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Abstract Several organelles in eukaryotic cells, including mitochondria and the endoplasmic reticulum,
form interconnected tubule networks extending throughout the cell. These tubular networks host many
biochemical pathways that rely on proteins diffusively searching through the network to encounter bind-
ing partners or localized target regions. Predicting the behavior of such pathways requires a quantitative
understanding of how confinement to a reticulated structure modulates reaction kinetics. In this work, we
develop both exact analytical methods to compute mean first passage times and efficient kinetic Monte
Carlo algorithms to simulate trajectories of particles diffusing in a tubular network. Our approach leverages
exact propagator functions for the distribution of transition times between network nodes and allows large
simulation time steps determined by the network structure. The methodology is applied to both synthetic
planar networks and organelle network structures, demonstrating key general features such as the hetero-
geneity of search times in different network regions and the functional advantage of broadly distributing
target sites throughout the network. The proposed algorithms pave the way for future exploration of the
interrelationship between tubular network structure and biomolecular reaction kinetics.

1 Introduction

Diffusive transport in geometrically complex environ-
ments underlies a broad variety of biophysical phe-
nomena, ranging from transcriptional regulation in the
nucleus [1,2], to reactions inside organelle structures
[3,4], to intercellular communication through a variety
of channel and bridge arrangements [5]. The morphol-
ogy of the confining environment is known to funda-
mentally alter the kinetics of diffusion-limited chem-
ical reactions, switching between compact and non-
compact search processes depending on the effective
dimensionality of the domain [6,7]. Multi-molecular
reaction systems such as phosphorylation cascades may
acquire novel dynamic behaviors such as ultrasensitiv-
ity and bistability depending on the degree of confine-
ment [8,9].

A particularly important class of confined diffusion
processes occurs on network structures, which have
been used to describe porous media [10,11], neuronal
trees [12], and organelle morphologies [13,14]. These
‘spatial networks’ are characterized by nodes and edges
embedded in physical space, a restriction which limits
the network topology. Encompassing a broad variety of
transport and communications networks, spatial net-
works have limited node degree, with each node con-
nected only to a handful of neighbors in close physical

a e-mail: ekoslover@ucsd.edu (corresponding author)

proximity [15]. There is an extensive body of literature
on characterizing the behavior of random walks on gen-
eral networks (see [16] for a review). Many studies focus
on systems where particles exhibit a well-defined hop-
ping time across each edge, with hops treated either
as discrete time steps [17,18] or as constant-rate Pois-
son processes [19,20]. Others allow for generalized dis-
tributions of hop times that are nevertheless uniform
throughout the network [21,22]. Recently, a general the-
ory for heterogeneous continuous-time random walks
on networks has been developed [23], which incorpo-
rates transition times with arbitrary distributions that
are specific to each node. A similar approach has previ-
ously been applied to modeling transitions on a network
of states embedded in an energy landscape [24].

Particles diffusing along the edges of a network
exhibit a broad range of inter-node transition times,
whose distribution is dependent on the edge length.
Prior work focusing on simple networks of tubes and
containers [25], as well as planar networks resembling
percolation clusters [4], highlighted the importance of
edge length in overall search times on the network.
Here, we develop mathematical methodology for com-
puting reaction mean first passage times (MFPT) on
arbitrary spatial networks, with diffusion incorporated
as a concrete physical transport process along each
edge. Whereas past work on diffusive processes sim-
plified individual node transitions to a single effec-
tive rate constant [19,20], we explicitly incorporate the
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edge-length-dependent distribution of transition times,
bridging local diffusive particle dynamics and large-
scale transport on spatial networks.

For many reaction–diffusion systems, the behavior of
interest requires quantities beyond the mean first pas-
sage time and other low-order moments of the first-
passage distribution. For example, biochemical pro-
cesses may rely on extreme value statistics that dic-
tate the timescales for the first of many signaling par-
ticles to reach a target [26]. Activation cascades can be
modulated by processive rebinding processes wherein
one enzyme can return repeatedly to the same tar-
get after its first encounter [8]. Targets that them-
selves undergo diffusive motion are prevalent in most
biomolecular reaction systems. Modeling of these more
complex processes requires moving beyond analytically
tractable methods to leverage stochastic simulations of
diffusing particles on network structures.

A family of agent-based simulation methods, known
as kinetic Monte Carlo [27] or Green’s function reac-
tion dynamics [28,29], are particularly well suited for
simulating sparse populations of particles diffusing in
complex geometries. These methods rely on analyti-
cally determined propagator functions to evolve indi-
vidual particles within ‘protective domains’—regions
where they do not come in contact with other par-
ticles. By sampling from an appropriate propagator,
such simulations allow time steps that are tuned to the
local structure of the domain, minimizing the computa-
tional time involved in propagating a particle through
empty space. Several general propagators have been
developed for three-dimensional regions [30], and this
approach has been employed for simulating systems
such as kinase cascades [8], target search by DNA-
binding proteins [2], and multimodal transport of per-
oxisome vesicles in fungal hyphae [31]. In this work, we
develop exact analytical propagators for the passage of
diffusing particles between network nodes. By allowing
for step sizes comparable to the local edge length, these
propagators enable simulations that can be run much
more efficiently than classical Brownian dynamics. We
thus present an efficient propagator-accelerated algo-
rithm optimized for stochastic simulations of diffusing
particles confined in spatial networks.

We focus specifically on tubular networks similar
to those formed by intracellular reticulated organelles.
The peripheral endoplasmic reticulum is one such net-
work; it forms a dynamic web of interconnected tubules
with a topologically continuous lumen, spread through-
out the cell periphery [32]. The ER hosts a variety
of biochemical reaction pathways and plays a crucial
role in calcium dynamics, lipid delivery, and protein
synthesis and quality control [33]. Another reticulated
organelle structure is formed by the fusion of mitochon-
dria in yeast and many mammalian cell types [34,35].
Mitochondrial network structures share many topologi-
cal features with geographical transportation networks
[13] and are thought to reside in the percolation regime,
exhibiting just barely enough connectivity to form a
large cell-spanning connected cluster [35]. The func-
tional role of mitochondrial network formation remains

a topic of much debate [36], but is thought to include
complementation of mtDNA defects [37], quality con-
trol through selective fusion and mitophagy [38,39], and
enhanced energy transmission [40].

In both the ER and mitochondrial networks, crit-
ical biomolecular reactions require individual diffusive
components to find each other within the extensive net-
work architecture. Some functions, such as the packag-
ing of newly synthesized secretory proteins into ER exit
sites or the regulation of transcription in mitochondrial
nucleoids, rely on proteins reaching relatively station-
ary punctate target sites in the network. Although some
recent evidence indicates the possibility of directed
transport for ER luminal proteins driven by local fluid
flow [41], the major form of transport within organelle
networks is still believed to be diffusive.

In this work, we develop new algorithms for quanti-
fying target search and reaction kinetics inside tubular
network structures similar to those exhibited by retic-
ulated cellular organelles. Specifically, our approach is
well suited to spatial networks with well-defined edge
lengths and low node degrees (typically 3 or less for
ER [14] and mitochondrial networks [13]). Furthermore,
we rely on the simplifying assumption that motion
along tubular edges, rather than trapping at volumi-
nous nodes, dominates diffusive transport times. Our
overarching goal is to be able to accurately compute the
distribution of search and encounter times for diffusive
particles within network morphologies. To this end, we
employ both analytical methods to extract low-order
moments (mean and variance) of the search times, as
well as describing an efficient algorithm for agent-based
stochastic simulations that can incorporate mutually
reactive diffusing particles. The result is a mathemati-
cal framework optimally suited for modeling the kinet-
ics of a broad variety of molecular processes confined in
tubular networks.

2 Model development and transition time
distributions

We consider the diffusive motion of particles on a net-
work embedded in physical space. Specifically, the net-
work structure consists of point-like nodes (i, j, . . .),
connected by one-dimensional edges of length �ij . The
edges can be curved, and thus longer than the Euclid-
ian distance between the connected nodes, but can only
connect to other edges at a node.

Particles diffuse in one dimension along these edges,
with diffusivity D. They do not spend any finite time
trapped at the nodes themselves, which serve merely
as point-like edge intersections. A particle that starts
at such an intersection will diffuse around the edges
adjacent to that node (a ‘node neighborhood’) until
it hits an adjacent node. It will then continue to dif-
fuse in the neighborhood of the new node. We can thus
consider the particle as moving from neighborhood to
neighborhood with a certain distribution of transition
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Fig. 1 Model schematic, showing small section of an exam-
ple network. Blue lines show the neighborhood of node i;
magenta lines show the neighborhood of node k. The coordi-
nate system for two edges within neighborhood i is labeled,
with x going from 0 (at adjacent node) to �ij (at node i
itself)

times between adjacent neighborhoods. It is important
to note that the current neighborhood of a particle
is defined not by the edge on which it is located but
rather by the last node that it has crossed (Fig. 1).
With this definition, the motion of the particle can
be treated as a Markov state model [42], with each
Markov state corresponding to a neighborhood. Tran-
sitions between neighborhoods are memoryless—once a
particle hits a given node, its subsequent distribution is
no longer dependent on the previous nodes it has passed
through. However, unlike prior applications of Markov
state models [42] or ‘discrete path sampling’ [20,43] in
the context of molecular rearrangements, the transi-
tion times between states are not Poisson distributed.
Instead, this model falls in the category of heteroge-
neous continuous time random walks, which can be ana-
lyzed on arbitrary networks for arbitrary distributions
of transition times [23].

To quantify the behavior of such a system, we need
to know the local transition time distribution Pik(t),
which gives the probability density that a particle which
starts at node i at time 0 will first hit an adjacent
node k between time t and t + dt, without first reach-
ing any other nodes in the meantime. We note that in
contrast to previous analyses of random walks on net-
works [16,23], the distribution of waiting times to leave
the neighborhood and the splitting probability of which
node is next encountered are not independent random
variables (i.e., the conditional distribution of first pas-
sage times differs depending on which of the adjacent
nodes is reached first). To calculate the local transition
time distributions, we generalize a well-known approach
for finding the flux of diffusive particles to the edges of
a linear segment with absorbing boundaries [44]. A one-
dimensional coordinate system (0 ≤ x ≤ �ik) is placed
along each edge attached to node i, with x = 0 corre-
sponding to node k and x = �ik corresponding to the
junction node i where the particle starts (see Fig. 1).

Along each edge ik of the neighborhood, the Green’s
function distribution cik(x, t) of a diffusing particle
obeys the usual diffusion equation:

∂cik

∂t
= D

∂2cik

∂x2
, (1a)

cik(x, 0) =
1
di

δ (x − �ik) , (1b)

cik(0, t) = 0, (1c)

where di is the degree of the ith node in the network.
Equation 1b gives the initial condition, indicating that
the particle distribution is concentrated in a Dirac-
delta function at the junction node. Equation 1c gives
the boundary conditions, with each neighboring node
treated as an absorbing boundary. The transition time
distribution function is then given by the flux into each
of these boundaries:

Pik(t) = D
∂cik

∂x

∣
∣
∣
∣
x=0

. (2)

Integrating each Pik over time gives the probability that
a particle will hit adjacent node k before any other (i.e.,
the splitting probability from node i). An additional
boundary condition at each edge is set by enforcing
continuity of the particle distribution function at the
junction node: cik(�ik, t) = cij(�ij , t), for all adjacent
nodes k, j.

Equation 1 can be solved by way of a Laplace trans-
form t → s, which gives the following equation for the
transformed Green’s function ĉik

sĉik − cik(t = 0) = D
∂2ĉik

∂x2
. (3)

The homogeneous solution is

ĉik(x, s) = A sinh(αx)
∏

j �=k

sinh (α�ij) , (4)

where α =
√

s/D and the product is over all edges
attached to node i, other than edge k. The prefactor
A is set by the initial condition and can be found by
integrating Eq. 3 over an infinitesimally small interval
around the junction node. This gives

− 1 = −D

di∑

k=1

∂ĉik

∂x

∣∣∣∣
�ik

,

A =
1

αD

⎛

⎝
di∏

j=1

sinhα�ij

⎞

⎠
−1 ⎛

⎝
di∑

k=1

cothα�ik

⎞

⎠
−1

, (5)

where the sums and products are over all edges
attached to node i. Finally, the flux to the absorbing
boundaries is given by

P̂ik =

⎛

⎝sinh α�ik

di∑

j=1

coth α�ij

⎞

⎠

−1

. (6)

Equation 6 gives the Laplace-transformed distribu-
tion of times for a particle starting at junction node i
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to first reach adjacent node k without hitting any other
neighboring node. We can also define the survival time
distribution Qi(t)—the probability that the particle has
not reached any of the neighboring nodes by time t. Its
Laplace-transformed form is:

Q̂i =
1 − ∑di

k=1 P̂ik

s
. (7)

Expanding around s = 0 gives the splitting proba-
bility to each neighboring node (P ∗

ik) and the overall
average waiting time (Q∗

i ) before the particle hits one
of the neighboring nodes. Specifically,

P ∗
ik = lim

s→0
P̂ik(s) =

1/�ik
∑di

j=1 1/�ij

(8a)

Q∗
i = lim

s→0
Q̂i(s) =

1
2D

.

∑di

j=1 �ij
∑di

j=1 1/�ij

. (8b)

The next higher-order term for small s can be used to
calculate the variance in the transition time to one of
the neighboring nodes (see Sect. 3.1).

The above expressions enable propagation of parti-
cles that start specifically on a node to the neighboring
nodes. In many applications, it is useful instead to con-
sider particles that start distributed along the edges of
the network. Such a particle must first be propagated
to one of the nodes bounding that edge, after which its
behavior can again be described by the node-to-node
propagator (Eq. 6.) For a particle starting at position
x0 along edge m, of length �m, the Laplace-transformed
flux to either of the two boundaries has the well-known
form [44]

j− =
sinh [α(�m − x0)]

sinh [α�m]
, j+ =

sinh [αx0]
sinh [α�m]

. (9)

If the particle starts uniformly distributed along edge
m, the corresponding flux to each of the bounding nodes
(P̂ (E)

mj ) and the survival probability on the edge (Q̂(E)
m )

are given by

P̂
(E)
mj =

1
α�m

tanh
(

α�m

2

)

Q̂(E)
m =

1
α2D

[

1 − 2
α�m

tanh
(

α�m

2

)]

.

(10)

Expanding around s = 0 gives the trivial splitting prob-
ability for a particle starting uniformly on the edge:
P

(E∗)
mj = 1/2, and the average waiting time to leave the

edge:

Q̂(E∗)
m = �2m/(12D). (11)

The splitting probabilities and survival times enable
the calculation of mean first passage times on the net-
work (Sect. 3). In order to sample from the full distri-

bution of transition times, an inverse Laplace transform
must be applied to the propagators in Eqs. 6 and 10,
as discussed in Sect. 4.

3 Computing mean and variance of first
passage times

3.1 Diffusion-limited reactions

We next present an analytic approach for calculating
low-order moments of the reaction time distribution
for particles that react instantaneously upon reaching
a set of target nodes in the network. We note that the
derivation in this section largely reiterates previously
published work [4,23,24], but is presented here for com-
pleteness and consistency of notation.

The probability that a particle starting at node i
at time 0 is in the neighborhood of node j at time t
is defined by Gij(t). The Laplace-transformed form of
this propagator has been previously derived, both for
general continuous-time random walks on networks [23]
and for specific applications involving diffusive motion
of particles in interconnected tubules [4] or over multi-
state energy landscapes [24,43]. It can be expressed as

Ĝij =
[(

I − P̂
)−1

]

ij

Q̂j , (12)

where the elements of matrix P̂ are given by Eq. 6 if
two nodes are connected by an edge in the network,
and are zero otherwise. The propagator Gij(t) gives the
probability that the particle last hit node j sometime
before time t and has not yet left the neighborhood of
that node.

To calculate the distribution of first passage times to
any set target of nodes {k} in the network, we treat
those nodes as being perfect absorbers. That is, when-
ever the particle first hits node k, it instantaneously
vanishes from the network. The case of finite reaction
rates in localized network regions is treated separately
in the next section. We remove all rows and columns
corresponding to the target neighborhoods from the

matrix P̂ as well as the vector
−̂→
Q . As a result, the time

a particle spends in the neighborhood of any network
node is not altered, but when the particle leaves that
neighborhood by moving to a target node, it is removed
entirely from the network rather than continuing to
propagate further [4,24]. The survival probability that
a particle starting at node i has not left the network by
time t is Hi(t) =

∑N
k=1 Gik(t), where the summation

is over all nodes on the network. For particles initially
distributed over nodes, with Vi the probability of start-
ing at node i, the survival probability is given by the
following matrix expression:
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Ĥ(s) =
−→
V ·

(

I − P̂
)−1

· −̂→
Q. (13)

The central inverted matrix is a normalized form of
a weighted discrete Laplacian over the network, which
is used in a broad class of problems involving random
walks on networked structures [16,23].

A natural extension is to consider particles starting
on the edges of the network, with probability Wm of
starting (uniformly distributed) along edge m. In this
case, the Laplace-transformed survival probability can
be expressed as

Ĥ(E)(s) =
−→
W ·

[

−̂→
Q

(E)

+ P(E) ·
(

I − P̂
)−1

· −̂→
Q

]

.

(14)

Here, the first term represents particles that never leave
their initial edge and the second term includes a prop-
agator for moving from the edge to one of its bound-
ing nodes, convolved with the propagators for moving
across all node-to-node paths through the network, and
finally the survival probability of remaining at some
final node neighborhood. Columns of P̂(E) correspond-
ing to target nodes are again removed from the matrix.

The elements of P̂(E) and
−̂→
Q

(E)

are given in Eq. 10.
Regardless of whether particles start on nodes or

edges of the network, the mean first passage time to
encounter the set of targets is given by

τ = lim
s→0

Ĥ(s), (15)

which can be evaluated directly with the aid of Eqs. 8a, 8b,
and 11. Similarly, the variance in the time to find a tar-
get is given by

σ2 = 〈τ2〉 − 〈τ〉2, (16)

where

〈τ2〉 = −2
∂Ĥ

∂s

∣
∣
∣
∣
∣
s=0

. (17)

From this, the mean square first passage time is
expressed as

〈τ2〉 = −2
−→
V ·

[
(

I − P̂
)−1

· ∂P̂
∂s

·
(

I − P̂
)−1

· −̂→
Q

+
(

I − P̂
)−1 ∂

−̂→
Q

∂s

⎤

⎦ ,

(18)

where the derivatives of P̂ and
−̂→
Q are

∂P̂ik(s)
∂s

∣
∣
∣
∣
∣
s=0

= − 1
6D

⎛

⎜
⎝

�ik
∑

j 1/�ij
+

2/�ik

(
∑

j �ij

)

(
∑

j 1/�ij

)2

⎞

⎟
⎠

(19a)

∂Q̂i(s)
∂s

∣
∣
∣
∣
∣
s=0

= − 1
24D2

⎛

⎜
⎝

∑

j �3ij
∑

j 1/�ij
+

8
(
∑

j �ij

)2

(
∑

j 1/�ij

)2

⎞

⎟
⎠ .

(19b)

3.1.1 Example: target search times in the endoplasmic
reticulum

As an example application of the calculations above,
we consider network structures extracted from confo-
cal images of the peripheral endoplasmic reticulum in
COS7 cells. A data set of 9 peripheral ER images,
obtained as described in prior work [4], was used to
extract tubular network structures (Fig. 2a; details
in Appendix B). For these biologically important tubu-
lar networks, we consider how the distribution of times
to find target nodes varies with the target concentra-
tion. This question is particularly important in the con-
text of the early secretory pathway. Proteins destined
for secretion are co-translationally inserted into the
ER membrane or lumen, undergo folding and quality
control [45,46], and must leave the ER through punc-
tate ER exit sites (ERES). These ERES are largely
immobile sites scattered throughout the network [47]
(Fig. 2b) and proteins are assumed to diffuse to one of
these sites for capture and packaging into vesicles that
enable them to leave the ER and proceed to further
steps of secretory processing [48,49].

It is interesting to consider what ERES density is suf-
ficient to enable diffusing proteins to rapidly encounter
exit sites. In a three-dimensional continuum, reaction
rates are proportional to the concentration of the tar-
get. However, in a geometry that is less than or equal to
two-dimensional, the usual assumption of mass-action
kinetics ceases to hold, and we expect a steeper depen-
dence of rates upon target concentration [6].

For each individual ER network structure, we ran-
domly distribute different numbers of target nodes
across the network and compute the mean first pas-
sage time (MFPT) for a diffusive particle to first hit
a target. The particles are assumed to start uniformly
distributed over the edges of the network, with Wm =
�m/

∑

n �n the probability of starting on edge m. In
Fig. 2c, we plot the search rate, defined as the inverse of
the averaged mean first passage time for many choices
of target node location. Across a wide range of tar-
get concentrations ρ, we see a search rate scaling as
ρ/ log ρ. This scaling indicates the ER is well con-
nected and behaves largely as a two-dimensional sys-
tem, with a logarithmic correction factor to the linear
concentration scaling expected for mass action kinet-
ics. A limit is reached when 1/ρ becomes comparable
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(a) (b) (c)

Fig. 2 Target search rate on peripheral ER networks. a
Network structure (yellow) extracted from confocal image
of the COS7 cell peripheral ER network. b Peripheral ER
network (blue) and ER exit sites (red, marked by fluores-
cently labeled Sec23a, a COPII protein). Scale bars in a
and b are 5 µm. c Dependence of search rate (inverse of
mean first-passage time) on target concentration (per tube
length) in nine distinct ER network structures. Each dot
shows the average over 100 realizations of a fixed number
of target nodes uniformly distributed over a single network

structure. Black dashed lines indicate appropriate scaling
for mass-action kinetics (∼ ρ) and one-dimensional search
rates (∼ ρ2). The pink dashed line indicates expected behav-
ior for two-dimensional kinetics [k = Dρ2D/ log(a

√
ρ2D),

where a is taken as average ER edge length and ρ2D is
the two-dimensional target concentration]. Horizontal dot-
ted line shows limiting case of average search rate on a net-
work composed entirely of target nodes. Yellow line gives
ERES density extracted from b. Particles are assumed to
have a diffusivity of D = 1 µm2/s

to the typical edge length of the ER network struc-
tures: � ≈ 1.2±0.1µm (expected value of starting edge
length for uniformly distributed particles, with stan-
dard error of the mean computed over different net-
works). In this limit, particles need only diffuse along
a single edge before encountering a target site. This
gives rise to effectively one-dimensional kinetics or ρ2

scaling. It should be noted that the estimated physio-
logical exit site density (yellow line in Fig. 2c) is in a
range where the search rate is super-linearly dependent
on ERES concentration. Increasing the number of tar-
get sites should thus disproportionately speed up the
encounter process.

3.1.2 Variability of arrival times

One important question in considering kinetics on com-
plex geometries is the extent to which the mean first
passage time can be used to characterize the full distri-
bution of reaction times. For compact diffusive search
on fractal geometries of dimension less than two, the
first passage time distribution is known to exhibit a
broad range of relevant timescales, so that the search
process is not well-characterized by the MFPT [6,50].
Although the search for very sparse targets in ER net-
works appears to be effectively two-dimensional, signa-
tures of geometry-controlled kinetics (such as a strong
dependence on source and target position [6]) are nev-
ertheless observed. In particular, the mean first pas-
sage time varies substantially depending on the dis-
tance of the starting node from the target (Fig. 3).
Nodes at similar spatial (Euclidean) distances can also
exhibit very different mean first passage times, due to
the heterogeneous nature of the ER network connec-

tivity. Because diffusing particles explore many paths
from the source to the target, the MFPT can also be
very different for nodes with similar values of the ‘net-
work distance,’ defined as the shortest distance between
two points measured along the network edges. Further-
more, the standard deviation of the arrival time from
a given starting node can be substantially larger than
the mean first passage time itself, particularly for nodes
located close to the target (Fig. 3c). This effect again
arises from the multiple timescales associated with par-
ticles following a variety of different paths to the target
site.

These observations imply that diffusion-limited reac-
tions within the ER network deviate from the expec-
tations of bulk kinetics, where arrival times generally
represent a Poisson process with a well-characterized
MFPT and a comparable standard deviation. Instead,
particles starting in regions nearby and well connected
to the target arrive much faster than particles from
far away. Furthermore, even for a given starting point,
some particles travel rapidly directly to the target,
while others meander away to explore the rest of the
network, leading to broadly distributed first passage
times.

3.2 Finite reaction rates

First passage times to perfectly absorbing network
nodes represent purely diffusion-limited kinetics, where
a reaction occurs as soon as the particle finds its tar-
get. A biologically relevant complication to this model
would include finite reaction rates in certain regions of
the network. Such rates become relevant when a reac-
tion requires particles to undergo rearrangements, rota-
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(a)

(b) (c)

Fig. 3 Plot of mean first-passage time (MFPT) versus
starting distance from target. a ER network structure with
a single target (green) and color indicating the MFPT to
the target for particles starting at each node. b Dependence
of MFPT on Euclidean distance from the target for each
node; color indicates network distance of each node to the
target; circles and triangles indicate nodes to the left and
right of the target, respectively. c Analogous plot showing
standard deviation for the first passage time distribution.
Dashed line shows standard deviation for a constant-rate
Poisson process (σFPT = MFPT) for comparison. A diffu-
sivity of D = 1µm2/s is assumed

tions, or conformational changes in addition to sim-
ply finding each other diffusively. If those rearrange-
ments occur on a timescale that is relatively slow com-
pared to the time for the reactants to diffusively sepa-
rate again, then the reaction kinetics cannot be simply
treated as first passage to a perfectly absorbing tar-
get site. Instead, the target site is assumed to have
a particular rate of reacting with the particle, that is
applicable only when the particle is within some min-
imal contact distance from the target. Models with
spatially localized finite reaction rates have previously
been employed in quantifying the kinetics of multi-
conformation DNA-binding proteins searching for their
genomic target sites [51], and of vesicles encountering
cytoskeletal filaments to initiate motor-driven transport
[52]. For one-dimensional models of a tubular geometry,
finite reaction rates can also be used as a simplification
to account for the radial diffusion time required to find
a target by a particle that approaches its axial position
[53].

In our model of diffusion on tubular networks, par-
ticles spend all their time on network edges, with
nodes serving only as intersections that allow transi-
tions between edges. We therefore consider reaction
rates that are associated with each edge of the network,
defining γij as the reaction rate on the edge connect-
ing nodes i and j. Reactions near a particular node
can be represented by setting the reaction rates in all

edges around that node. If necessary, additional degree-
2 nodes can be inserted along the edge to confine the
reactive area still further.

To solve for the mean reaction time in this model, we
first consider the propagation of the particle from a sin-
gle neighborhood (i). The Laplace-transformed prob-
ability distribution on each edge around node i, ĉik,
obeys a modified form of Eq. 3. Namely,

sĉik − cik(t = 0) = D
∂2ĉik

∂x2
− γik ĉik. (20)

This can be solved to find the flux into each of the
adjacent nodes:

P̂ik = αik

⎛

⎝sinhαik�ik

di∑

j=1

αij coth αij�ij

⎞

⎠

−1

,

(21)

where αij =
√

(s + γij)/D. The splitting probability
P ∗

ik of hitting an adjacent node before any reaction
occurs is given by plugging s = 0 into the expres-
sion above. The probability of reacting before leaving
the neighborhood of node i can then be calculated as
1 − ∑

k P ∗
ik.

The Laplace-transformed probability that the parti-
cle is still in the neighborhood by a certain time (having
neither reacted nor reached an adjacent node) is given
by

Q̂i =
di∑

k=1

∫ �ik

0

ĉikdx =
1
D

∑di

j=1
1

αij
tanh

(
αij�ij

2

)

∑di

j=1 αij coth(αij�ij)
.

(22)

Evaluating this expression at s = 0 gives the average
waiting time to leave the neighborhood.

Similarly, for particles starting uniformly distributed
along network edge m, we can find the flux into one of
the bordering nodes j (defined as P̂

(E)
mj ) and the survival

probability on the edge (Q̂(E)
m ) using Eq. 10, where we

replace α with the edge-dependent αm.
These expressions can then be plugged directly into

Eq. 13 or Eq. 14 to compute the mean first passage
time to leave the network through either the finite-rate
reactions along network edges or through reaching a
perfectly absorbing target node. To find the MFPT in
the presence of perfectly absorbing targets, all elements
corresponding to the target nodes should be removed
from the matrix expressions as before, so that reach-
ing the targets is treated as permanently leaving the
network.
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Fig. 4 Reaction times for localized finite reactive region
in one dimension. a Schematic of cylindrical domain repre-
senting a cellular projection (such as a neuronal axon), with
reactive points representing microtubule tips distributed
over a region of length �, with ka the absorbance rate for
a particle that reaches an axial position within distance
ξ of a tip. b The cylindrical system is mapped to a one-

dimensional model, with effective reaction rate kreg in the
region where microtubule tips are distributed, a reflecting
boundary at z = 0 representing the distal tip of the pro-
jection, and an absorbing boundary at z = L representing
the cell body. c Scaled mean absorption time for particles
originating at z = 0 and diffusing in the partially reactive
one-dimensional domain

3.2.1 Example: extended absorbing region in one
dimension

A simple example of the calculations described above
involves particles on a one-dimensional interval contain-
ing a region with a finite reaction rate kreg. Such a sys-
tem can be thought of as a simplified representation of
a tubular cellular domain, such as a fungal hypha or
neuronal axon [54]. Organelles such as signaling endo-
somes and autophagosomes that are produced at the
distal end of this domain must be loaded onto micro-
tubules to be delivered in a retrograde fashion to the
nuclear region [55,56]. There is evidence that some cel-
lular cargos begin their retrograde journeys by bind-
ing preferentially to microtubule plus-end tips, which
accumulate high concentrations of dynein motors and
associated activator proteins to form a ‘loading zone’
at the distal cell tip [57,58]. An interesting question
then arises regarding how the distribution of micro-
tubule tips near the distal end affects the overall rate
of loading the organelles. If all tips are localized right
at the distal end, particles originating at the distal end
will have a chance to bind as soon as they are formed.
However, any particles that diffuse axially past the tips
may end up exploring the full domain over long time
periods without returning to the distally localized tips.
On the other hand, a broader distribution of tip posi-
tions may make particles more likely to latch on before
diffusing away.

We explore this trade-off by mapping the distribu-
tion of microtubule tips in a cylindrical domain to an
effective one-dimensional model (Fig. 4a, b), where �
represents the length of the region over which micro-
tubule tips are distributed. The overall attachment rate
in this region can be approximated as kreg = nkaξ/�,
where n is the number of microtubule tips, ξ is the
contact radius for binding a tip, and ka is an effec-

tive binding rate that incorporates rapid radial dif-
fusion to encounter the tip while at the appropriate
axial position. We assume a reflecting boundary at
z = 0 representing the distal end, and an absorbing
boundary at z = L representing the region near the
nucleus that serves as the target for the particles. Par-
ticles are initiated at z = 0 and diffuse with diffusiv-
ity D until they are either absorbed in the reactive
region or reach the soma through diffusion alone. For
simplicity, we neglect the motor-driven transport time
to reach the soma after loading on the microtubules,
focusing instead on the optimal dispersion of micro-
tubule tips to minimize the loading time. For a given
number of microtubules, kreg� is expected to be con-
stant and we explore how distribution over different
region lengths � affects the first passage time to load-
ing.

Treating the 1D simplified system (Fig. 4b) as a net-
work with only two edges, one of which is absorbing,
we plot (in Fig. 4c) the mean first passage time for
a particle to either react with the microtubule tips or
reach the far end of the domain. Interestingly, an opti-
mum is observed with respect to the length � over which
the absorbing tips are distributed, indicating that it is
advantageous to spread out microtubule tips in the dis-
tal region rather than placing them all as near as possi-
ble to the distal end. The optimum value of � increases
as the overall reactivity goes down. When the tip reac-
tion rate ka is very rapid, �opt → 0 as no particle can
make it past the most distal tips. By contrast, when ka

is very low, the optimum disappears entirely as particles
have the chance to explore the entire domain and reach
the distal absorbing boundary without ever binding in
the absorbing region, regardless of its size.
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(a) (b)

Fig. 5 Mean first passage times on synthetic honeycomb
networks with dimensions similar to the ER in COS7 cells.
a The relationship between MFPT of particles initiated on
interior nodes and maximum radial distance of 30 absorb-
ing edges (γ = 1s−1) for various maturation rates, λ. Each
dot shows the MFPT averaged over 500 different combina-
tions of absorbing edges within the maximum target dis-
tance (error bars included but not visible at this scale).
Example networks are shown for small, medium and large

maximum target distance, with target edges highlighted in
green. Dashed black line shows the case with no maturation
process (λ = ∞). b The effect of maturation rates, λ, on
the optimal maximum target distance, with various absorp-
tion rates, γ. Dashed lines indicate optimal maximum tar-
get distance in limiting case of instantaneous maturation
(λ = ∞). Inset networks illustrate particle distribution at
time of maturation for two different choices of maturation
rate

3.2.2 Example: target distribution on a 2D network

Similar to the one-dimensional case described in the
previous section, we can explore how the distribution
of reactive regions in a two-dimensional network such
as the peripheral endoplasmic reticulum affects diffusive
search times. Here, we use a synthetic network consist-
ing of a honeycomb lattice structure in a circular band
with dimensions comparable to the peripheral ER in
COS7 cells (Fig. 2, insets). The network has an edge
length 0.8 µm (equal to average edge length for ER
networks used in this study), an inner radius of 8 µm
representing the nucleus, and an outer radius of 20 µm
representing the cell boundary.

Most protein synthesis in the ER is thought to occur
in the ribosome-studded perinuclear sheets [32], so we
consider particles that are initiated at the innermost
nodes of the network. Localized reactive regions are dis-
tributed over the network edges to represent ER exit
site structures. A finite reaction rate on each exit-site
edge accounts for any additional process that a particle
must undergo after reaching an exit site before it can be
stably captured. Such processes could include rotation,
molecular rearrangement, or entry into a narrow-necked
ERES structure [49].

One question of particular interest is whether there is
any functional advantage to scattering ERES through-
out the peripheral network, rather than concentrating
them in the perinuclear region where proteins are ini-
tially translated. Given that both luminal and mem-
brane proteins have been shown to penetrate through-
out the peripheral tubular structure [32], one possible
advantage to well-dispersed ERES is to efficiently cap-
ture proteins that happen to diffuse deeply into the

periphery. We therefore consider how the average reac-
tion time varies when a fixed number of reactive sites
are distributed across regions of different width sur-
rounding the interior boundary where particles are ini-
tiated.

Interestingly, unlike the one-dimensional case in
Fig. 4, there is very little advantage to dispersing
reaction regions over a broader region of the two-
dimensional lattice network. The dashed black line in
Fig. 5a shows the MFPT for a network with 30 reac-
tive edges with reaction rate γ = 1s−1, spread out
over increasingly broad regions of the network. While
there is a slight optimum when the reactive edges are
allowed to spread to a radial distance of 12 µm, the
difference between this system and one where targets
are placed in the innermost region of the network (in
the same location where particles originate) is less than
3%. Higher values of reactivity γ make it even more
advantageous to concentrate all reactive sites closer to
the inner radius, while lower values of γ make the sys-
tem independent of the reactive edge distribution (data
not shown), much as in the one-dimensional case. In no
case does there appear to be a substantial advantage to
spreading out the reactive edges.

This result underscores a fundamental distinction
between a well-connected 2D network and a 1D inter-
val. In the network, moving target sites out from the
central region where particles are initiated necessitates
spreading those sites out over a longer band, leaving
gaps for particles to be able to diffuse through with-
out hitting any target. Particularly in the case of high
reactivity γ, such gaps allow escape of particles into the
periphery that would not be possible if the targets were
concentrated near the inner radius of the network. This
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effect counterbalances the advantage to capturing parti-
cles which do manage to disperse through the network.
As a result, there is no substantial benefit to placing
target sites further out in the periphery for the 2D net-
work case.

However, the dispersed placement of reactive sites
can greatly enhance kinetics in the case where newly
synthesized particles are incapable of reacting immedi-
ately upon production, as discussed in the subsequent
section.

3.2.3 Example: maturing particles

Another potentially important complication for a vari-
ety of biomolecular search processes is the existence
of a ‘maturation time,’ during which particles diffuse
through the domain but are not able to undergo the
relevant reactions. For example, newly manufactured
proteins in the ER must undergo folding and quality
control processes that can take from minutes to hours
before they are able to be loaded at ER exit sites for
export [46,59]. Such particle maturation can be easily
incorporated in our model as a Poisson process of rate
λ that occurs simultaneously with diffusion. While the
particle is maturing, it is not capable of reacting even
if it reaches the reactive edges. As soon as the particle
matures, reactivity is enabled and the particle’s mean
first passage time can be determined from its matura-
tion point using an extension of the usual techniques
outlined above.

Specifically, we define ψm(x, t) as the overall den-
sity of particles on edge m at time t. Its Laplace-
transformed form is given by

−̂→
ψ m(x, s) =

−→
V ·

(

I − P̂
)−1

· ĉ (x, s) , (23)

where the entries ĉim (x, s) contain the Laplace trans-
formed particle densities along edge m defined for the
node neighborhood i, as given by Eq. 4.

This approach allows for non-uniform particle densi-
ties along each edge. In order to find mean first passage
time after maturation, we need to compute the overall
survival probability, H

(E)
m (x, t), for a particle starting

at position x on edge m. Such a particle can remain
on the edge until time t, react during that time, or hit
either of the bounding nodes (i, j) before time t. In the
latter case, its survival probability can be obtained by
convolving with the expression in Eq. 13 for particles
initiated on a node. The overall Laplace-transformed
survival probability is obtained as

Ĥ(E)
m (x, s) = Q̂(E)

m (x, s + γm) + P̂
(E)
m,i (x, s + γm)Ĥi(s)

+P̂
(E)
m,j (x, s + γm)Ĥj(s). (24)

Here, Q̂
(E)
m (x, s) and P̂

(E)
m,i (x, s) are the survival prob-

ability and flux to the bounding node, respectively,
given the particle starts at x. These quantities can be
obtained using the standard solutions for diffusion on

a one-dimensional interval with two absorbing bound-
aries [44] (i.e., from Eq. 9).

The overall mean first passage time after maturation
(not including the maturation time of 1/λ itself) is then

τ(λ) = λ
∑

m

∫ �m

0

ψ̂m(x, λ)Ĥ(E)
m (x, s = 0)dx, (25)

where the sum is over all edges in the network.
Again considering the synthetic honeycomb net-

works, we can investigate the effect of particle matu-
ration on mean first passage time and probe the func-
tional advantage of widely distributed ER exit sites.
In Fig. 5a, we see that by adding a maturation pro-
cess (e.g., λ ≤ 0.1s−1), the MFPT of particles starting
at the inner boundary exhibits a pronounced minimum
when the reactive regions are spread out over a broader
region of the network. As the maturation rate becomes
slower (e.g., λ = 0.001s−1), the particles have time to
spread uniformly across the network before maturing
and it becomes advantageous to disperse targets over
the entire network structure.

The interplay of maturation and local reactivity is
highlighted in Fig. 5b. For lower maturation rates, it is
best to distribute reactive regions throughout the net-
work, regardless of local reaction rate γ. For higher mat-
uration rates, we see the optimal distance vary depend-
ing on reactivity. For rapid absorption (γ = 100s−1)
concentrating targets near the inner boundary is advan-
tageous, as most particles can be captured shortly after
maturation before they have a chance to explore the
network. For slower reactivity, many particles have a
chance to explore the full network structure and placing
the target regions more broadly dispersed throughout
the network becomes advantageous.

These results highlight how the placement of reac-
tive regions in a tubular network can lead to non-
trivial effects on the overall reaction rate. The ana-
lytic approach described here allows for rapid, eas-
ily implemented calculations of the mean and variance
of reaction times. This approach thus makes practical
an extensive exploration of how network morphology
and the distribution of target positions and/or reaction
rates modulate kinetic processes involving stationary
network structures.

4 Simulating particle trajectories

The analytic first passage time calculations described
in the previous section are limited in several impor-
tant aspects. First of all, they directly provide only
the low-order moments (mean and variance) of first
passage time distributions, without enabling the explo-
ration of more detailed features, such as the extreme
statistics for the earliest and latest arriving particles,
which are important in a variety of biological signal-
ing processes [26]. In the complex, compact geometry
of a reticulated network, the relevant arrival timescales
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can be very broadly distributed and are not necessar-
ily well characterized by the mean and variance alone
[6,50]. Furthermore, our calculations thus far have been
restricted to immobile targets or reactive regions within
the network. Modeling the behavior of more complex
reaction–diffusion processes, which may involve interac-
tion between multiple mobile particles, can be achieved
by switching from analytically tractable methods to
agent-based stochastic simulations.

Agent-based simulations are particularly relevant
when the reacting molecules are present in small copy
numbers and substantial fluctuations of local concentra-
tion make mean-field descriptions of particle concentra-
tions inaccurate. The simplest such reaction–diffusion
simulations rely on Brownian dynamics, with particles
taking very small discrete time steps and checking for a
reaction on each step [60]. A series of alternate schemes
have been developed to minimize the computational
cost of propagating particles when they are far away
from each other or the domain boundaries. Such meth-
ods, which have been variously termed Green’s func-
tion reaction dynamics or first-passage kinetic Monte
Carlo [27–30], leverage analytically computed propa-
gator functions to move individual particles over large
time steps within a ‘protected domain’ where interac-
tion with other particles or structures does not occur.
They thus enable rapid propagation in regions where
particle motion is purely diffusive, interspersed with
a finer time-resolution in regions where reactions may
take place. The main required assumption is that each
propagated step of the particle is Markovian (memo-
ryless) and that there are no reactions, obstacles, or
interactions with other particles while the particle is
propagating within the protected region.

Kinetic Monte Carlo approaches all rely on sam-
pling the time interval for the next event of interest
to occur, from an appropriate distribution of transi-
tion times. Original schemes relied on exponentially dis-
tributed transition times [61], while the more recent
approaches sample from the analytically known dis-
tributions of first passage times in simple domains
such as a one-dimensional interval or three-dimensional
sphere [27,30]. Here, we leverage our diffusive propa-
gator between network node neighborhoods (Sect. 2)
to develop an efficient kinetic Monte Carlo simulation
algorithm optimized for diffusive particles on tubu-
lar networks. In this section, we focus on instanta-
neous reactions with perfectly absorbing target nodes,
although the method can easily be expanded to include
finite reactivity on edges.

4.1 Single particle propagator

For a single particle propagating on a network, we con-
sider the particle starting at node i at time t = 0. A pro-
tected domain can then correspond to the local neigh-
borhood, containing all the edges connected to node i.
The distribution of times to leave this domain is given
by the flux into all the neighboring nodes, which are
treated as absorbing boundaries. Specifically, we begin

by sampling which neighboring node k is first reached
by the particle, from the discrete splitting probability
P ∗

ik given in Eq. 8a. The distribution of times to first
hit this node, conditional upon not previously leaving
the neighborhood, can then be obtained by the Laplace
inversion of the flux P̂ik (Eq. 6), normalized by P ∗

ik.
To perform the Laplace inversion, we first numeri-

cally calculate the poles of P̂ik. These poles occur at
discrete values sp, which fall on the negative real axis
and can be expressed as sp = −Du2

p, where the up sat-
isfy the following equation

sin (�ikup)
di∑

j=1

cot (�ijup) = 0. (26)

The residues r
(ik)
p at the poles can be found by evalu-

ating the derivative of Eq. 26 with respect to s, yielding

1

r
(ik)
p

=
sin (�ikup)

2Dup

di∑

j=1

�ij csc2 (�ijup) . (27)

Finally, we evaluate the inverse Laplace transform
using the standard Bromwich integral together with the
Cauchy residue theorem [62]:

Pik(t) =
∑

p

r(ik)p e−Du2
pt. (28)

In a kinetic Monte Carlo simulation, we initiate a par-
ticle on node i, sample the next neighboring node to be
reached (k) according to probabilities P ∗

ik and then use
inverse transform sampling to select the time interval
Δt to first reach this node according to the normal-
ized probability distribution Δt ∼ Pik(Δt)/P ∗

ik. Details
of the sampling procedure are provided in Appendix
C. To validate the simulations, we evaluate the mean
and standard deviation in first passage times from dif-
ferent starting positions to a particular target on a 2D
lattice-like network, showing a close match to analytical
predictions (Fig. 6a).

4.1.1 Examples: first passage time distributions

Beyond the low-order moments, simulations allow us
to explore the full distribution of first passage times
to a target node. Figure 6b, c shows such distribu-
tions from several different starting nodes on an exam-
ple yeast mitochondrial network [13] and a peripheral
ER network from a COS7 cell. These distributions are
compared to the exponential distribution expected for
a constant-rate Poisson process with the correspond-
ing average time. For particles starting far from the
target (orange curves), there is a peak ‘most likely’
time of target encounter. Shorter search times are pre-
cluded by the need to traverse a substantial distance
in the network before ever hitting the target. Particles
that start near the target (black curves) exhibit long
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(a) (b) (c)

Fig. 6 First passage times to a stationary target obtained
with exact kinetic Monte Carlo simulations. a Mean first
passage times for particles starting at different source nodes
on a synthetic planar network to reach the target (green),
plotted versus Euclidean distance from source to target.
Error bars give standard error of the mean (n = 150 par-
ticles simulated). Black line and shaded region give mean
and expected standard error from corresponding analytical

calculations. Diffusivity is set to D = 1 µm2/s; length units
are non-dimensionalized by network size L and time units
by L2/D. b Distribution of first passage times to a target
node (green), scaled by the MFPT (τ), on a yeast mitochon-
drial network. Color corresponds to different starting nodes.
Dashed lines show expected exponential decay for a Poisson
process with the same mean. c Analogous plot for particles
diffusing on a peripheral ER network structure

tails in the first passage time distribution, which are a
known signature of compact search processes [6]. These
tails highlight the multiple timescales that contribute
to the search, as some particles move toward the target
immediately while others follow long meandering paths
over the network before reaching the target. The devi-
ation from a Poisson distribution, for both nearby and
distant starting locations, indicate that reaction kinet-
ics on these networks should have qualitatively differ-
ent behaviors than would be expected in a bulk three-
dimensional continuum.

Another application of stochastic particle hopping
simulations is to explore the extreme arrival time—the
average time for the first of many particles to find a
target on the network. Such calculations are relevant
to signaling processes where one or a few molecules
are sufficient to trigger a response, so that the shortest
rather than the mean arrival times set the timescale of
signal initiation [26]. In Fig. 7, we run simulations of
N independent particles starting from a given position
on the network and show the time for the first of these
particles to hit a particular target node. For a small
number of simulated particles, the average first hitting
timescales roughly as ∼ 1/N , as would be expected in
a bulk continuum. In other words, the reaction rate
is approximately proportional to the particle concen-
tration. However, for large numbers of particles, we
observe a δ2/ log N dependence, where δ is the mini-
mal distance along the network between the starting
point and the target. These results are consistent with
extreme first passage statistics in one-dimensional or
two-dimensional systems [63,64] and are similar to pre-
vious simulations of particle hopping on networks which
assumed a single timescale for each individual hop [19].

4.1.2 Synchronizing trajectories

In certain applications, it is desirable to calculate snap-
shots of the particle position at prespecified times. For

Fig. 7 Extreme arrival statistics on an ER network struc-
ture. Plotted is the average first passage time for the first of
N particles to hit a target node (green), starting from either
a nearby source (blue) or a distant source (magenta). Scal-
ing laws are shown for the small N limit (solid, ∼ 1/N) and
large N limit (dashed, ∼ δ2/ log N , where δ is the minimal
network distance between start node and target). Diffusivity
is set to D = 1 µm2/s

example, such trajectory information is needed to com-
pute the mean squared displacement of a particle over
different time intervals, a common analysis tool for
quantifying the rate of diffusive spread. In this case,
during each step of the kinetic Monte Carlo procedure,
we check whether the time point t + Δt exceeds the
next save-time ts. If that is the case, the particle needs
to be propagated first over a time interval δt = ts − t.
To achieve this, we leverage a spatial ‘no-passage’ prop-
agator within the neighborhood of node i, which gives
the distribution of particle positions conditional on not
leaving the neighborhood by time δt. For a particle that
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Fig. 8 Mean squared displacement for simulated diffusing
particles on two synthetic networks. Blue: synthetic planar
network with full lattice-like connectivity. Magenta: deci-
mated network with 27% of edges removed while maintain-
ing a single connected component. Length units are non-
dimensionalized by network size L and time units by L2/D

starts on node i at time 0 and does not leave the neigh-
borhood, the probability that it is on the edge connect-
ing i to k, between position x and position �ik, at time
δt is defined as Yik(δt). The Laplace transform of this
spatial cumulative distribution is:

Ŷik(x, s) =
∫ �ik

x

ĉik(x′, s)dx′

=
1
s
P̂ik [cosh(α�ik) − cosh(αx)] .

(29)

To invert the Laplace transform, we note that this
expression has the same poles as the flux P̂ik, so that

Yik(x, δt)=
∑

p

r
(ik)
p

Du2
p

[cos(upx) − cos(up�ik)] e−Du2
pδt.

(30)

To propagate the particle forward over a time interval
δt, we first sample which edge ik the particle is posi-
tioned on, using the discrete probabilities Yik(0,Δt).
The position along the edge is then sampled accord-
ing to the conditional cumulative distribution: P(x′ >
x) = Yik(x,Δt)/Yik(0,Δt).

Once the particle has been placed at position x0 along
a specific edge m (bounded by nodes i and k), we can
use a Laplace inversion of Eq. 9 to sample the next time
interval Δt for the particle to first hit either node i or
node k. If this time interval would again exceed the next
desired save point, the particle is propagated spatially
along the edge (see Appendix C for details).

Simulations of complete particle trajectories can be
used to explore the mean squared displacement (MSD)
of particles diffusing over a network structure. As seen

Fig. 9 Protective domains used in multi-particle simula-
tions. The network region is shown in black, the particle of
interest in red, and the protective domain containing it in
blue. An edge segment domain is confined to a single edge
and can contain a pair of particles (green). A node segment
domain is centered on a node, with equal-length segments
along all edges; it is employed when a nearby particle with
its own domain (green) prevents a direct hop onto an adja-
cent node. A node neighborhood domain encompasses the
full edges connected to a given node and requires the parti-
cle to start on the node itself

in Fig. 8, particles on a poorly connected network with
many dead ends exhibit a lower, apparently subdiffu-
sive, MSD than particles on a lattice-like network. This
result implies that MSD analysis alone may indicate
subdiffusive motion even when the particles are in fact
undergoing classic diffusive motion, due to confinement
on a network structure with missing connectivity.

4.2 Simulating multiple particles

Many problems concerning reaction kinetics on net-
worked geometries require the ability to simulate not
just individual particles searching for stationary target
sites, but also multiple mobile particles that encounter
and react with each other. Additional complications
arise in the multi-particle case because the possibility
of reaction with a neighbor alters the distribution of
each particle after any given time interval. This issue
was addressed in previous studies by introducing ‘pro-
tective domains’ that break up the available space into
disjoint regions wherein each particle propagates inde-
pendently of the others with no chance of interaction
[27,29]. For example, on a simple 1D interval, such pro-
tective domains can be defined by placing boundaries at
all points half-way between the positions of neighbor-
ing particles. This notion was refined further by noting
that when two particles approach close to each other,
infinitesimal time steps can be avoided by defining a
single protective domain surrounding both of them and
then jointly propagating the pair distribution of the two
particles [27].

In our system, a protective domain around a parti-
cle has one of the following three forms (Fig. 9). An
edge segment domain is a single linear segment with
end-points on one network edge. This domain can con-
tain one or two particles and is made as big as possible
given the edge length and the presence of any addi-
tional particles. A node segment domain is centered on
a node and surrounded by equal-length segments of the
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adjacent edges. The segment lengths are set to the min-
imum of the distance to the nearest unoccupied node
or half the distance to the nearest other particle along
each edge. Finally, the full node neighborhood domain
is employed in the case where there are no other par-
ticles on the nodes or edges adjacent to the current
node. The asynchronous time propagation for multiple
particles proceeds as described in [27] and summarized
below.

At the start of the simulation, all particles are dis-
tributed into non-overlapping protective domains of the
form illustrated in Fig. 9. The particles all begin syn-
chronously with the global time set to zero. We then
proceed to sample the first passage time for each parti-
cle or pair of particles to leave its protective domain, as
well as the boundary through which they leave. This
results in an ordered queue of times ti < · · · < tk
for leaving the domain. The particle with the shortest
leaving time ti is propagated to one of the edges of its
domain. Any other particle (j1, j2, etc.) whose domain
touches the boundary reached by particle i is also prop-
agated forward to time ti, using the spatial propaga-
tor appropriate to its domain (e.g., Eqs. 30, C.9). The
affected particles i, j1, j2, . . . are then partitioned into
protective domains. New exit times are selected for
these particles and added into the priority queue. Each
step of the algorithm thus consists of propagating a
single particle using the appropriate first-passage time
distribution for its domain and one or more particles
using the spatial ‘no-passage’ distribution within their
domain. The number of such no-passage particles is at
most equal to two (if particle i ends on an edge) or the
degree of the network node to which it has transitioned.

The first-passage and no-passage propagators for a
single particle have already been derived for a node-
neighborhood domain (Eqs. 28 and 30, respectively)
and an edge-segment domain (Eqs. C.8 and C.9).
A node-segment domain, consisting of d segments of
equal length �, can be treated identically to a single
one-dimensional interval with absorbing boundaries at
(−�, �) and the particle starting at x0 = 0. Given the
symmetry of the domain, the particle has a 1/d chance
of ending a first-passage or a no-passage step on any one
of the edges. The joint propagation of a pair of particles
that share an edge segment is described in Appendix
C.4.

4.2.1 Example: pair encounter times

We use simulations on a variety of network structures to
compare the encounter time for two diffusive particles
(τenc) versus the mean first passage of a single diffusive
particle searching for a stationary target placed any-
where on the network (target-averaged global MFPT,
or tagMFPT). On an infinite line or plane, the separa-
tion between a pair of particles is itself diffusive, with
an effective diffusivity 2D. The pair encounter time is
thus expected to be half that of the MFPT to a sta-
tionary target. In a finite domain, the pair encounter
time is dependent on the initial separation between

(a) (b) (c)

Fig. 10 First encounter times for two diffusing particles
(with same diffusivity), compared to the analytic tagMFPT
to a stationary target. Target initial position is averaged
over all network nodes, and particles start uniformly dis-
tributed along network edges. a Relative search time on
network consisting of single line of nodes. Dashed black line
indicates analytic expected value on a finite-length linear
segment. b Relative search times on a lattice-like synthetic
network with increasing number of edges removed, reduc-
ing connectivity. c Relative search times on 9 ER network
structures from COS7 cells (magenta circles), 9 yeast mito-
chondrial network structures (orange triangles). Error bars
show standard error of the mean, for simulations of 500 par-
ticles

the two particles, as well as on their position relative
to the domain boundaries. An exact solution for this
encounter time is available for pair diffusion on a line
segment [65], where averaging over starting positions
gives

τ (1D)
enc =

L2

D

(

1
8

+
32
π5

∞∑

k=0

cos (kπ) − sinh
((

k + 1
2

)

π
)

(2k + 1)5 cosh
((

k + 1
2

)

π
)

)

≈ 0.42 × tagMFPT.

Simulation results using our algorithm reproduce this
expected behavior on a simple network consisting of a
line of nodes (Fig. 10a). We next look at pair particle
behavior on a planar lattice-like network structure with
degree 3 nodes and multiple edges removed to reduce
network connectivity. The edges are chosen at random
while keeping a single connected cluster within the net-
work. For a full lattice network, the pair encounter
time is nearly half of the tagMFPT. However, as the
network connectivity decreases and approaches a tree-
like loop-less structure, the pair encounter time drops
substantially lower, to about 0.3 tagMFPT (Fig. 10b).
On poorly connected networks the ability of a tar-
get to move diffusively can thus greatly speed up the
encounter time, beyond what would be expected in a
bulk continuum geometry. This result stems from the
fact that poorly connected networks have highly het-
erogeneous global mean first passage times, depending
on where a stationary target is placed [4]. If the target
is located in regions of the network that are difficult to
access, the MFPT can be several times higher than the
average over all target positions [4]. Even when averag-
ing over different target locations, the extremely poor
accessibility of some target positions leads to tagMF-
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PTs that are more than twice as slow as the pair
encounter time where both particles are diffusive and
capable of leaving the hard-to-access regions.

We also compare the pair encounter time to the sta-
tionary target search time for several organelle network
structures (Fig. 10c). Given their high connectivity,
peripheral ER network structures have a pair encounter
time that is, on average,

〈

τ
(ER)
enc /tagMFPT

〉

≈ 0.40 ±
0.007 (standard error over networks). Even for these
highly looped structures, the pair encounter time is less
than half the averaged first passage time to a station-
ary target. Yeast mitochondrial network structures are
less well connected (less looped) than the mammalian
ER [4], and their pair encounter time is slightly lower:
〈

τ
(mito)
enc /tagMFPT

〉

≈ 0.35±0.009. These results imply
that diffusion of ER and mitochondrial structures such
as ERES components or nucleoids may be helpful in
allowing for rapid search by diffusing proteins.

5 Discussion

The methodology outlined in this work allows for pre-
cise modeling of the propagation of diffusive parti-
cles confined in tubular network structures. We first
describe analytic calculations for the mean and vari-
ance of the first passage time to reach one of several sta-
tionary target sites. Our approach is distinct from past
studies of transport on spatial networks [16,19,23,66]
by explicitly considering the physical process of diffu-
sion between network nodes, allowing the exact calcu-
lation of appropriate splitting probabilities and mean
hopping times between adjacent nodes, as a function
of the relevant edge lengths. Applications to peripheral
ER network structures indicate the effective kinetics in
the ER are intermediate between those expected in a
1D vs. 2D geometry (Fig. 2), as well as highlighting
the spatial heterogeneity in first passage times between
different regions of a network (Fig. 3).

The analytic calculations are then further expanded
to consider partially reactive edges scattered through-
out the network, giving spatially heterogeneous reac-
tion rates. This model allows an exploration of how the
spatial distribution of a fixed total absorbance affects
reaction kinetics. In a single long tube, we show that
spreading out an absorbing region over an intermedi-
ate length-scale results in optimal mean reaction times
(Fig. 4). This result is applied to distal cargo capture
by microtubule tips and implies a benefit to hetero-
geneous microtubule lengths in extended cell domains
such as neuronal axons and fungal hyphae. In a two-
dimensional lattice-like network, dispersal of partially
absorbing regions away from the source of particle pro-
duction is shown to be advantageous primarily when
particles have a finite maturation time period before
they can react (Fig. 5). While protein production in the
endoplasmic reticulum is thought to occur largely in the
perinuclear rough ER, secreted proteins must undergo a

folding and maturation process over timescales of min-
utes to hours before they can exit the network [59]. Our
results thus indicate a potential functional role for the
dispersion of ER exit sites throughout the periphery,
where they can catch diffusing proteins as they mature.

Complementing the analytic MFPT calculations, we
also present an exact, efficient algorithm for agent-
based reaction–diffusion simulations of particles on a
tubular network. This algorithm constitutes a special
case of kinetic Monte Carlo [27] or Green’s function
reaction dynamics [29] approaches, tailored for a net-
work geometry. Unlike classic Brownian dynamics, it
allows for step sizes on the order of entire edge lengths,
while sampling from the exact node propagator distri-
bution function. In contrast to a variety of prior studies
of stochastic trajectories on networks [17,19,67], we do
not assume a single well-defined timescale for each node
transition and instead incorporate the full distribution
of transition times and splitting probabilities based on
physical diffusion over edges of arbitrary length. Such
simulations allow for calculations that go beyond the
mean target search time, to explore reaction time dis-
tributions (Fig. 6), extreme particle statistics (Fig. 7),
spatial dispersion (Fig. 8), and pair encounter times
between multiple diffusive particles (Fig. 10). Interest-
ingly, the pair encounter times are found to be less than
half the timescale for hitting a stationary target, partic-
ularly in the case of poorly connected networks. This
finding implies that allowing targets to become diffu-
sively mobile, rather than fixed to a specific network
region, can significantly increase their encounter rates
with other diffusing particles.

Our approach is relevant to any spatial network
that can be described by curved one-dimensional edges
(tubules) connecting nodes of negligible volume. For
realistic reticulated networks, the implied assumption
is that particles spend a negligible amount of time in
tubule junctions and are equally likely to enter any
of the edges emerging from the junction. While mito-
chondrial networks generally have nodes that appear to
simply be junctions of joining edges [13], the endoplas-
mic reticulum may include more complex node mor-
phologies such as small regions of fenestrated sheets
[68]. While our methods do not currently describe dif-
fusion within such peripheral sheets, they can incor-
porate the dense patches of tubular intersections that
have been hypothesized to comprise some such regions
[69]. Including non-negligible trapping times within
expanded nodal regions could serve as an important
avenue for future work in modeling diffusive transport
throughout the ER.

Another potential source of complication in cellu-
lar organelles is the combination of diffusive transport
with other dynamic processes such as network struc-
tural remodeling and the recently postulated intra-
tubule flows that may contribute to rapid motion of ER
luminal proteins [19,41]. Topological rearrangements of
both mitochondria and the ER occur on the tens of sec-
onds to minutes timescales [14,34,70]. Network remod-
eling is thus unlikely to have a substantial effect on
local protein propagation but may modulate the long
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search times to reach poorly connected regions of the
network. Putative flows in the ER lumen have been pro-
posed to rapidly drive luminal proteins between adjoin-
ing nodes, without affecting the diffusion of membrane-
embedded proteins [41]. Simulations incorporating such
flows would require modifying the local node-to-node
propagator function for diffusion with drift along indi-
vidual edges. Both time-varying flows and network rear-
rangements would require propagating particles for-
ward to synchronization times when such network-level
changes occur. In the case of localized changes (i.e.,
flow reversal along a given edge, or extension of a sin-
gle tubule), substantial speed-up could still be obtained
using the asynchronous kinetic Monte Carlo approach
described above.

The methodology presented here has broad applica-
bility to modeling the diffusion of particles over net-
works with physical edges. Our examples focus on appli-
cations to intracellular organelle networks, forming a
mathematical framework for exploring diffusion-limited
reaction processes in reticulated mitochondria and the
ER. These two organelles host a variety of biomolecular
pathways of interest, and understanding the kinetics of
diffusive search is critical to investigating dynamics of
such disparate cellular processes as the early secretory
pathway (ER), calcium release and replenishment (ER),
and mitochondrial gene transcription. The described
framework for simulation and analytic computation of
diffusive reaction times in reticulated structures forms
an important foundation for exploring the link between
morphology and function in complex biological archi-
tectures.
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Appendix A: Code availability

Example Matlab code for carrying out the calculations
described in this manuscript (for both analytic calcula-
tions and simulations) is available at https://github.com/
lenafabr/propagatormethods. The details of the network
construction and simulation algorithms are outlined in the
appendices below.

Appendix B: Generating network structures

Appendix B.1: Cellular network structures

Peripheral ER network structures were obtained from confo-
cal imaging of live COS7 (monkey kidney) cells, labeled with
KDEL venus as a fluorescent luminal marker. Cell culture
and imaging was carried out exactly as described in prior
work [4]. Images of nine individual cells were analyzed using
Ilastik, an interactive machine-learning tool [71], to classify
pixels as belonging to the ER network structure. The images
were then segmented (with standard Otsu thresholding) and
skeletonized using built-in algorithms in Matlab [72]. The
network topology was extracted by grouping skeleton nodes
in adjacent pictures and using Matlab’s bwtraceboundary
subroutine to trace out skeleton boundaries between groups
of nodes.

Mitochondrial networks in yeast cells were taken directly
from published data [13] available at https://data.mendeley.
com/datasets/nshn8hhd6d/1.

Appendix B.2: Synthetic network structures

To create the synthetic peripheral ER networks featured in
Fig. 5, we began with a regular honeycomb lattice, 30 lattice
cells across, and excised an annular region. The inner and
outer radii of the annulus were chosen to correspond with
the dimensions of the nucleus (8 µm) and the cell boundary
(20 µm) for a typical COS7 cell. The network edge length is
0.8 µm, matching the average edge length (0.78 ± 0.02 µm,
mean plus or minus standard error of the mean) computed
for the extracted ER networks used in this study.

The synthetic networks from Figs. 6, 8 and 10 were also
initiated as honeycomb lattice networks, 10 lattice cells
across. The spatial positions of the nodes were then ran-
domly perturbed by an amount δd ∈ (0, 0.2�), with � the
minimum edge length on the network. As shown in Fig. 10,
random sets of edges were selected for removal, such that the
network retained a single connected component with each
subsequent edge removed. The results are averaged over 10
different network structures generated by removing distinct
sets of edges.

All edges in the synthetic networks were treated as
straight lines between connected nodes.
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Appendix C: Sampling transition times in
simulations

Appendix C.1: Transition times between node
neighborhoods

For a particle that starts at node i, we sample the distribu-
tion of times t for leaving the neighborhood of i according
to the following algorithm.

First, we select the next node reached by the particle,
using the discrete splitting probabilities P ∗

ik (Eq. 8a). Next,
consider the distribution of survival times Sik(t), conditional
on the particle eventually leaving the neighborhood through
node k:

Sik(t) =
1

P ∗
ik

∫ ∞

t

Pik(t′)dt′ =
1

P ∗
ik

∑
p

r
(ik)
p

Du2
p

e−Du2
pt.

(C.1)

The roots up for the Laplace inversion are precalculated
for each neighborhood prior to the start of the simulation.
The infinite summation is truncated to up < umax, with the
maximum root for each neighborhood selected as described
in Appendix C.2.

Sampling of the transition time is done through the
inverse cumulant method, by first selecting a uniformly dis-
tributed value w ∈ (0, 1) and then numerically solving for
the value of t with Sik(t) = w.

In practice, we pre-tabulate the distributions of leaving
times Sik(t) for each node and each adjacent edge in a net-
work, allowing for rapid sampling of many particle transi-
tions initiating at that node.

Appendix C.2: Short time asymptotic limit

Equation 28 for the Laplace inversion of the leaving time dis-
tribution converges quickly for long times and short edges,
with the number of required summation terms scaling as
�2/(Dt). In the limit of short times, an alternate approach
is taken for the Laplace inversion. Specifically, we expand
Eq. 6 in the limit of s → ∞ to get the lowest order terms

P̂ik
α→∞−−−−→ 2

n

(
e−α�ik + e−3α�ik

)

− 4

n2

n∑
j=1

e−α(�ik+2�ij)
(C.2)

where α =
√

s/D and n is the degree of node i.
We then use the relation

L −1

(
1

s
e−2a

√
s

)
= Erfc

(
a√
t

)
(C.3)

to invert the individual terms of Eq. C.2, integrated over
time. This yields the final expression for the cumulative con-
ditional probability that a particle leaves the neighborhood
of node i by time t, given it eventually leaves to node k:

1 − Sik(t)
t→0−−−→ 2

nP ∗
ik

(
Erfc

(
�ik

2
√

Dt

)
+ Erfc

(
3�ik

2
√

Dt

))

− 4

n2P ∗
ik

∑
j

Erfc

(
�ik + 2�ij

2
√

Dt

)
. (C.4)

In order for this limit to be accurate, the next highest
term in the expansion (Eq. C.2) needs to be sufficiently
small. The next highest term for any given time is deter-
mined by the shortest edge length (�i,min) and must be at

most Erfc
[
5�i,min/(2

√
Dt)

]
. Therefore, if we set a tolerance

of ε and define the cutoff ξ = − log ε, then the expression in
Eq. C.4 is accurate for all times t below

t∗ =
25�2i,min

4ξD
. (C.5)

For times above t∗, we can employ the converging series
of Eq. 28. The series is truncated by considering only those
poles that satisfy Dt∗u2

max > ξ, or equivalently

umax =
2ξ

5�min
.

Equation 26 has poles at mπ/�ij for all integer m and a
root between every pair of consecutive poles. The maximum
number of roots up to umax is then given by

∑
j

mij,max =
2ξ

5π�min

∑
j

�ij . (C.6)

The cumulative distribution function can therefore be
evaluated efficiently for all values of time, so long as the
ratio of longest to shortest edge length in the neighborhood
is not too large.

An analogous approach can be used to find the no-passage
spatial propagation of a particle over a very short time inter-
val, conditional on never leaving the neighborhood of the
node. For a particle starting on node i that has never passed
any of the adjacent nodes, the probability that after time t
it is located on edge ik, between x and �ik can be derived
from Eq. 29 as

Ŷik(x, s)
α→∞−−−−→ 2

sn2

[
1 − e−α(�ik−x)

] n∑
j=1

e−2α�ik

Yik(x, t)
t→0−−−→ 2

n2

∑
j

[
Erfc

(
�ij√
Dt

)

− Erfc

(
2�ij + �ik − x√

Dt

)]
.

(C.7)

This expression is normalized by Yik(0, Δt) and allows for
a sampling of the x coordinate using the inverse cumulant
method.

Appendix C.3: Propagation on edges

For a particle starting at position x0 on edge ik, the sur-
vival probability to time t given that it eventually leaves
at one of the bounding nodes can be obtained directly
via Eqs. C.1, C.4 by treating the starting position as
its own node with adjacent nodes i and k connected by
edges of length �ik − x0 and x0, respectively. Analogously,
Eqs. 30, C.7 can be leveraged to sample the spatial propa-
gation along an edge over a time interval δt until the next
save-point.

For this special case, the splitting probability and sur-
vival probability over time match to the known solutions
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for a particle on a one-dimensional interval with two absorb-
ing boundaries [27,44]. Namely, for a particle beginning at
position x0 on an edge of length �m, we have

Pi = x0/�m, Pk = 1 − x0/�m,

S
(E)
m,+(t) =

2�m

πx0

∞∑
p=1

(−1)(p+1)

p
sin

(pπx0

L

)
e

− p2π2Dt

�2m ,

S
(E)
m,−(t) =

2�m

π(�m − x0)

∞∑
p=1

1

p
sin

(pπx0

L

)
e

− p2π2Dt

�2m ,

(C.8)

where S
(E)
m,±(t) correspond to the probability the particle

has not left by time t, given it eventually leaves through
the boundaries at �m and 0, respectively. Similarly, the no-
passage spatial propagator for the particle on an edge can
be expressed as,

Y (E)
m (x, t) =

2

π

∞∑
p=1

1

p
sin

(
pπx0

�m

)

×
[
1 − cos

(
pπx

�m

)]
e

− p2π2Dt

�2m . (C.9)

For the short-time limit, analogous functions for a par-
ticle propagating on an edge can be derived from Eqs. C.4
and C.7.

Appendix C.4: Particle pair propagation

In order to avoid infinitesimally small steps when particles
approach each other, it is necessary to enable two parti-
cles to share a single domain, where particle encounter is
a finite-probability event within the domain. We follow the
algorithm for paired particle propagation that was outlined
previously in [27]. The essential points of the algorithm are
presented here for completeness and generalized to particles
with arbitrary diffusivity.

Specifically, assume x < y describe the coordinates of
two particles along a segment with absorbing boundaries at
0 and L. If we make the coordinate change defined by

u = x − y

v =

√
Dy

Dx
x +

√
Dx

Dy
y,

(C.10)

then the time evolution for the joint distribution of the two
particles can be expressed as a two-dimensional diffusion
equation [73],

∂c(u, v)

∂t
= (Dx + Dy)

[
∂2c

∂u2
+

∂2c

∂v2

]
. (C.11)

The joint evolution of the transformed variables can thus
be treated as two independent 1D diffusion processes, both
with diffusivity Dx + Dy.

The edge segment domain containing a pair of parti-
cles is illustrated in Fig. 11, which highlights the three
boundaries for exiting the domain: x = 0 (first particle
hits a segment boundary), y = L (second particle hits a
segment boundary), or x = y (particles encounter each
other). For simplicity of sampling, we propagate the sys-
tem forward within a smaller region inscribed within this

Fig. 11 Propagators used for an edge-segment protective
domain containing a pair of particles. Blue lines mark
absorbing boundaries in the domain. Red dot marks x0, y0,
the initial positions of the two particles. Two propaga-
tion approaches are possible. The x and y coordinates can
be propagated directly in an inscribed rectangular domain
(black dashed lines). Alternately, the transformed coordi-
nates u, v can be propagated in the region outlined in purple,
allowing for particle encounter (u = 0) as a finite-probability
outcome of the propagation step. The choice of propagation
is based on greatest minimum distance to the boundary—in
this case, the purple region would be used

two-dimensional domain. One option is to draw a rectangle
(black dashed line in the figure), aligned with the x and
y axes contained within the allowed domain. The particles
are then propagated individually to the boundaries of the
rectangle, using Eq. C.8 to find the earliest time for either
particle to hit a boundary and Eq. C.9 to spatially propagate
the other particle on the condition that it does not leave the
rectangle. This approach, however, does not allow the par-
ticles to encounter each other and results in infinitesimally
small time steps as the particles come close together. An
alternate approach is to inscribe a parallelogram within the
domain that has one edge on the x = y line (corresponding
to u = 0) and the other edges parallel to the v axis, along
v = a and v = b. The coordinates u and v are propagated
diffusively within this parallelogram according to Eqs. C.8
and C.9, and the two particle positions x, y are then recalcu-
lated accordingly. If the exit from the parallelogram happens
along the line u = 0, then the particles encounter each other
before leaving the domain and a reaction event is recorded.

The choice between the two subdomains (rectangle in x, y
coordinates or in u, v coordinates) is made by picking the
one with the biggest minimum distance of the initial pair
position to the boundaries of the domain. In other words,
when the particles start close together (u0 close to 0), the
u, v coordinate system is selected to allow an encounter to
occur. When they are further apart, the x, y coordinate sys-
tem is used to allow larger time steps in propagating to a
domain boundary.

It should be noted that the time steps in this algorithm
can get very small when two particles approach each other
in the vicinity of a node, resulting in x and y both close to 0.
However, our propagation approach allows for a substantial
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probability of either the particles encountering each other
or one of the particles moving away from the node on a
different segment, so that this unfavorable case does not
persist for many time steps and does not substantially slow
down the simulations when particle density is sparse.
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42. J.D. Chodera, F. Noé, Markov state models of biomolec-
ular conformational dynamics. Curr. Opin. Struct. Biol.
25, 135–144 (2014)

43. A.M. Lorenzo, M. Enrique, E.F. Koslover, Thermal frac-
ture kinetics of heterogeneous semiflexible polymers.
Soft Matter 16(8), 2017–2024 (2020)

44. S. Redner, A Guide to First-Passage Processes (Cam-
bridge University Press, CambridgeCambridge, 2001)

45. L. Ellgaard, A. Helenius, Quality control in the endo-
plasmic reticulum. Nat. Rev. Mol. Cell Biol. 4(3), 181–
191 (2003)

46. A.I. Brown, E.F. Koslover, Design principles for the gly-
coprotein quality control pathway. PLoS Comput. Biol.
17(2), e1008654 (2021)

47. L. Stadler, K. Speckner, M. Weiss, Diffusion of exit sites
on the endoplasmic reticulum: a random walk on a shiv-
ering backbone. Biophys. J. 115(8), 1552–1560 (2018)

48. A. Budnik, D.J. Stephens, ER exit sites-localization and
control of COPII vesicle formation. FEBS Lett. 583(23),
3796–3803 (2009)

49. N. Borgese, Getting membrane proteins on and off the
shuttle bus between the endoplasmic reticulum and the
GOLGI complex. J. Cell Sci. 129(8), 1537–1545 (2016)

50. D.S. Grebenkov, R. Metzler, G. Oshanin, Strong defo-
cusing of molecular reaction times results from an inter-
play of geometry and reaction control. Commun. Chem.
1(1), 1–12 (2018)

51. M.P. Kochugaeva, A.M. Berezhkovskii, A.B.
Kolomeisky, Optimal length of conformational transi-
tion region in protein search for targets on DNA. J.
Phys. Chem. Lett. 8(17), 4049–4054 (2017)

52. D. Ando, N. Korabel, K.C. Huang, A. Gopinathan,
Cytoskeletal network morphology regulates intracellu-
lar transport dynamics. Biophys. J. 109(8), 1574–1582
(2015)

53. S.S. Mogre, J.R. Christensen, C.S. Niman, S.L. Reck-
Peterson, E.F. Koslover, Hitching a ride: mechanics of
transport initiation through linker-mediated hitchhik-
ing. Biophys. J. 118(6), 1357–1369 (2020)

54. S.S. Mogre, A.I. Brown, E.F. Koslover, Getting around
the cell: Physical transport in the intracellular world.
Phys. Biol. 17(6), 061003 (2020)

55. G. Steinberg, Endocytosis and early endosome motility
in filamentous fungi. Curr. Opin. Microbiol. 20, 10–18
(2014)

56. S. Maday, A.E. Twelvetrees, A.J. Moughamian, E.L.F.
Holzbaur, Axonal transport: cargo-specific mechanisms
of motility and regulation. Neuron 84(2), 292–309
(2014)

57. J.-H. Lenz, I. Schuchardt, A. Straube, G. Steinberg, A
dynein loading zone for retrograde endosome motility
at microtubule plus-ends. EMBO J. 25(11), 2275–2286
(2006)

58. A.J. Moughamian, G.E. Osborn, J.E. Lazarus, S.
Maday, E.L.F. Holzbaur, Ordered recruitment of dyn-
actin to the microtubule plus-end is required for efficient
initiation of retrograde axonal transport. J. Neurosci.
33(32), 13190–13203 (2013)

59. D.N. Hebert, M. Molinari, In and out of the ER: protein
folding, quality control, degradation, and related human
diseases. Physiol. Rev. 87(4), 1377–1408 (2007)

60. S.S. Andrews, D. Bray, Stochastic simulation of chemi-
cal reactions with spatial resolution and single molecule
detail. Phys. Biol. 1(3), 137 (2004)

61. D.T. Gillespie, Exact stochastic simulation of coupled
chemical reactions. J. Phys. Chem. 81(25), 2340–2361
(1977)

62. G.B. Arfken, H.J. Weber, Mathematical methods for
physicists (1999)

63. S.B. Yuste, K. Lindenberg, Order statistics for first pas-
sage times in one-dimensional diffusion processes. J.
Stat. Phys. 85(3), 501–512 (1996)

64. K. Basnayake, Z. Schuss, D. Holcman, Asymptotic for-
mulas for extreme statistics of escape times in 1, 2 and
3-dimensions. J. Nonlinear Sci. 29(2), 461–499 (2019)

65. V. Tejedor, M. Schad, O. Bénichou, R. Voituriez, R.
Metzler, Encounter distribution of two random walkers
on a finite one-dimensional interval. J. Phys. A: Math.
Theor. 44(39), 395005 (2011)
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