβ = σ

(p)
αβ + σ

(a)
αβ as the sum of passive (p) and

active (a) stresses (see “Appendix B” for details) and
the pressure Π. Equation (2c) is the incompressibil-
ity condition on the velocity field v. Equation (2d) is
the constitutive stress–strain relation with the sym-
metric stress σ

(s)
αβ (see “Appendix B”), the viscos-

ity η, the coefficient ζ coupling material stress to
mechano-chemical activity, and the Kronecker delta
δαβ .

This formulation of an active polar material model
is valid in the hydrodynamic limit, where the material
behaves as a viscous fluid, and elastic stresses are con-
sidered to be relaxed [39]. Already these equations (see
“Appendix B” for component-wise notation) are suffi-
ciently complex to demonstrate the use of the present
template expression system. They describe a nonequi-
librium, nonlinear incompressible Stokes flow problem
with 4 unknown fields (the scalar field Π, the vector
fields v and p, and the tensor field σ) and 9 terms
on the right-hand side altogether. For PDEs of such
complexity, our expression system is particularly use-
ful, as it makes the simulation code more readable and
its implementation less error-prone.

We discretize all fields on Lagrangian particles that
move with the velocity v of the flow. Differential oper-
ators are consistently approximated over the irregu-
larly distributed set of moving collocation points using
DC-PSE [29]. This enables an important difference
to previous approaches [13], which is that we do not
need to interpolate the Lagrangian particles to a reg-
ular grid at every time step. Instead, we solve the
implicit equation for the velocity directly on the irreg-
ularly distributed particles, using DC-PSE operators
to build the system matrix and the KSPGMRES lin-
ear system solver from PETSc [23] to solve the sys-
tem.

We also extend the simulation to solve for the time
dynamics of the fields using an explicit Runge–Kutta
time stepping method of order 4 for the polarity field
and explicit Euler time stepping for moving the par-
ticles, both with time step size δt = 2 × 10−7. Using
the present expression system, the entire simulation
code is 340 lines long, reusing 50 lines from the lid-
driven cavity solver. By changing 20 lines of the code,
the numerical method can be changed from a DC-
PSE discretization on moving Lagrangian particles
to a finite-difference simulation on a static Cartesian
grid.

We verify our implementation for the benchmark
problem from Ref. [13], where a staggered-grid finite-
difference scheme has been used in conjunction with
Lagrangian particles and remeshing. We therefore solve
Eqs. (2) in the square domain [0, 10]2 with edge
lengths Lx = Ly = 10 with initial condition for the
polarity

p(x, y, 0) =

⎛
⎝sin

(
2π(cos

(
2x−Lx

Lx

)
− sin

(
2y−Ly

Ly

) )
cos

(
2π(cos

(
2x−Lx

Lx

)
− sin

(
2y−Ly

Ly

) )
⎞
⎠ ,

(5)

boundary conditions for polarity and velocity

p(xb, yb, t) = p(xb, yb, 0), (6)

v(xb, yb, t) = (0, 0)�, (7)

and parameters η = 1, ν = −0.5, γ = 0.1, ζ = 0.07, λ =
0.1, Ks = 1, Kb = 1, Δμ = −1. This problem has been
previously used as a test case to confirm consistency of
numerical methods for active and nematic fluids [13].
It models a thin active polar viscous fluid in a square
dish, such as an in vitro actomyosin film, with no-slip
velocity boundary conditions and the filaments fixed
(i.e., anchored) at the boundaries.

The simulation proceeds by solving for the steady-
state velocity using the given polarity at the initial
time. The collocation points (particles) are initially
placed on a regular Cartesian grid. From there, the par-
ticles are advected by the flow velocity v, and the polar-
ity field p is evolved according to the Lagrangian deriva-
tive in Eq. (2a). Since the particles move, the DC-PSE
operators are recomputed at each time step, and all
steps are repeated until the final time. For this simula-
tion, we expect first-order convergence in time, limited
by the Euler method used to move the particles, and
second-order convergence in space given by the order
of the DC-PSE operators.

The results are shown in Fig. 5. Figure 5a visual-
izes the simulated polarity, velocity, and pressure fields
at time t = 2 · 10−6, which can directly be compared
with Fig. 4d,g in Ref. [13]. The initial harmonic map
of the polarity creates a strong gradient in the Frank
free energy, which is unfavorable due to the oscillation
(high bending energy) and the fixed-polarity boundary
condition. Consequently, the system is mainly driven by
the equilibrium stresses, and the force balance results
in the flow field visualized on the right with a nonmono-
tonic pressure. Since the active chemical potential Δμ is
assumed to be constant, it does not significantly affect
the behavior of the active fluid. However, increasing the
activity leads to a faster flow with slower relaxation of
the polarity field due to the free energy. Changing the
sign of the activity reverses the flow direction, and the
fluid starts behaving as an extensile material.

The initial and boundary conditions used here render
this test case numerically challenging, because the oscil-
lations in the polarity field cause multiple small vortices
in the velocity field (see Fig. 5a, right). We validate the
consistency of our simulation by showing grid conver-
gence of the velocity field along the vertical center axis
in Fig. 5a. The two components of the velocity along
this line are plotted in Fig. 5b for initial grid resolu-
tions increasing from 41 × 41 to 257 × 257 particles.

123



Eur. Phys. J. E (2021) 44 :117 Page 9 of 14 117

(a)

(b) (c) (d)

Fig. 5 Visualization and grid convergence of the velocity
and polarity fields for the two-dimensional viscous active
polar fluid simulation. a Left: visualization of the polarity
field (arrows colored by Frank free energy) and of magni-
tude of the velocity (background color). Right: visualization
of the velocity field (arrows colored by magnitude) and of
the pressure (background color). Both panels are at time
t = 2 · 10−6. b Profile of the x- (•) and y-components (+)
of the velocity along the black dashed line in a at x = 5
for initial grids of increasing resolution from 41 × 41 to

257 × 257 (grayscale, see inset legend) showing convergence
of the solution. c Spatial grid convergence of the error in
the velocity vectors compared to a highly resolved simula-
tion of 257×257 particles. Both the L2 and L∞ norms of the
absolute error at t = 2 · 10−6 over all particles are shown. d
Temporal grid convergence of the error in the polarity vec-
tors for an increasing number of time steps to reach time
t = 1.024, compared against a highly resolved simulation
with 16 384 time steps on 41 × 41 particles. The solid lines
in c and d show the theoretically expected error scaling

While the x-component (circles) of the velocity con-
verges rapidly, the y-component (pluses) is more sensi-
tive to the numerical resolution. However, both compo-
nents converge with the expected convergence rate of 2,
as shown for the full error norms of the velocity vector
field in Fig. 5c. Finally, we also validate grid conver-
gence in time for the polarity field relaxing until final
time t = 1.024. The results in Fig. 5d show the expected
first-order convergence in time, due to the Euler time-
integration method used.

We also use this test case to demonstrate that the
OpenFPM code generated by our template expression
system is parallel and scales well on multi-core comput-
ers. For this, we perform a strong scaling experiment
of the present active polar fluid simulation for initial
grids of different sizes, but without rewriting or manu-
ally tuning any of the code. The result in Fig. 6 shows
a parallel efficiency of 87% when scaling the code up
to all 24 cores of an Intel Xeon E5-2680v3 processor
at 2.5 GHz clock frequency. Further, on a 4-core Intel
i5 mobile consumer CPU, we measure a parallel effi-
ciency of 70% (strong scaling) even when clock boost is
enabled for single-core tasks.

Fig. 6 Strong scaling of the active polar fluid simulation
for different initial grid resolutions. We plot the wall-clock
time taken to complete 10 simulation time steps on an
increasing number of CPU cores for two different proces-
sor models (inset legend). The ideal scaling is indicated by
the dashed blue line

123



117 Page 10 of 14 Eur. Phys. J. E (2021) 44 :117

(a) (b) (c)

Fig. 7 Visualization and convergence for Stokes flow inside
a three-dimensional unit ball. a Visualization of the flow
velocity (arrows colored by magnitude) in comparison with
the analytical solution for mode l = 2 (magnitude: solid
background color). b Velocity (arrows) and pressure (color)
visualized in the y − z plane cut through the ball’s center.

c Convergence plot showing the L2 and L∞ norms of the
absolute error in the velocity field computed against the ana-
lytical solution for l = 2 for different average inter-particle
spacing h. The solid line shows the theoretically expected
scaling

4.3 Stokes flow in a three-dimensional ball

In the third test case we consider a simulation in a
non-Cartesian geometry, where we validate against an
analytical solution. For this, we numerically solve the
incompressible steady-state Stokes flow equations

Δv = ∇Π , v ∈ Ω\∂Ω (8a)
∇ · v = 0 (8b)

in the closed unit ball Ω = B1(0) ⊂ R
3 centered at

the origin. We solve these equations for the velocity
v and the pressure Π by imposing velocity boundary
conditions on the surface of the ball, given by the vector
spherical harmonics with unit amplitude for the mode
l = 2, m = 0. The analytical solution for this problem
is then known [40] as:

v =
∞∑

l=0

l∑
m=−l

ur
lm(r)Y(lm) + u

(1)
lm(r)Ψ(lm)

+ u
(2)
lm(r)Φ(lm) (9a)

Π =
∞∑

l=0

l∑
m=−l

plm(r)Ylm, (9b)

where Y(lm), Ψ(lm), and Φ(lm) are the vector spher-
ical harmonics, Ylm is the scalar spherical harmonic,
and ur

lm(r), u
(1)
lm(r), u

(2)
lm(r), and plm(r) are coefficients

determined from the velocity boundary condition.
We use DC-PSE to discretize the differential opera-

tors in space and to build the system matrix. We then
use the KSPGMRES solver from PETSc [23] as encap-
sulated by our expression system to numerically solve

the resulting linear system of equations with pressure
correction (see Section 4.1) to impose the incompress-
ibility condition. This validates the mesh-free pressure
correction scheme using DC-PSE also in a simulation
domain with curved boundary.

Implementing this simulation using the present C++
expression system, the OpenFPM code is 180 lines
long, which includes the initialization of the boundary
conditions from numerically computed vector spherical
harmonics. We validate the simulation by comparing
against the analytical solution for different modes l and
m. We observe that for the mode l = 1, the error is lim-
ited by the tolerance ε of the pressure-correction itera-
tions (see Fig. 3). Hence, we present the convergence of
the numerical method for l = 2 in Fig. 7.

5 Conclusions

We have presented a generic C++ expression system
for numerically solving partial differential equations
(PDEs), particularly as they occur in hydrodynamics.
The expression system is based on the parallel comput-
ing library OpenFPM [16] for scalable numerical simu-
lations on parallel computing systems.

We demonstrated the use of the presented expres-
sion system in three test cases prototypical of biological
hydrodynamics simulations. Implementing an incom-
pressible Navier–Stokes solver using a novel mesh-free
pressure-correction algorithm required only 156 lines of
code. We validated the simulation against data from
the literature for the nonlinear lid-driven cavity prob-
lem. Changing the numerical method from mesh-free
DC-PSE to finite differences on a regular Cartesian grid
required changing 21 lines of code. A two-dimensional

123



Eur. Phys. J. E (2021) 44 :117 Page 11 of 14 117

solver for viscous active polar fluids using a Lagrangian
particle method was implemented in 340 lines of code,
reusing 50 lines from the previous Navier–Stokes solver.
We verified it in a grid convergence study and showed a
parallel efficiency of 87% on up to 24 CPU cores. Chang-
ing this code to using regular-grid finite differences
required changing 20 lines of code. Finally, a simulation
of Stokes flow in a three-dimensional ball was imple-
mented in 180 lines of code to demonstrate a simulation
in a non-Cartesian domain, validated against an analyt-
ical solution. Taken together, these test cases demon-
strated significant improvements in developer produc-
tivity compared to manually implementing such simu-
lations.

The main limitation of our work is that it can only be
used in conjunction with numerical methods that have
previously been implemented in the OpenFPM numer-
ics library. At the time of writing, this includes DC-
PSE [29], finite differences, the time-integration meth-
ods from the Odeint library [25], and the solvers from
the PETSc [23] and Eigen [24] libraries. Further numer-
ical methods remain to be implemented or wrapped.
Thanks to the separation of concerns achieved by the
present framework, however, such implementation can
be done independent of the numeric data types of the
simulation, the simulation domain dimensionality, or
the model equations.

Another drawback is that codes implemented in our
expression system require more time to compile than a
regular C++ code, because the expressions are parsed
and translated at compile time in order to map the com-
putations. The total compile-time overhead depends
on the complexity and length of the expressions. For
the application examples shown here, compile times
roughly doubled when using the expression system.
However, this has to be discounted against the time
saved when writing and debugging the code.

Further, our expression system does not free the user
from carefully choosing the numerical methods appro-
priate to solve a given PDE and tune their parameters
(e.g., time step size, solver tolerance, etc.). It performs
no auto-tuning. However, we believe that it provides
a good substrate syntax for higher-level languages and
problem solving environments [41].

In the future, we plan to extend the presented expres-
sion system to include additional numerical methods,
such as smoothed particle hydrodynamics [42] and
higher-order particle-mesh interpolation [43], and to
more general meshes, such as unstructured grids and
general triangulated meshes. We also plan to imple-
ment numerical methods for the computation of intrin-
sic derivatives in curved spaces, such as the Laplace-
Beltrami operator or the Laplace-de Rham opera-
tor [44]. Finally, future work could further improve
the user-friendliness and portability of the presented
expression system by providing wrappers for scripting
languages like Python or by integrating it with domain-
specific simulation languages like OpenPME [41].

The presented C++ template expression system for
PDEs is available to users as open source, bundled with
the test cases presented here, in the OpenFPM library,

release 3.2 or newer, available from openfpm.mpi-cbg.
de.

Acknowledgements This work was funded in parts by the
Federal Ministry of Education and Research (Bundesminis-
terium für Bildung und Forschung, BMBF) under project
031L0160 “Computer simulation platform for topology-
driven morphogenesis” and by the German Research Foun-
dation (Deutsche Forschungsgemeinschaft, DFG) within
the Research Training Group “Role-based Software Infras-
tructures for continuous-context-sensitive Systems” (GRK
1907). We thank Dr. Quentin Vagne (University of Geneva,
Switzerland) for fruitful discussions.

Funding Open Access funding enabled and organized by
Projekt DEAL.

Author contribution statement

The template expression system was developed by all
authors and implemented in software by A.S. and P.I.
The benchmark simulations were run by A.S. Results
were analyzed by A.S. and I.F.S. Project coordination,
funding acquisition, and project supervision was done
by I.F.S. All authors were involved in the preparation
of the manuscript. All authors have read and approved
the final manuscript.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to
the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this arti-
cle are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: discretization corrected particle
strength exchange

Discretization-Corrected Particle Strength Exchange (DC-
PSE) is a numerical method for discretizing differential
operators on potentially irregularly distributed collocation
points [29]. It is a particle method from the numerical class
of collocation methods. In contrast to other collocation par-
ticle methods, like smoothed particle hydrodynamics (SPH)
[42] or Particle Strength Exchange (PSE) [45], however,
DC-PSE is fully consistent and achieves the desired order
of error convergence for arbitrary linear differential opera-
tors discretized at (almost) arbitrary discretization points.
DC-PSE effectively generalizes finite difference methods to

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


117 Page 12 of 14 Eur. Phys. J. E (2021) 44 :117

irregularly distributed as well as moving (i.e., Lagrangian)
discretization points, called particles, in the sense that the
classic finite-difference stencils are recovered analytically in
the limit of regular Cartesian particle distributions (see Ref.
[29] for proof).

While the details of DC-PSE are well documented else-
where [29,36], we here briefly review the main concept
for the reader’s convenience. We do so in two dimensions,
x = (x, y) ∈ R

2, in order to simplify the notation, noting
that the concept also holds in arbitrary-dimensional spaces
[29]. In all cases, the purpose of DC-PSE is to discretize a
derivative

Dm,n =
∂m+n

∂xm∂yn
, (10)

where m and n are the order of the derivative in the two
spatial dimensions. For example, for m = 1 and n = 0, the
operator Dm,n is the first derivative along x, i.e., ∂

∂x
.

DC-PSE discretizes the operator Dm,n over a set of N
particles at locations xp, p = 1, . . . , N , by a discrete con-
volution operator Qm,n. The discretization can be derived
from a Taylor series expansion requiring that Qm,n =
Dm,n + O(hr), where h is the average distance between
neighboring particles and r the desired order of convergence.
This results in the discrete operator

Qm,nf (xp)

=
1

ε (xp)m+n

∑

xq∈N(xp)

(f (xq) ± f (xp)) η

(
xp − xq

ε (xp)

)

(11)

when applied to compute the respective derivative of a suf-
ficiently smooth function f(x) at the location xp of particle
p. The convolutional sum on the right-hand side is taken
over all particles q in the neighborhood N (xp) of particle p.
The neighborhood is defined by the support of the operator
kernel η and is local with kernel radius ε. The operator can
thus be evaluated in constant time per particle. The sign ±
is positive if (m+n) is odd and negative if (m+n) is even.

The operator kernel η is determined numerically at run-
time such that the required order of convergence is achieved
on the specific given particle distribution. From the Taylor
expansion used to derive the operator approximation, one
can see that the correct order of convergence is achieved if
and only if the discrete moments

Zi,j (xp) =
∑

xq∈N(xp)

(xp − xq)
i (yp − yq)

j

ε (xp)i+j
η

(
xp − xq

ε (xp)

)

(12)

of the kernel η satisfy the conditions

Zi,j (xp) =

⎧
⎨

⎩

i!j!(−1)i+j , i = m, j = n
0, 0 < i + j < r + m + n
< ∞, otherwise.

(13)

For a polynomial kernel, as used in the present work,

η(x) =

i+j<r+m+n∑

i,j

ai,jx
iyje−x2−y2

(14)

with truncated support
√

x2 + y2 < rc (cutoff radius), the
coefficients ai,j of the kernel polynomial can then be deter-
mined from the moment conditions by solving a small linear
system of equations. The kernel radius ε can be chosen freely
as required by the spatial resolution of the simulation or to
achieve the desired numerical stability.

This linear system is independently solved for each parti-
cle p, using the appropriate discrete moment from Eq. (13)
that accounts for the spatial distribution of the neighbor-
ing particles. This way, the discrete moment conditions
are always exactly fulfilled when evaluated on any parti-
cle. This renders DC-PSE fully consistent (i.e., convergent
with full order r to arbitrarily small errors only limited by
the floating-point arithmetics of the computer) on irregu-
lar and moving particle distributions. The price one has to
pay is the computational overhead of solving for the kernel
coefficients ai,j for each particle and every time the par-
ticles have moved. Benchmarks have shown, however, that
this additional computational cost may be amortized by the
gain in accuracy, actually reducing the overall solution time
for flow-dominated problems [29]. Due to its inherent adap-
tivity and the flexibility afforded in placing the collocation
points, DC-PSE is also well suited for simulations in non-
Cartesian as well as moving or deforming domains.

Appendix B: incompressible active polar flu-
ids

The passive stress σ
(p)
αβ = σ

(s)
αβ + σ

(e)
αβ + σ

(ant)
αβ is decomposed

as the sum of the symmetric (s), antisymmetric (ant), and
equilibrium (e) stresses. The equilibrium stress, also called
the Ericksen stress, is given by

σ
(e)
αβ = − ∂f

∂ (∂βpγ)
∂αpγ , (15)

where f is free energy density from Eq. (4). The symmetric
stress is the deviatoric part of the symmetric stress tensor
(i.e., the total passive symmetric stress). The antisymmetric
stress is given by

σ
(ant)
αβ =

1

2
(pαhβ − pβhα) . (16)

Following Eq. (2a), the molecular field hα is decomposed
into the component h‖ parallel and the component h⊥ per-
pendicular to the local polarity p, where h‖ is derived as a
Lagrange multiplier,

h‖ = −γ

[
λΔμ − ν

uxxp
2
x

p2
x + p2

y

− ν
uyyp

2
y

p2
x + p2

y

− 2ν
uxypxpy

p2
x + p2

y

]

(17)

to enforce ‖p‖ = 1. Equations (2b) and (2d) are then com-
bined to the final component-wise expressions [13]:

η∂2
xvx + η∂2

yvx − ∂xΠ +
ν

2
∂x

[
γνuxxp

2
x

(
p2
x − p2

y

)

p2
x + p2

y

]

+
ν

2
∂x

[
2γνuxypxpy

(
p2
x − p2

y

)

p2
x + p2

y

]

+
ν

2
∂x

[
γνuyyp

2
y

(
p2
x − p2

y

)

p2
x + p2

y

]

123



Eur. Phys. J. E (2021) 44 :117 Page 13 of 14 117

+
ν

2
∂y

[
2γνuxxp

3
xpy

p2
x + p2

y

]
+

ν

2
∂y

[
4γνuxyp

2
xp

2
y

p2
x + p2

y

]

+
ν

2
∂y

[
2γνuyypxp

3
y

p2
x + p2

y

]

= −1

2
∂y (h⊥) + ζ∂x

(
Δμp2

x

)
+ ζ∂y (Δμpxpy)

−ζ∂x

(
Δμ

p2
x + p2

y

2

)
− ν

2
∂x (−2h⊥pxpy)

−ν

2
∂y

[
h⊥

(
p2
x − p2

y

)] − ∂xσ(e)
xx − ∂yσ(e)

xy

+
ν

2
∂x

[
γλΔμ

(
p2
x − p2

y

)] − ν

2
∂y (−2γλΔμpxpy) , (18)

η∂2
xvy + η∂2

yvy − ∂yΠ +
ν

2
∂y

[
−γνuxxp

2
x

(
p2
x − p2

y

)

p2
x + p2

y

]

+
ν

2
∂y

[
−2γνuxypxpy

(
p2
x − p2

y

)

p2
x + p2

y

]

+
ν

2
∂y

[
−γνuyyp

2
y

(
p2
x − p2

y

)

p2
x + p2

y

]

+
ν

2
∂x

[
2γνuxxp3

xpy

p2
x + p2

y

]
+

ν

2
∂x

[
4γνuxxp

2
xp

2
y

p2
x + p2

y

]

+
ν

2
∂x

[
2γνuyypxp

3
y

p2
x + p2

y

]

= −1

2
∂x (−h⊥) + ζ∂y

(
Δμp2

y

)
+ ζ∂x (Δμpxpy)

−ζ∂y

(
Δμ

p2
x + p2

y

2

)
− ν

2
∂y (2h⊥pxpy)

−ν

2
∂x

[
h⊥

(
p2
x − p2

y

)] − ∂xσ(e)
yx − ∂yσ(e)

yy

−ν

2
∂y

[
γλΔμ

(
p2
x − p2

y

)] − ν

2
∂x (−2γλΔμpxpy) . (19)

Together with the incompressibility condition in Eq. (2c),
this completes the force balance.

References

1. I.F. Sbalzarini, Modeling and simulation of biological
systems from image data. BioEssays 35(5), 482–490
(2013)

2. K. Kruse, J.-F. Joanny, F. Jülicher, J. Prost, K. Seki-
moto, Generic theory of active polar gels: a paradigm for
cytoskeletal dynamics. Eur. Phys. J. E 16, 5–16 (2005)

3. J. Howard, S.W. Grill, J.S. Bois, Turing’s next steps:
the mechanochemical basis of morphogenesis. Nat. Rev.
Mol. Cell Biol. 12, 392–398 (2011)

4. J. Prost, F. Jülicher, J.-F. Joanny, Active gel physics.
Nat. Phys. 11, 111–117 (2015)

5. H. Turlier, B. Audoly, J. Prost, J.-F. Joanny, Fur-
row constriction in animal cell cytokinesis. Biophys. J.
106(1), 114–123 (2014)

6. N.W. Goehring, P.K. Trong, J.S. Bois, D. Chowdhury,
E.M. Nicola, A.A. Hyman, S.W. Grill, Polarization of
PAR proteins by advective triggering of a pattern-
forming system. Science 334, 1137–1141 (2011)

7. M. Mayer, M. Depken, J.S. Bois, F. Jülicher, S.W. Grill,
Anisotropies in cortical tension reveal the physical basis
of polarizing cortical flows. Nature 467, 617–621 (2010)

8. L. Sui, S. Alt, M. Weigert, N. Dye, S. Eaton, F. Jug,
E.W. Myers, F. Jülicher, G. Salbreux, C. Dahmann,
Differential lateral and basal tension drive folding of
Drosophila wing discs through two distinct mechanisms.
Nat. Commun. 9, 4620 (2018)

9. A. Mietke, V. Jemseena, K.V. Kumar, I.F. Sbalzarini, F.
Jülicher, Minimal model of cellular symmetry breaking.
Phys. Rev. Lett. 123, 188101 (2019)

10. A. Mietke, F. Jülicher, I.F. Sbalzarini, Self-organized
shape dynamics of active surfaces. Proc. Natl. Acad. Sci.
116, 29–34 (2019)

11. W. Marth, A. Voigt, Collective migration under hydro-
dynamic interactions: a computational approach. Inter-
face Focus 6(5), 20160037 (2016)

12. M. Nestler, I. Nitschke, A. Voigt, A finite element
approach for vector- and tensor-valued surface PDEs.
J. Comput. Phys. 389, 48–61 (2019)

13. R. Ramaswamy, G. Bourantas, F. Jülicher, I.F.
Sbalzarini, A hybrid particle-mesh method for incom-
pressible active polar viscous gels. J. Comput. Phys.
291, 334–361 (2015)

14. M.E. Cates, O. Henrich, D. Marenduzzo, K. Stratford,
Lattice Boltzmann simulations of liquid crystalline flu-
ids: active gels and blue phases. Soft Matter 5, 3791–
3800 (2009)

15. F. Alaimo, A. Voigt, Microscopic field-theoretical
approach for mixtures of active and passive particles.
Phys. Rev. E 98, 032605 (2018)

16. P. Incardona, A. Leo, Y. Zaluzhnyi, R. Ramaswamy, I.F.
Sbalzarini, OpenFPM: a scalable open framework for
particle and particle-mesh codes on parallel computers.
Comput. Phys. Commun. 241, 155–177 (2019)

17. C. Preundl, B. Bergen, F. Hülsemann, U. Rüde, Par-
EXPDE: expression templates and advanced PDE soft-
ware design on the Hitachi SR8000, in High Performance
Computing in Science and Engineering, Garching 2004
(Springer, 2005), pp. 167–179

18. G.-H. Cottet, A particle-grid superposition method for
the Navier–Stokes equations. J. Comput. Phys. 89, 301–
318 (1990)

19. P. Incardona, T. Bianucci, I.F. Sbalzarini, Distributed
sparse block grids on GPUs, in Proceedings of the Inter-
national Conference on High Performance Computing
(ISC), vol. 12728 of Lecture Notes in Computer Science,
(Cham, Switzerland) (Springer, 2021), pp. 272–290

20. I.F. Sbalzarini, Abstractions and middleware for petas-
cale computing and beyond. Int. J. Distrib. Syst. Tech-
nol. 1(2), 40–56 (2010)

21. O. Awile, M. Mitrović, S. Reboux, I.F. Sbalzarini,
A domain-specific programming language for particle
simulations on distributed-memory parallel computers,
in Proceedinsg of the III International Conference on
Particle-based Methods (PARTICLES) (Stuttgart, Ger-
many, 2013), p. p52

22. S. Karol, T. Nett, J. Castrillon, I.F. Sbalzarini, A
domain-specific language and editor for parallel particle
methods. ACM Trans. Math. Softw. 44(3), 34 (2018)

23. S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith,
Efficient management of parallelism in object-oriented
numerical software libraries, in Modern Software Tools
for Scientific Computing. ed. by E. Arge, A.M. Bruaset,
H.P. Langtangen (Birkhäuser, Boston, 1997), pp. 163–
202

123



117 Page 14 of 14 Eur. Phys. J. E (2021) 44 :117

24. G. Guennebaud, B. Jacob, et al., Eigen v3 (2010).
http://eigen.tuxfamily.org. Accessed 7 Jan 2021

25. K. Ahnert, M. Mulansky, Odeint: solving ordinary differ-
ential equations in C++. AIP Conf. Proc. 1389, 1586–
1589 (2011)

26. M. Mascagni, A. Srinivasan, Algorithm 806: SPRNG: a
scalable library for pseudorandom number generation.
ACM Trans. Math. Softw. 26, 436–461 (2000)

27. A. Gupta, P. Incardona, A.D. Aydin, S. Gumhold,
U. Gunther, I.F. Sbalzarini, An architecture for interac-
tive in situ visualization and its transparent implemen-
tation in OpenFPM, in ISAV’20 In Situ Infrastructures
for Enabling Extreme-Scale Analysis and Visualization,
ISAV’20 (Association for Computing Machinery, New
York, NY, USA, 2020), pp. 20–26

28. T. Veldhuizen, Expression templates. C++ Rep. 7, 26–
31 (1995)

29. B. Schrader, S. Reboux, I.F. Sbalzarini, Discretization
correction of general integral PSE Operators for particle
methods. J. Comput. Phys. 229, 4159–4182 (2010)

30. I.F. Sbalzarini, A. Mezzacasa, A. Helenius, P. Koumout-
sakos, Effects of organelle shape on fluorescence recov-
ery after photobleaching. Biophys. J. 89(3), 1482–1492
(2005)

31. Y. Liu, R.M.C. So, C.H. Zhang, Modeling the bifurcat-
ing flow in a human lung airway. J. Biomech. 35, 465–
473 (2002)

32. K. Perktold, G. Rappitsch, Computer simulation of
local blood flow and vessel mechanics in a compliant
carotid artery bifurcation model. J. Biomech. 28, 845–
856 (1995)

33. I. Vignon-Clementel, C. Figueroa, K. Jansen, C. Tay-
lor, Outflow boundary conditions for three-dimensional
finite element modeling of blood flow and pressure
in arteries. Comput. Methods Appl. Mech. Eng. 195,
3776–3796 (2006)

34. U. Ghia, K.N. Ghia, C.T. Shin, High-Re solutions for
incompressible flow using the Navier–Stokes equations
and a multigrid method. J. Computat. Phys. 48, 387–
411 (1982)

35. P.K. Papadopoulos, An auxiliary potential velocity
method for incompressible viscous flow. Comput. Flu-
ids 51, 60–67 (2011)

36. G.C. Bourantas, B.L. Cheeseman, R. Ramaswamy, I.F.
Sbalzarini, Using DC PSE operator discretization in
Eulerian meshless collocation methods improves their
robustness in complex geometries. Comput. Fluids 136,
285–300 (2016)

37. G.C. Bourantas, V.C. Loukopoulos, E.D. Skouras, V.N.
Burganos, G.C. Nikiforidis, An IPOT meshless method
using DC PSE approximation for fluid flow equations in
2D and 3D geometries. AIP Conf. Proc. 1738, 480066
(2016)

38. G.C. Bourantas, V.C. Loukopoulos, A meshless scheme
for incompressible fluid flow using a velocity-pressure
correction method. Comput. Fluids 88, 189–199 (2013)

39. F. Jülicher, S.W. Grill, G. Salbreux, Hydrodynamic the-
ory of active matter. Rep. Prog. Phys. 81, 076601 (2018)

40. R.G. Barrera, G.A. Estevez, J. Giraldo, Vector spherical
harmonics and their application to magnetostatics. Eur.
J. Phys. 6, 287–294 (1985)

41. N. Khouzami, L. Schütze, P. Incardona, L. Kraatz,
T. Subic, J. Castrillon, I.F. Sbalzarini, The OpenPME
problem solving environment for numerical simulations,
in Proceedings of the International Conference on Com-
putational Science, vol. 12742 of Lecture Notes in Com-
puter Science (Springer, Cham, Switzerland, 2021),
pp. 614–627

42. J.J. Monaghan, Smoothed particle hydrodynamics. Rep.
Prog. Phys. 68, 1703–1759 (2005)

43. G.-H. Cottet, J.-M. Etancelin, F. Perignon, C. Picard,
High order semi-Lagrangian particle methods for trans-
port equations: numerical analysis and implementation
issues. ESAIM Math. Model. Numer. Anal. 48, 1029–
1060 (2014)

44. M. Bergdorf, I.F. Sbalzarini, P. Koumoutsakos, A
Lagrangian particle method for reaction–diffusion sys-
tems on deforming surfaces. J. Math. Biol. 61, 649–663
(2010)

45. J.D. Eldredge, A. Leonard, T. Colonius, A general deter-
ministic treatment of derivatives in particle methods. J.
Comput. Phys. 180, 686–709 (2002)

123

http://eigen.tuxfamily.org

	A C++ expression system for partial differential equations enables generic simulations of biological hydrodynamics
	1 Introduction
	2 The OpenFPM framework
	3 C++ expression system for PDEs
	4 Application examples
	4.1 Incompressible Navier–Stokes
	4.2 Viscous active polar fluids
	4.3 Stokes flow in a three-dimensional ball

	5 Conclusions
	Author contribution statement
	Appendix A: discretization corrected particle strength exchange
	Appendix B: incompressible active polar fluids
	References
	References




