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Abstract We present a novel technique to predict binding affinity trends between two molecules from
atomistic molecular dynamics simulations. The technique uses a neural network algorithm applied to a
series of images encoding the distance between two molecules in time. We demonstrate that our algorithm
is capable of separating with high accuracy non-hydrophobic mutations with low binding affinity from
those with high binding affinity. Moreover, we show high accuracy in prediction using a small subset of
the simulation, therefore requiring a much shorter simulation time. We apply our algorithm to the binding
between several variants of the SARS-CoV-2 spike protein and the human receptor ACE2.

1 Introduction

The ongoing COVID-19 pandemic, caused by the infec-
tion with the RNA betacoronavirus SARS-CoV-2, has
already resulted in over 180 million cases and 3.98 mil-
lion deaths around the world [1]. As the global response
to the pandemic moves from non-pharmaceutical (e.g.,
social distancing, periodic lockdowns, mandate of per-
sonal protective equipment) to pharmaceutical (e.g.,
vaccination) forms of intervention, important questions
arise about the evolution of the virus and the emer-
gence of genetic variants which may escape the drug.
Coronavirus viral particles contain four structural pro-
teins [2]: the glycoprotein spike (S), the membrane (M),
the envelope (E), and nucleocapsid (N) proteins. The S
protein (Fig. 1a), which is the main focus of much of the
ongoing research, is a trimeric class I membrane fusion
protein responsible for binding the host cell receptor
and triggering the fusion between the viral membrane
and the host cell membrane [3-6]. The S protein exists
in a prefusion metastable state and undergoes large
conformational changes transitioning to a stable post-
fusion conformation once it binds to a host cell recep-
tor [3,6-8]. Each S protomer (see Fig. 1a) comprises two
functional subunits: S1 contains the receptor binding
domain (RBD) and is responsible for binding the host
cell receptor; S2 contains the fusion machinery and is
responsible for the membrane fusion between the virus
and the host cell. The first cryo-EM structures of the
SARS-CoV-2 S protein in the prefusion conformation,
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published in March 2020, revealed fundamental struc-
tural details providing the basis for identifying con-
served and accessible epitopes for future antibody isola-
tion and vaccine design efforts [9,10]. In addition, sev-
eral structures of the SARS-CoV-2 RBD in association
with the ACE2 receptor, published between March and
May 2020, helped uncover the molecular mechanisms
of the interaction between the RBD and ACE2 and to
identify residues that are crucial for the binding process
[11-14].

Being the RBD the most variable part of the viral
genome [15], several studies have focused on under-
standing the effects mutations have on the binding
affinity to ACE2 [16-18]. Atomistic molecular dynam-
ics (MD) simulations have been used since early in the
pandemic to study and visualize the binding between
the S and the ACE2 receptor and explore potential
targets for drugs [19-30]. Three contact regions (CR1,
CR2, and CR3) have been identified as the key bind-
ing points between RBD and ACE2 [23]. CR1 and CR3
are located at the ends of the RBD-ACE2 interface,
while CR2 refers to the interface middle region. In CR1
and CR2, the hydrophobic contacts between RBD and
ACE2 mediate the interaction, whereas CR3 is char-
acterized mostly by hydrogen-bond (H-bond) forming
residue interactions. An important limit of atomistic
MBD is often times the high computational burden nec-
essary to carry out the simulations to an extent that
is meaningful to answer biological questions. To esti-
mate the free energy of binding between the RBD and
ACE2, and more in general between two proteins, one
would need to carry out one simulation of the associa-
tion process starting from separate protein molecules,
and another simulation sampling the dissociation pro-
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cess. However, the association and dissociation rates
can be very slow, much beyond the current atomistic
MD simulation accessible time scale, making it hard to
estimate directly the binding free energy from sampling
association and dissociation events in silico. Therefore,
several theoretical approaches have been developed to
solve this issue. Among others, Markov state mod-
eling [31-33], Hamiltonian replica exchange methods
[34], weighted ensemble approaches [35,36], or adding
a bias potential (umbrella sampling) to guide the asso-
ciation or dissociation process along a progress coordi-
nate [37,38] are among the most common tools to study
the binding process between two molecules. Often, free-
energy perturbation (FEP) calculations are used to
investigate the energetic contribution of the mutated
amino acid to the protein—protein binding interaction
[22,24,39]. Once an approach has been selected, the
following biological question arises: how can we probe
efficiently in silico the effects of site mutations on the
protein-protein interaction and on the binding affini-
ties? The answer to this and other important questions
is increasingly relying on machine learning (ML) meth-
ods, whose application in computational biochemistry
is gaining momentum.

Indeed, artificial intelligence (AI) has recently emerged
as a potential accelerator of simulations of dynamical
systems, including MD simulations [40-44]. For MD
simulations, the majority of ML methods have focused
on learning the force field [41], that is, the complex
set of rules and parameters governing the interaction
among atoms and thus between molecules. Recently,
an increasing amount of works devoted to the pre-
diction of experimentally measurable quantities from
MD has emerged [40,45-47]. Specific to SARS-CoV-2,
in a recent paper, MD simulations and ML methods
are combined with FEP calculations to investigate the
impact of individual residues on binding to ACE2 in
SARS-CoV-2 compared to SARS-CoV [22].

In our work, we present a neural network-based
method to predict molecular binding trends, that is,
whether or not the binding affinity of a target molecular
interaction is higher or lower than a reference interac-
tion and reduce the computational burden of the molec-
ular simulations. Rather than learning the sequence to
structure relationship as most AI methods in this space
do [48], our method learns the relative atomic distance
between molecules over the simulation time and uses
this information to predict the molecular association
or dissociation trend. We apply our method to evalu-
ate binding between mutants of the SARS-CoV-2 RBD
and the ACE2 receptor (see Fig. 1). We demonstrate
that our method is reliable and accurate for predicting
binding affinity trend for non-hydrophobic mutations
occurring at the RBD-ACE2 interface and has lim-
ited applicability to non-hydrophobic mutations. Our
goals are twofold: First, we aim to demonstrate that
the combination of Al and MD simulations allows for
the prediction of the binding affinity trend between
two molecules. While it is difficult to measure affin-
ity through MD for systems of the size of the RBD-
ACE2 complex, we prove that, if that information is
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Fig. 1 a Representative snapshot of the chimeric spike
receptor binding domain (RBD) (purple) in association with
ACE2 (gray). Proteins are represented in New Cartoon for-
mat. Zinc (orange), and chloride (blue) ions are represented
in van der Waals format. Bottom left: representation of the
spike trimeric complex from [9], one chain is blue with the
RBD colored purple, the other 2 chains are transparent
gray and green for clarity. b, ¢ Closeup view of the con-
tact region between RBD and ACE2. The non-hydrophobic,
non-aromatic residues that are mutated and studied in this
paper are indicated. They are represented in licorice for-
mat colored according to the ion type (red for oxygen, cyan
for carbon, blue for nitrogen). Hydrogen atoms are not dis-
played for clarity. ¢ Same representation of panel b rotated
of 90°

experimentally known for a set of mutants, a neural
algorithm is able to predict the correct affinity trend of
an unknown mutation. Secondly, we prove that our Al
algorithm can be used to obtain reliable information
about binding affinity trends from short MD simula-
tions, thereby significantly reducing the time to obtain
the prediction.

Our paper is structured as follows: The next section
introduces our MD and AI methodologies, as well as
the data. Next, we report the results of our analysis.
Finally, we discuss the potential impact of our work
and future directions.

2 Data and methods

2.1 Reference data

We obtain binding affinity for all mutations of the S
protein RBD-ACE2 receptor from the recent litera-
ture [16]. The non-hydrophobic mutated residues are
represented in Fig. 1b, ¢, and a list is reported in Table 1
according to their decreasing value of binding affinity:
six mutations exhibit higher affinity and six lower affin-
ity than the wild type (WT), which we use as refer-
ence. In Table 1, Alogq(Kp,app) quantifies the rela-
tive affinity value compared to the unmutated SARS-
CoV-2 RBD, with positive values indicating stronger
binding, and negative values indicating weaker bind-
ing. We choose two medically important mutations,
N501Y (present in the Alpha variant, formerly known
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Table 1 List of the mutations of the spike RBD studied in
this paper and used to train the CNN

Mutation Origin Alogio (Kp,app)
N501Y Alpha variant 0.24
Q498Y SARS-CoV 0.16
N501V — 0.15
Q493Y Bat RaTG13 0.12
N501T SARS-CoV 0.1
E484K Gamma variant 0.06
N501S - -0.13
Q493N SARS-CoV -0.21
Q498N - -0.5
Q498K - ~92.26
N501D Bat RaTG13 —2.42
G502P - —4.55

The second column reports the origin of the mutation
and the third column the binding affinity extracted from
Ref. [16]. The mutations are listed according to decreasing
values of the binding affinity

as the English variant) and E484K (present in the
Gamma variant, formerly known as Brazilian variant),
two mutations which are present in SARS-CoV, N501T
and Q493N, and two mutations from the bat coro-
navirus RaTG13. Additionally, we randomly selected
five additional variants according to their affinity, for
the purpose of balancing our training set. Addition-
ally, we selected four hydrophobic, non-aromatic sites
(A475, 1455, 1492, V503) and mutated those residues
to hydrophobic, non-aromatic residues, for a total of
nine additional simulations. According to Ref. [16], the
RBD non-aromatic hydrophobic amino acids at the
RBD-ACE2 interface are only two: V503 and 1.455. The
complete list of the hydrophobic mutations is reported
in Table 2, along with the origin of the mutation, the
binding affinity value, and the simulation length.

2.2 Molecular dynamics simulations

To carry out the simulations of the SARS-CoV-2 RBD
in association with the ACE2 receptor, we used the
atomic coordinates extracted from the X-ray crystal
structure of the SARS-CoV-2 chimeric RBD in complex
with the human receptor ACE2 (PDB ID 6VW1) [49]
(Fig. 1a). The structure has a resolution of 2.68 A and is
a chimera of the RBD from SARS-CoV and the recep-
tor binding motif (RBM) from SARS-CoV-2, with the
exception of an RBM loop. For our work, we considered
this structure as reference for the WT binding affin-
ity, in analogy with the WT used as reference for the
experimental work [16]. We used Solution Builder from
CHARMM-GUI [50,51] to model the disulfide bonds,
to solvate the system, add the zinc and chloride ions
present in the crystal structure, and add the potas-
sium ions to maintain the system charge neutrality. The
final system contains approximately 132000 atoms, with
~ 40,000 water molecules.
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From the equilibrated structure of the RBD-ACE2
system, we extracted the last configuration and used
the Mutator Plugin from VMD software [52] to build
the mutated systems used for this study and reported
in Tables 1 and 2, with the charged and polar muta-
tions represented in Fig. 1b, c. We visually inspected
the mutated protein and used VMD software [52] to
model the disulfide bonds, to solvate the system, add
the zinc and chloride ions present in the crystal struc-
ture, and add the potassium ions to maintain the sys-
tem charge neutrality. The procedure to minimize and
equilibrate the system was the same for WT and all
mutations, and it is described in Sect. 2.2.1. The simu-
lations had variable lengths, ranging from 160 to 280 ns
(Tables 2, 3).

All simulations were performed using NAMD 2.14
[53,54] with the CHARMMS36m force field for the pro-
tein and ions [55] and the TIP3P model for water
[56]. We used a Langevin dynamics scheme to keep the
temperature constant at 303.15 K and an anisotropic
coupling in conjunction with Nosé-Hoover—Langevin
piston algorithm to keep the pressure constant at 1
atm [57,58]. Periodic boundary conditions were applied
in three dimensions. We employ the smooth particle-
mesh Ewald summation method to calculate the elec-
trostatic interactions [59,60], and the short-range real-
space interactions were cutoff at 10 A using a switch-
ing function between 8 A and 10 A. The equations
of motion were integrated with a time step of 4 fs for
the long-range electrostatic forces, 2 fs for the short-
range non-bonded forces, and 2 fs for the bonded forces
by means of a reversible, multiple time-step algorithm
[61]. The SHAKE algorithm [62] was used to constrain
the length of the bonds involving hydrogen atoms. The
simulations were visualized using VMD software [52].

2.2.1 System equilibration protocol

We used the following procedure to minimize and equi-
librate all the systems. To minimize the system, we
used the conjugate gradient algorithm for 8000 steps
and then gradually heated the simulated cell from 25
to 300K. To equilibrate the positions of ions, water
molecules, and protein complex, harmonic restraints
were used in a series of six consecutive simulation runs
of 1 ns, as follows: we ran 1 NVT (constant num-
ber of particles N, volume V, and temperature T) and
5 NPT (constant number of particles N, pressure P,
and temperature T) equilibration runs. In the first
equilibration run, restraint force constants of 20 kcal
mol~* A~2 were applied to the protein backbone atoms
and of 5kcal mol~* A=2 to ions and water. In the subse-
quent runs, the restraints on the protein backbone were
decreased to 10, 8, 4, 2, and then to 1kcalmol=! A=2
while restraints on ions and water were decreased to 2,
1, 0.5, 0.1 and then 0.01 kcalmol~! A=2 | respectively.
After the last 1ns equilibration run, we began the pro-
duction runs. The simulations were carried out under
NPT conditions and the coordinates were saved every
20 ps.
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2.2.2 Dynamics of the systems from MD simulations

For all systems, from the equilibrated structure we car-
ried out simulations in the NPT ensemble (Tables 2, 3),
monitored visually the simulations, and calculated the
root mean square deviations (RMSDs) of all the Ca
carbon atoms belonging to both proteins and of the Ca
carbon atoms belonging to the RBD and ACE2 con-
tact area (see Figs. 6, 7, and 8; Section “Appendix A”).
The contact area appears to be rather rigid in almost
all systems with Coe RMSDs < 2A. In the mutation
N501D, the RMSD value reaches ~ 3A between 180 ns
at the end of the simulation, also in the L1492 system
the RMSDs increase to ~ 3A at around 100 ns but after
that they decrease to ~ 2A. In V503A, we observe a
detachment in CR1 and CR2 explaining the increase
in the RMSD up to ~ 4A at the end of the simula-
tion. In few simulations and at different time points of
the simulation, we observe escape of the Cl ion from
the ACE2 binding pocket. We do not observe reduced
stability due to loss of Cl and verify that it does not
impact the RMSD throughout the affected simulations.

2.2.3 Training set preparation

The result of the MD simulations is a time series of
molecular snapshots. We use the following procedure
to convert the data into a training set for our machine
learning algorithm (Fig. 2). From the long simulation of
the RBD in association with ACE2, we extracted the
residue identification number of the Ca carbon atoms
of the RBD that happen to be within 6 A of ACE2
receptor at least for a single frame during the whole
simulation length. We repeated the same analysis for
ACE2, obtaining two lists of residues (55 amino acids
for the RBD and 62 for ACE2, respectively) that rep-
resent the amino acids found in one protein within 6 A
from the other and vice versa (Fig.2a); for the com-
plete list of amino acids see “Appendix A”. We called
this region as RBD and ACE2 contact area. For each
system, we calculated the distances among all the Ca
carbon atoms of the residues belonging to the two lists
for each frame. For this, we used the contact and dis-
tances modules from MDAnalysis [63,64]. Finally, we
used the matrices of the distances to construct images
that can be interpreted by our machine learning algo-
rithm as follows (Fig. 2b).

We recorded the distance matrices every 20 ps to up
to 160 ns, i.e., 8000 molecular snapshots were collected
and preprocessed. Simulations of under 160 ns were not
sufficiently long to directly reveal the binding trend.
The dissociation constants of typical protein—protein
complexes are in the nanomolar range, and the dissocia-
tion rate can be of the order of minutes or longer, much
beyond the timescale of current MD simulations. The
time evolution of the distance matrices shows very simi-
lar patterns for all mutations (Fig. 2b and also the supp
videos). Therefore, we perform the following procedure
to highlight the difference in the molecular dynamic due
to the mutations (Fig. 2c¢). The signals are buried in
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Fig. 2 Conversion of the MD data to input matrices for a
neural algorithm. a Representative snapshot of the chimeric
RBD-ACE2 complex indicating the Ca carbon atoms used
to calculate the distance between the RBD and ACE2. The
color code is as in Fig. 1, and the Ca carbon atoms are
represented in cyan, van der Waals format. The distances
between the atoms are then represented as matrix, are nor-
malized by each of their minima and maxima, and converted
to gray-scaled images. b Representative distance matrices
of the chimeric RBD-ACE2 complex simulations taken at
different steps of the simulation showing the effect of data
preprocessing. ¢ Representation of the data processing to
obtain machine learning inputs. We first subtract the dis-
tance matrix at ¢ = 0 from the distance matrices from the
simulations at each time steps (central panel). We then use
a moving average to average the subtracted matrices and
use these as input to the algorithm (right-hand panel)

the structural restrictions of the positions of the amino
acids. In order to observe how the atoms move due
to the contact between RBD and ACE2, we first sub-
tract from all matrices the initial frame of coordinates
after completion of minimization and equilibration pro-
cedures, which we indicate as ¢t = 0 (see 2.2.1). We then
average the signal using a moving average of 20 frames
(or 400 ps) to reduce noise (Fig. 2¢). We then normalize
the averaged matrices using min-max normalization to
make sure all values in the matrices are between 0 and 1.
Finally, we converted them to gray-scale images and use
them as neural network inputs for training, validation
and testing. In Fig. 3, we show a representative image
for each of the polar and charged mutations analyzed.
The training and validation sets were built from the
polar and charged mutations using a randomly chosen
90/10 split of all input images from three mutations
showing higher affinity than the reference (namely,
N501Y, N501V, and N501T) and three mutations show-
ing lower affinity than the reference (namely, N501S,
Q498N, and N501D). All images from the remaining six
mutations were used for testing. Such trained CNN was
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Fig. 3 Sample gray-scaled images representing the aver-
aged matrices for some of the mutations studied in this
paper at t = 20ns
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Fig. 4 Structure of the convolutional neural network and
ensemble prediction used in this study. a The convolutional
neural network architecture. b The ensemble prediction con-
sisting of IV independently trained convolutional neural net-
works. The final prediction is based on the simple majority
of all neural networks. ¢ Definition of the output categories

then used for testing also on hydrophobic, non-aromatic
mutations.

2.3 Neural network framework
2.3.1 Neural network architecture

In this work, we used a Convolutional Neural Network
(CNN) implemented in Python 3.7.8 and TensorFlow
v2.4.1. The neural network architecture is illustrated
in Fig. 4a. The neural network uses 62 x 55 grayscale
images as inputs and outputs two values corresponding
to the probabilities of higher and lower affinity com-
pared to the WT (P, and P», respectively). Between
the input and output layers, we have 2 convolutional
layers and 2 maximum pooling layers. Convolutional
layers detect spatial correlations in input data and max-
imum pooling layers down-sample input data to reduce
dimensionality and the number of model parameters.
We used RandomNormal initializer and ReLU activa-
tion function for the convolutional layers. The outputs
of the second maximum pooling layer were then flat-
tened. We used dropout regularization to the flattened
array with dropout rate equal to 0.5 to prevent over-
fitting. The flattened layer then connected to a dense
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layer containing 5 nodes. We used softmax activation
function to connect this dense layer and the final out-
put layer to convert the outputs into categorical prob-
abilities, i.e., Py + P, = 1. If P, > P,, the input will
be categorized as having higher or lower binding affin-
ity than WT (Fig. 4c). For training, we used sparse
categorical cross-entropy loss and Adam optimization
algorithm with the initial learning rate equals 0.0001,
and training over 30 epochs.

2.3.2 Ensemble predictions

Due to the stochastic nature of network initializa-
tion and dropout, as well as the availability of a lim-
ited training set, every neural network is unique in
terms of the parameterization of the network connec-
tions [43,65]. To mitigate the potential impact of this
issue on the classification, we implemented an ensemble
decision method to get consensus prediction: for each
mutation, we train ten identical neural networks. We
then use a simple majority to assign the final class to
the mutation (Fig. 4b). This method has been proven to
further reduce prediction errors and bias and increase
accuracy and reliability, especially with limited training
data [43,65,66].

3 Results

3.1 An ensemble of CNNs can reliably predict
binding trends of polar and charged amino acids

The results of our ensemble procedure are reported in
Tables 4, 5, 6, 7, 8 and 9 and summarized in Table 10.
Every row represents a different network run, while
every column is the result of testing using only a subset
of the data. The row labeled FP is the final predic-
tion for the ensemble, summarized by the accuracy of
prediction in the row labeled PPC. We first focus on
the predictions on non-hydrophobic residues, using the
whole MD simulation for testing (last column in Tables,
t = 160 ns).

Nine out of ten trained neural networks can pre-
dict the six mutations in the test set with 100% accu-
racy, while one neural network can predict four out of
six mutations in the test set, with an overall average
accuracy of 0.9667. Thus, we conclude that our meth-
ods are optimal in predicting binding trend of non-
hydrophobic mutations with respect to a reference with
high accuracy. Moreover, by using the ensemble predic-
tion method, we show that we successfully eliminate
the possibility of an incorrect prediction due to faulty
training, and increase our confidence when making a
call on a novel mutation.

We then test our method on hydrophobic, non-
aromatic residues (Table 2). Our method can pre-
dict with high accuracy the binding affinity of V503I,
V503A, and 14551, with less precision that of 1.4921
and fails in predicting L455A, L455V and 3 mutations
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of the A475 residue (see Table 11). We rationalized our
result by considering that the CNN training set only
includes mutations of charged and polar amino acids
localized in the contact region CR3 [23], which is at
one end of the RBD-ACE2 interface. The trained CNN
is able to predict the binding affinity trend of non-
hydrophobic mutations located in CR1, CR2, and CR3
and of a hydrophobic mutation in CR3 with high accu-
racy, but is less precise or fails in predicting hydropho-
bic mutations localized in CR2 and CR1. Including one
hydrophobic mutation of CR1 in the training set (e.g.,
A475P) improves the predictive accuracy for other CR1
hydrophobic mutations (e.g., A475L) but decreases the
accuracy of the H-bond forming mutations in CR3 (e.g.,
Q498Y) and that of a hydrophobic mutation in CR2
(e.g., L455V). While more work is necessary to address
this issue, the inclusion in the training set of examples of
mutations from all contact regions is potentially neces-
sary for the generalization of the methods to hydropho-
bic mutations for this particular system.

3.2 An ensemble of CNNs can accurately predict
binding trends of polar and charged amino acids
using shorter MD simulation times

We now discuss the problem of how much MD data are
needed to correctly predict whether a non-hydrophobic
mutation has higher or lower than WT affinity using
a CNN trained in the way we described. As stated
above, MD simulations of minutes or longer are needed
to observe binding or dissociation. In the previous sec-
tions, we showed that, when the ground truth is known,
simulations of 160 ns of six systems of the RBD-ACE2
complex size are sufficient to train neural networks
which can reliably predict binding trends for unknown
mutations. However, performing MD simulations of
160ns of 12 or more systems can be still a challeng-
ing task in the absence of adequate computing capabil-
ities. This can limit the ability to simulate important
molecular processes in situations where rapid responses
would be necessary. To give an estimate of the necessary
resources, on the Artificial Intelligence Multiprocess-
ing Optimized System (AiMOS) supercomputer using
NAMD 2.14 [53,54] (see Method) we are able to sim-
ulate ~ 33 ns per simulation per day using 16 2.5 GHz
Intel Xeon Gold CPUs, 768 Gb ram, and 8 NVIDIA
Tesla V100 GPUs (from the benchmark test simula-
tions we carried out it resulted that 8 GPUs was the
best efficient usage of AiMOS resources for our sys-
tems), while we are able to simulate ~ 7ns per day on
a cloud bare metal server consisting of 2.4GHz Intel
Xeon CPUs, 128Gb ram, and 4 Nvidia K80 GPUs. In
this section, we test whether or not it is possible to
use our CNN to accurately predict binding trends using
shorter MD simulations. We varied the duration of the
data extracted from the simulations from 20 to 160 ns,
with increments of 20ns. Our results are reported in
Tables 4, 5, 6, 7, 8 and 9 for single mutation predic-
tions and summarized in Table 10 and Fig. 5.
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simulation time. The blue dots are the average prediction
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Figure 5 reports the average prediction accuracy of
ten independently trained neural networks as well as
the ensemble accuracy as a function of simulation time.
The error bars for the averaged predictions represent
the 10" percentile and 80" percentile of the prediction
accuracy (the 90" percentile is equal to the 80" per-
centile, see Table 10 for details). We can see that the
average prediction accuracy for independently trained
CNNs is consistently over 90% with the simulation
duration equal or longer than 60ns. Based on the pre-
diction accuracy of this ten independently trained neu-
ral networks, the optimal simulation time for the aver-
aged single neural network predictions for this spe-
cific system is 120ns (see Table 10 for details). Tak-
ing advantage of the ensemble prediction method, the
accuracy can be as high as 100% with simulation dura-
tion as short as 40 ns. The ensemble prediction signifi-
cantly increases the prediction accuracy and reliability
while allowing for a 4x shorter simulation time. Further-
more, we observe that some mutations such as E484K,
Q493N, and G502P can be correctly classified with high
confidence (> 75%) with only 20 ns of simulation. This
result can be explained by the fact that, during protein-
protein interactions, structural modifications following
mutations affecting H bond networks can be observed at
relatively short times (see for instance [67-69] and ref-
erences therein). The disruption of an H-bond and/or
a salt bridge affects greatly the amino acid side chains,
but the distance matrices based on which the images
to train and test our CNN are generated are calculated
between the Ca carbon atoms of the amino acids of
the RBD and ACE2 belonging to the contact area (as
defined it in the Method section). Therefore, our CNN
is more sensitive to perturbations occurring at the level
of the backbone of the protein rather than to those
occurring at the side chain level. In other words, for
some mutations, it takes longer to propagate the per-
turbation of breaking an H bond from the side chain
to the protein backbone, which results in the observed
accuracy at short simulation times.
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Moreover, we suspect that the molecular snapshots
of E484K, Q493N, and G502P have high similarity to
the snapshots included in the training set, while muta-
tions such as Q498K and Q498Y that are relatively
more challenging for the network to classify at shorter
time horizons may show greater differences with respect
to those included in the training set. A further inves-
tigation on the features learned by the CNN would
help understanding the different performance exhibited
by the CNN in classifying distinct mutations. Also, a
training set composed of a more diverse set of muta-
tions will possibly result in more consistent predictions
with respect to data extracted from short time win-
dow simulations. Nonetheless, our results prove that
our CNN is capable of predicting binding affinity trends
with high accuracy at very short simulation times when
the training set is composed of only a handful of non-
hydrophobic mutations.

4 Conclusions and future directions

The emergence of viral variants in a pandemic epito-
mizes the evolutionary arm race between the virus and
the host immune system. As vaccines are deployed to a
growing fraction of the population, questions regarding
drug resistance and escape will likely dominate the pub-
lic and scientific discourse of the near future. Therefore,
time is of the essence to determine whether a specific
genetic variant has a higher or lower potential to bind
to the human cellular receptor. MD simulations are an
important tool to address these issues. Methods that
accelerate discovery are now necessary for these com-
putational approaches to yield timely responses. Once
trained, our CNN takes less than a second to perform
a classification task.

While our methods excel on the inference of the bind-
ing affinity trends for charged and/or polar amino acids,
it only partially succeeds when applied to hydrophobic
mutations. An explanation for this limitation may be
related to the position, the characteristic of the muta-
tions used for the training set, and the sparseness of
the input space. Our training data set includes 6 non-
hydrophobic mutations localized in CR3, whereas for
the second training data set we used a non-aromatic,
hydrophobic amino acid located in CR1 in addition to
the previous ones. A more generalizable predictor needs
a training data set constituted of mutations of differ-
ent type of amino acids such as aromatic, hydrophobic,
charged, and polar, and localized over the entire inter-
face between the two proteins (for RBD-ACE2 interface
these mutations used for the training set would be in
the three contact regions CR1, CR2, and CR3). We plan
to improve and further validate our method by adding
to the training set more mutations of different type of
amino acids localized in different regions. In addition,
we also plan to combine the images, i.e., the distance
matrices, with other progress coordinates that charac-
terize further the binding process between the two pro-
teins. This will help the learning process of the CNN
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and will result in better and consistent accuracy in the
predictions.

Beyond the application presented in this paper, we
believe that a method like the one we propose may
be applied generally to other problems where assess-
ing binding affinity trends using only MD simulations
may be important, like drug design or cellular engineer-
ing. The generalization of these methods is an impor-
tant argument of research which we are planning to
explore in the future. Concurrently, we realize that
our method does not provide an exact measure of the
affinity. Recent papers have proposed methods capa-
ble of achieving that goal, with mixed but encouraging
results [70]. Another future objective of our research is
to generalize our method to obtain estimates of binding
affinity using limited MD simulations.
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Appendix A MD simulation details

In Table 2, we report the list of the hydrophobic, non-
aromatic mutations we carried out along with the mutation
origin, the binding affinity extracted from Ref [16], and the
length of the simulations.

Table 2 List of the mutations of the spike RBD hydropho-
bic amino acids studied in this paper

Mutation  Origin Alogio(K papp)  Length (ns)
V5031 SARS-CoV  0.05 187.8
L4921 - 0.03 261.24
L4551 - —0.01 272.24
V503A — —0.06 188.18
A475V SARS-CoV  —0.14 226.6
L455A - —-0.43 280.72
L455V - —-0.73 280.98
A475L - —1.27 279.28
A475P SARS-CoV ~ —1.62 281.02

The second column reports the origin of the mutation, the
third column the binding affinity extracted from Ref [16],
and the fourth column the simulation length. The muta-
tions are listed according to decreasing values of the binding
affinity

In Table 3, we report the length of the simulations we
carried out for the polar and charged mutated residues. To
monitor the simulations, we calculated the RMSD of the C,
atoms of the whole proteins and of the contact area between
RBD and ACE2 (Figs. 6, 7, 8). For the contact area of the
RBD, we considered the C, of the following residues: 403,
405, 406, 408, 416 to 418, 421, 437, 439, 440, 444 to 449, 452,
453, 455 to 458, 472 to 478, 484 to 508. For the contact area
of ACE2, we considered the C, of the following residues:
19 to 39, 41, 42, 45, 48, 49, 61, 72, 75 to 84, 97, 323 to 332,
351 to 357, 386 to 390, 393.
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Table 3 List of the simulations carried out in this work
and of the corresponding length

Simulation Length (ns)
RBD-ACE2 270
N501Y-ACE2 187
Q498Y-ACE2 206.84
N501V-ACE2 204.86
Q493Y-ACE2 197.28
N501T-ACE2 186.58
E484K-ACE2 204.56
N501S-ACE2 205.2
Q493N-ACE2 197.18
Q498N-ACE2 198.84
Q498K-ACE2 204.46
N501D-ACE2 210.44
G502P-ACE2 160.58
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Appendix B Details of CNN predictions

Tables 4, 5, 6, 7, 8 and 9 list the predictions from 10 CNNs
for mutation Q498Y (H), Q493Y (H), E484K (H), Q493N
(L), Q498K (L) and G502P (L), respectively. These 10 neu-
ral networks have the same architecture and are indepen-
dently trained. The neural network weights are randomly
initialized from a normal distribution. Neural network pre-
diction is the probability of higher affinity (P1) and the
probability of lower affinity (P») compared to the WT, with
the constraint of Pi+P> = 1. H and L are the neural network
prediction. H represents higher the WT affinity (P1 > P»),
and L represents lower than WT affinity (P, < P»). The

value in the brackets is the probability value of the pre-
dicted affinity. (P for H and P, for L). FP is short for final
prediction, and PPC represents the percentage of CNNs pre-
dicting correctly. When training for much smaller data size
(simulation ends at 20ns and 40ns), we trained the CNNs
over 60 epochs, while for the rest 30 epochs are used.
Table 10 lists the prediction accuracy of 80 CNNs for
all 6 test mutations with different simulation duration, i.e.,
Q498Y, Q493Y, E484K, Q498K, Q493N and G502P. This
table also contains the average accuracy of 10 CNNs and
the ensemble prediction accuracy per simulation end time.
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Table 4 Neural network predictions for Q498Y: this is the table listing the predictions from 10 neural networks for
mutation Q498Y, which has higher affinity than the unmutated SARS-CoV-2 RBD

NNs Simulation end time

20 ns 40 ns 60 ns 80 ns 100 ns 120 ns 140 ns 160 ns
NN1 H(51%) H(64%) H(69%) H(88%) H(63%) H(94%) H(84%) H(69%)
NN2 H(54%) H(63%) H(80%) H(86%) H(94%) H(62%) H(63%) L(58%)
NN3 L(64%) H(75%) H(99%) H(87%) H(70%) H(69%) H(78%) H(78%)
NN4 L(61%) H(59%) H(86%) H(73%) H(82%) H(56%) H(61%) H(98%)
NN5 L(64%) H(74%) H(73%) L(61%) H(84%) H(64%) H(89%) H(85%)
NN6 H(53%) H(77%) H(70%) H(94%) H(84%) H(58%) H(63%) H(84%)
NN7 H(51%) L(62%) H(54%) H(84%) H(97%) H(94%) H(60%) H(77%)
NN8 L(65%) H(85%) H(84%) H(60%) H(83%) H(86%) H(84%) H(61%)
NN9 H(51%) H(80%) H(70%) H(60%) H(81%) H(57%) L(60%) H(65%)
NN10 H(69%) L(74%) H(89%) H(93%) H(64%) H(99%) H(80%) H(69%)
FP H H H H H H H H
PPC 60% 80% 100% 90% 100% 100% 90% 90%

NN1 to NN10 represents the 10 neural networks we trained. FP is short for final prediction, and PPC represents the
percentage of CNNs predicting correctly. H represents higher binding affinity, and L represents lower binding affinity

Table 5 Neural network predictions for Q493Y: this is the table listing the predictions from 10 neural networks for
mutation Q493Y, which has higher affinity than the unmutated SARS-CoV-2 RBD

NNs Simulation end time

20 ns 40 ns 60 ns 80 ns 100 ns 120 ns 140 ns 160 ns
NN1 H(100%) L(59%) H(99%) H(67%) H(71%) H(96%) H(86%) H(97%)
NN2 H(78%) L(64%) H(98%) H(99%) H(100%) H(82%) H(99%) H(83%)
NN3 H(74%) H(63%) H(84%) H(69%) H(70%) H(98%) H(99%) H(100%)
NN4 H(87%) L(67%) H(97%) H(97%) H(99%) H(75%) H(86%) H(100%)
NN5 H(60%) L(67%) H(51%) H(78%) H(95%) H(87%) H(99%) H(97%)
NN6 H(85%) H(99%) H(95%) H(96%) H(68%) H(99%) H(99%) H(98%)
NN7 H(99%) L(57%) H(70%) H(97%) H(99%) H(91%) H(99%) H(99%)
NN8 H(79%) H(82%) H(58%) H(72%) H(97%) H(99%) H(100%) H(92%)
NN9 H(90%) H(85%) L(53%) H(75%) H(95%) H(56%) H(80%) H(94%)
NN10 H(84%) H(98%) L(58%) H(95%) H(76%) H(100%) H(97%) H(82%)
FP H H* H H H H H H
PPC 100% 50% 80% 100% 100% 100% 100% 100%

*The number of H is the same as the number of L. The final prediction is based on comparing the averaged P; (=0.854)
for H and averaged P» (= 0.628) for L and choosing the larger one. NN1 to NN10 represents the 10 neural networks we
trained. FP is short for final prediction, and PPC represents the percentage of CNNs predicting correctly. H represents
higher binding affinity, and L represents lower binding affinity

Table 11 displays the neural network predictions for affinity. The table lists the average accuracy of 10 CNNs and
mutations from hydrophobic, non-aromatic to hydrophobic, the ensemble prediction accuracy per simulation end time.
non-aromatic amino acids. The WT is inserted as refer-
ence, to separate high from low binding affinity. H repre-
sents higher binding affinity, and L represents lower binding
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Table 6 Neural network predictions for E484K: this is the table listing the predictions from 10 neural networks for mutation
E484K, which has higher affinity than the unmutated SARS-CoV-2 RBD

NNs Simulation end time

20 ns 40 ns 60 ns 80 ns 100 ns 120 ns 140 ns 160 ns
NN1 H(75%) H(96%) H(98%) H(98%) H(98%) H(99%) H(100%) H(100%)
NN2 H(88%) H(97%) H(99%) H(99%) H(100%) H(99%) H(100%) H(99%)
NN3 H(75%) H(96%) H(100%) H(100%) H(97%) H(99%) H(99%) H(100%)
NN4 H(82%) H(95%) H(97%) H(99%) H(98%) H(99%) H(99%) H(100%)
NN5 H(73%) H(94%) H(88%) H(95%) H(99%) H(98%) H(99%) H(99%)
NN6 H(82%) H(94%) H(97%) H(99%) H(99%) H(89%) H(100%) H(100%)
NN7 H(83%) H(91%) H(85%) H(99%) H(100%) H(100%) H(100%) H(100%)
NN8 H(73%) H(90%) H(99%) H(96%) H(100%) H(100%) H(100%) H(96%)
NN9 H(79%) H(96%) H(87%) H(95%) H(98%) H(95%) H(98%) H(88%)
NN10 H(74%) H(58%) H(97%) H(98%) H(95%) H(100%) H(99%) H(97%)
FP H H H H H H H H
PPC 100% 100% 100% 100% 100% 100% 100% 100%

NN1 to NN10 represents the 10 neural networks we trained. FP is short for final prediction, and PPC represents the
percentage of CNNs predicting correctly. H represents higher binding affinity, and L represents lower binding affinity

Table 7 Neural network predictions for Q493N: this is the table listing the predictions from 10 neural networks for
mutation Q493N, which has lower affinity than the unmutated SARS-CoV-2 RBD

NNs Simulation end time

20 ns 40 ns 60 ns 80 ns 100 ns 120 ns 140 ns 160 ns
NN1 L(100%) L(97%) L(100%) L(80%) L(95%) L(100%) L(99%) L(95%)
NN2 L(100%) L(84%) L(97%) L(100%) L(99%) L(100%) L(99%) L(100%)
NN3 L(100%) L(97%) L(100%) L(94%) L(100%) L(100%) L(100%) L(100%)
NN4 L(100%) L(100%) L(100%) L(100%) L(99%) L(100%) L(100%) L(100%)
NN5 L(100%) L(100%) L(100%) L(99%) L(98%) L(100%) L(99%) L(99%)
NN6 L(100%) L(100%) L(100%) L(100%) L(100%) L(100%) L(100%) L(100%)
NN7 L(100%) L(98%) L(100%) L(99%) L(85%) L(100%) L(92%) L(100%)
NN8 L(100%) L(100%) L(100%) L(100%) L(99%) L(100%) L(100%) L(100%)
NN9 L(100%) L(100%) L(100%) L(100%) L(100%) L(99%) L(100%) L(100%)
NN10 L(100%) L(100%) L(100%) L(99%) L(100%) L(100%) L(100%) L(100%)
FP L L L L L L L L
PPC 100% 100% 100% 100% 100% 100% 100% 100%

NN1 to NN10 represents the 10 neural networks we trained. FP is short for final prediction, and PPC represents the
percentage of CNNs predicting correctly. H represents higher binding affinity, and L represents lower binding affinity
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Table 8 Neural network predictions for Q498K: this is the table listing the predictions from 10 neural networks for
mutation Q498K, which has lower affinity than the unmutated SARS-CoV-2 RBD

NNs Simulation end time

20 ns 40 ns 60 ns 80 ns 100 ns 120 ns 140 ns 160 ns
NN1 H(68%) L(85%) L(72%) L(77%) H(60%) L(76%) H(54%) L(75%)
NN2 H(56%) L(69%) L(70%) L(81%) H(56%) L(66%) L(68%) H(61%)
NN3 H(78%) L(78%) L(56%) L(65%) L(87%) L(84%) L(77%) L(66%)
NN4 H(89%) L(59%) L(60%) L(67%) L(68%) L(63%) L(71%) L(62%)
NN5 L(66%) L(64%) L(57%) H(88%) L(77%) L(76%) L(70%) L(53%)
NN6 H(90%) L(84%) L(70%) L(66%) L(71%) L(93%) H(63%) L(55%)
NN7 H(90%) L(82%) L(77%) L(73%) H(71%) L(56%) L(56%) L(57%)
NN8 H(80%) L(57%) L(77%) L(83%) L(58%) L(72%) H(54%) L(68%)
NN9 H(78%) H(64%) L(74%) L(83%) L(57%) H(69%) L(80%) L(64%)
NN10 H(80%) L(58%) L(74%) L(87%) L(76%) L(55%) L(67%) L(70%)
FP H L L L L L L L
PPC 10% 90% 100% 90% 70% 90% 70% 90%

NN1 to NN10 represents the 10 neural networks we trained. FP is short for final prediction, and PPC represents the
percentage of CNNs predicting correctly. H represents higher binding affinity, and L represents lower binding affinity

Table 9 Neural network predictions for G502P: this is the table listing the predictions from 10 neural networks for mutation
G502P, which has lower affinity than the unmutated SARS-CoV-2 RBD

NNs Simulation end time

20 ns 40 ns 60 ns 80 ns 100 ns 120 ns 140 ns 160 ns
NN1 L(98%) L(100%) L(98%) L(85%) L(91%) L(90%) L(76%) L(91%)
NN2 L(100%) L(94%) L(94%) L(88%) L(87%) L(86%) L(78%) L(86%)
NN3 L(100%) L(98%) L(90%) L(87%) L(95%) L(91%) L(71%) L(85%)
NN4 L(94%) L(100%) L(96%) L(93%) L(91%) L(88%) L(83%) L(72%)
NN5 L(99%) L(99%) L(90%) L(95%) L(92%) L(96%) L(80%) L(87%)
NN6 L(91%) L(92%) L(97%) L(91%) L(94%) L(95%) L(69%) L(65%)
NN7 L(98%) L(100%) L(96%) L(94%) L(85%) L(86%) L(62%) L(83%)
NN8 L(97%) L(99%) L(87%) L(94%) L(91%) L(93%) L(79%) L(69%)
NN9 L(91%) HL(97%) L(95%) L(89%) L(93%) L(94%) L(89%) L(96%)
NN10 L(94%) L(100%) L(88%) L(88%) L(95%) L(88%) L(66%) L(81%)
FP L L L L L L L L
PPC 100% 100% 100% 100% 100% 100% 90% 100%

NN1 to NN10 represents the 10 neural networks we trained. FP is short for final prediction, and PPC represents the
percentage of CNNs predicting correctly. H represents higher binding affinity, and L represents lower binding affinity
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Table 10 Table listing the accuracy of the 10 independently trained neural network per simulation duration, i.e., we have
trained 80 neural networks in total

Accuracy Simulation end time
20ns 40 ns 60 ns 80 ns 100 ns 120 ns 140 ns 160 ns

NN1 5/6 5/6 6/6 6/6 5/6 6/6 5/6 6/6
NN2 5/6 5/6 6/6 6/6 5/6 6/6 6/6 4/6
NN3 4/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6
NN4 4/6 5/6 6/6 6/6 6/6 6/6 6/6 6/6
NN5 5/6 5/6 6/6 4/6 6/6 6/6 6/6 6/6
NN6 5/6 6/6 6/6 6/6 6/6 6/6 5/6 6/6
NN7 5/6 4/6 6/6 6/6 5/6 6/6 5/6 6/6
NN8 4/6 6/6 6/6 6/6 6/6 6/6 5/6 6/6
NN9 5/6 5/6 5/6 6/6 6/6 5/6 5/6 6/6
NN10 5/6 5/6 5/6 6/6 6/6 6/6 6/6 6/6
Averaged NN prediction 0.7833 0.8667 0.9667 0.9667 0.95 0.9833 0.9167 0.9667
Ensemble prediction 5/6 1 1 1 1 1 1 1
This table also lists the average neural network accuracy and accuracy of ensemble predictions
Table 11 Neural network predictions for mutations from hydrophobic to hydrophobic amino acids
Mutation Neural network

NN1 NN2 NN3 NN4 NN5 NNG6 NN7 NN8 NN9 NN10 Ensemble
V5031 H(59%) L (57%) H(62%) H(84%) H(58%) H(52%) H54(%) L(60%) L(52%) L(64%) H
L4921 L(54%) L(60%) H(50.4%) L(63%) L(62%) L(60%) L(62%) L(63%) L(79%) L(66%) L
WT
L4551 L(52%) L(81%) L(62%) L(55%) L(81%) H(60%) L(55%) L(68%) L(56%) L(70%) L
V503A  L(68%) L(64%) L(68%) L(65%) L(68%) L(66%) L(66%) L(68%) L(69%) L(69%) L
A475V  H(99.77%) H(98%) H(99.86%) H(99.76%) H(99%) H(100%) H(99.55%) H(99%) H(98%) H(93%) H
L455A  H(96%) H(99%) H(98%) H(97%) H(98%) H(97%) H(99%) H(96%) H(51%) H(98%) H
L455V  H(100%) H(100%) H(100%) H(100%) H(100%) H(100%) H(100%) H(100%) H(100%) H(100%) H
A475L H(99%)  H(95%) H(99.69%) H(99%) H(95%) H(99%) H(99%) H(95%) H(84%) H(95%) H
A475P  H(93%) H(97%) H(99.96 %) H(100%) H(99%) H(99%) H(99%) H(98%) H(92%) H(91%) H

The WT is inserted as reference, to separate high from low binding affinity. H represents higher binding affinity, and L
represents lower binding affinity
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