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Abstract In this work, we revisit the description of dynamics based on the concepts of metabasins and
activation in mildly supercooled liquids via the analysis of the dynamics of a paradigmatic glass former
between its onset temperature To and mode-coupling temperature Tc. First, we provide measures that
demonstrate that the onset of glassiness is indeed connected to the landscape, and that metabasin waiting
time distributions are so broad that the system can remain stuck in a metabasin for times that exceed τα by
orders of magnitude. We then reanalyze the transitions between metabasins, providing several indications
that the standard picture of activated dynamics in terms of traps does not hold in this regime. Instead,
we propose that here activation is principally driven by entropic instead of energetic barriers. In partic-
ular, we illustrate that activation is not controlled by the hopping of high energetic barriers and should
more properly be interpreted as the entropic selection of nearly barrierless but rare pathways connecting
metabasins on the landscape.

1 Introduction

The dynamics of supercooled liquids are slow, but not
nearly as slow as the behavior described by mean field
(MF) theory [1,2], which instead predicts the existence
of extensive energy barriers between metastable states.
The accepted reason for this difference is that processes
not described by MF theory start dominating at low
enough temperatures. The process generally implicated
as most crucial is activated dynamics [3].

In the broadest and least informative sense, activated
dynamics can be any type of rare dynamical process
that takes place over exponentially long time scales.
These processes usually involve overcoming barriers in
the free-energy landscape, which is more rugged as the
temperature is lowered. Given, however, the difficulty
to access the free-energy landscape, it is commonly
assumed that that at low temperature one can neglect
the contribution of the entropy to the free energy and
focus on the potential energy [4]. This is supported by
evidence that below the onset temperature the dynam-
ics seems to be dominated by the potential energy [5,6].
Therefore, in the common view, activation is pictured
to occur via the hopping of potential energy barriers.
Namely, the system is stuck for long times in a poten-
tial energy well (a trap), where it is confined by energy
barriers that can be overcome only by a rare ther-
mal fluctuation [7]. The time τ spent in these traps
grows exponentially with an energy barrier ΔE and the
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inverse temperature β,1 as described by the Arrhenius
law, τ ∼ exp(βΔE) [8].

A simple toy model that has played an important
role in the understanding of activated dynamics in a
glassy energy landscape is the Trap Model (TM) [9,10].
In the TM, the phase space is a fully connected graph
with each configuration assigned a random energy E.
Transitions from one configuration to another follow an
Arrhenius law with energy barrier ΔE = Eth − E, and
with Eth = 0. For the usual case of an exponential dis-
tribution of trap energies, this simple model exhibits
weak ergodicity breaking, i.e., the phase space is not
fractured but cannot be fully sampled in finite times. In
addition, this model provides a series of non-trivial pre-
dictions regarding trapping times and autocorrelation
functions which can be used to guide the interpretation
of activated dynamics in models of glasses, both in MF
and in low spatial dimensions [10–12].

In MF, it has been shown that the behavior of the
TM is quantitatively recovered in the Random Energy
Model (REM) [13,14] and similar models [15–17]. This
does not appear to hold in the discrete p-spin model
[18,19], despite the fact that the p-spin model has a
well-defined threshold energy which can be made to
coincide with the condition Eth = 0. In simulations
of realistic 3D glass formers, there is a general consen-
sus that activated processes are present, both below
the dynamical transition temperature Tc [6,20,21] and

1 Throughout the paper, we set the Boltzmann constant to
unity, kB = 1, so the temperature has the dimensions of an
energy.
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above it [12,22]. However, in 3D some key ingredients of
the TM do not hold. For example, there does not seem
to be a fixed threshold energy Eth that must be reached
for a transition to occur [23]. Understanding the nature
of the activated processes taking place above the mode-
coupling temperature Tc and the degree to which other
aspects of the TM hold for realistic supercooled liquids
will be our focus in this work.

In order to define traps in liquid-state simulations, it
is advantageous to quench the system at every time step
and study the local minima on the energy landscape
(the inherent structures, ISs) along the trajectory [5].
It has been noticed that the ISs organize in superstruc-
tures, commonly called metabasins (MBs), and it has
been argued that even above the mode-coupling tem-
perature Tc (but below the onset temperature To where
supercooling starts) that barrier hopping between MBs
drives the glassy dynamics, both in numerical [12,23–
25] and experimental systems [26]. This is somewhat
surprising given that in the canonical Random First-
Order Theory (RFOT), Tc should mark the temper-
ature below which barrier activation becomes impor-
tant [27]. An interpretive reconciliation between the
observed MB dynamics and RFOT will be put forward
at the end of this paper.

Despite the fact that visual inspection of MB dynam-
ics seems to strongly suggest activated dynamics, some
puzzles remain. In fact, even through the lens of MBs,
dynamical interpretations in terms of the TM have
never been quantitatively satisfactory. This fact has led
both to the creation of more complicated trap models
which incorporate the concept of MB in their defini-
tion [28], or to a rejection of a landscape-based descrip-
tion of the dynamics via the invocation of kinetically
constrained models that involve no static energy land-
scape yet predict more accurately observables such as
the trapping time distribution [29,30].

Here, we attempt to unify these viewpoints and solve
the puzzles presented above for T > Tc through the
analysis of simulations of a paradigmatic model of a
glassformer. We show that while the underlying land-
scape directly relates to the glassy dynamics, the com-
mon concept of traps needs to be revised. Most impor-
tantly, instead of the system being trapped between
high energy barriers, it is more accurate to regard
the system as dominated by basins of attraction of
the underlying landscape between which dynamics are
slowed by the search for increasingly rare directions in
phase space. Some of our discussion will be based on
new interpretations of old metrics, while some of our
conclusions are prompted by completely new analysis.

Our paper is organized as follows. In Sect. 2, we
briefly describe the model and the simulation proto-
cols. In Sect. 3,, we treat the relationship between the
landscape and dynamics, and in Sect. 4 we show evi-
dence that strongly implicates effects as the driver of
activated dynamics. Finally, we discuss our results in
Sect. 5.
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Fig. 1 F (k, t) for all simulated temperatures, averaged
over 10 different initial conditions. The dashed horizontal
line indicates the value 1/e. Inset: the autocorrelation time
τα(T )

2 Model and simulations

We simulate a Kob–Andersen mixture [31] of N = 65
particles [32] of density ρ = 1.2, at temperatures T =
5.0, 2.0, 1.0, 0.8, 0.7, 0.6, 0.49, 0.46.2 The cutoff radius is
rcut = L/2, with L = 3.78364777565, the linear size of
the box consistent with the system density and number
of particles, and the potential is shifted to be smooth
at rcut. Molecular dynamics simulations are run with a
Nosé–Hoover thermostat, using the hoomd-Blue GPU
package [33,34], with a time step dt = 0.0025 [35].

To calculate the autocorrelation time τα, we mea-
sure the self-intermediate scattering function, F (k, t) =
1
N

∑N
i=1 eik·(ri(t)−ri(0)), where ri(t) is the position of

particle i at time t, and |k| = 2π
L |(1, 3, 4)| � 8.467.

The time τα(T ) is defined as the first time at which the
average F (k, t) crosses the value 1/e (Fig. 1).

For each T , we generate 10 independent initial con-
ditions, and for each we run 10–20 NVT trajectories
that are 2000 τα long. For each of these trajectories,
we also calculate the inherent trajectory, defined as the
succession of the ISs related to each configuration in
the trajectory (details on the inherent trajectories and
MBs are given in “Appendix A”).

2 To ensure thermalization, we calculated the time scale τ̂
that it takes for the F (k, t) to decay to values close to zero
(this time scale is at least one order of magnitude larger
than the characteristic α-relaxation time scale τα). We then
systematically simulated systems for 24τ̂ in an NVT ensem-
ble run with a Nosé–Hoover thermostat. Next we ran inde-
pendent trajectories of length 3τ̂ which were used to calcu-
late the self-intermediate scattering function. Our thermal-
ization criterion is that average self-intermediate scattering
functions must be compatible within statistical fluctuations.
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3 The influence of the landscape

3.1 Landscape signature of the onset of glassiness

One expects that the potential energy landscape plays
a progressively more dominant role as T is decreased.
Thus, ISs can provide useful information on how the
landscape drives the glassy behavior. To illustrate this,
we define the overlap

q(t0, t) =
1
N

N∑

i=1

Θ (|ri(t0) − ri(t)| − a) (1)

between times t0 and t.3 We can see a clean signature
of the onset of glassiness if we compare the evolution
of the overlap between thermal configurations, q(0, t),
with those from the associated inherent trajectories,
qIS(0, t) (Fig. 2). The approach taken here is inspired
by, and very similar to, that presented in [6]. How-
ever, by focusing on the overlap and not the IS inter-
mediate scattering function, one can cleanly estimate
the location of the onset temperature To, as shown in
Fig. 2. The interpretation of this behavior is discussed
below.

At every temperature, the overlap q(0, t) is equal to
1 at short times, since no particles have moved by more
than a, and at later times exhibits a clear crossover
toward lower values (with a plateau appearing at lower
temperatures). When we look at the short-time dynam-
ics of qIS(0, t), we need to distinguish between high and
low temperatures. At high temperatures, qIS(0, t) <
1 ∀t, whereas at low temperatures it remains close to
1 for progressively longer times. This is expected in a
landscape description of the dynamics. In particular, at
high temperatures the dynamics is independent of the
landscape, and at every time step the system finds itself
in a different basin of attraction. Therefore, minimiz-
ing the energy increases the distance between two ini-
tially nearby configurations. On the other hand, at low
temperatures, the dynamics are driven by the under-
lying landscape, so minimizing the energy leads ini-
tially far-away configurations toward the same attrac-
tor state.4 As a consequence, the difference between
q(0, 1) and qIS(0, 1) can be used to detect the onset of
glassiness, and shows that glassiness begins at To � 1,
when the landscape starts playing a role. Of course,
we can also locate the onset of glassiness without the
use of ISs by finding the temperature where the self-
intermediate scattering function begins to develop a
plateau
(Fig. 1).

3 We set a = 0.3, as it is a common choice used in literature
[36].
4 A similar phenomenology that has enabled the identifica-
tion of the onset temperature via the overlap has recently
been observed in diverse systems, ranging from the mixed
p-spin model [37] to the 3D Heisenberg spin glass [38].

Fig. 2 Overlap as a function of time for different temper-
atures. The red curves represent the overlap q between the
initial configuration and the configuration at time t. The
black curves are the overlap qIS between the initial config-
uration and the IS at time t. Note that close to the onset
temperature To ∼ 0.8 − 1, qIS is closest to q

3.2 Metabasins

A portion of a typical inherent trajectory is shown
in Fig. 3. As remarked in several previous works [22],
even though we are above the mode-coupling temper-
ature Tc, the dynamical inherent trajectory reveals a
remarkable structure, in which successions of ISs can
be grouped into MBs. In Fig. 3, MBs are emphasized
with black horizontal lines.

There is general agreement that MBs are the land-
scape structure that dominates the dynamics below To

[22]. One can argue in favor of this viewpoint by calcu-
lating the time that the system remains in each MB and
comparing it to τα. In Fig. 4, we show the distribution
of MB waiting times ψ(τMB) for T = 0.6, highlighting
that τα falls between the median (τ1/2

MB) and the average
MB time scale (〈τMB〉).

The correspondence between MBs and τα is verified
both below and above the onset temperature To. In

123



77 Page 4 of 10 Eur. Phys. J. E (2021) 44 :77

Fig. 3 Inherent structure trajectory for T = 0.6. The blue
points are the ISs, the orange points are the ridges (i.e.,
the highest potential energy points along the separation
between two subsequent ISs) between subsequent distinct
ISs, and the black lines indicate the MBs, calculated with
the procedure described at the beginning of App. A

Fig. 4 Top: ψ(τMB) for T = 0.6. Vertical lines indicate
τMB,1/2 (black), τα (green) and 〈τMB〉 (gray). Center: His-
togram h(τMB) of the MB times for all temperatures. Bot-
tom: Histogram of the MB times weighted by the waiting
time, h(τMB)τMB

Fig. 5, we show that τα and 〈τMB〉 are similar over the
full temperature range, suggesting that τα is directly
correlated with the MB dynamics. We also show the
median MB time, τ

1/2
MB , and the average time spent

in the ISs, τIS. The latter two time scales also have
mutually similar values at all temperatures, and once
T < 0.8 ∼ To, they both become consistently smaller
than the former two time scales (Fig. 5-inset).

The fact that 〈τMB〉 and τα grow much faster than
τ

1/2
MB does with lowering temperature indicates that the

typical5 behavior is not strongly influenced by temper-
ature and that the strong slowing of dynamics in super-

5 The word typical is usually used for the argmax of the
distribution. In our case, the peak and median of the

Fig. 5 Autocorrelation times τα (from F (k, t), darker blue
circles), 〈τMB〉 (average time in MBs, lighter blue squares),

τ
1/2
MB (median time in MBs, darker green upwards trian-

gles) and τIS (average time in ISs, lighter green downwards
triangles), as a function of temperature. Inset: The ratio
τIS/〈τMB〉 indicates the onset of glassiness

cooled liquids can be attributed to a few very long-lived
MBs (the tail of ψ(τMB)). This behavior becomes more
prominent as T decreases.

Furthermore, the wide tails of ψ(τMB) (Fig. 4) extend
several orders of magnitude beyond τα. This means that
the MB dynamics are dominated by rare structural con-
figurations which last hundreds of times longer than τα.
As a consequence, the average τα is not a good indica-
tor of the time scales for which the system can remain
blocked. This is in line with recent work demonstrating
that the dynamics of supercooled liquids is dominated
by broad distributions (including of τα), characterized
in a somewhat distinct manner [39].

To make this point even clearer, in Fig. 4 we plot the
quantity ψ(τMB)τMB,6 which represents the weight that
each value of τMB has on the average τMB. The peak
of these quantities is much larger than τα, indicating
that even though the typical metabasin reflects τα, the
average is dominated by times that are much larger.
This also indicates that the estimators of the average
τMB are biased due to an insufficiently long simulation
time (we can speculate that an unbiased estimator at
T = 0.49 would require sampling basins that last ∼ 1012

LJ units). An extreme version of the behavior mani-
fested above can be found in the TM, where the system
spends most of the time in the deepest trap and only a
negligible time outside of it [10].

Footnote 5 continued
distribution almost coincide, so we can also use the word
typical here.
6 We show the histogram h(τMB) instead of the density
ψ(τMB), because the whole integral cannot be calculated
for all temperatures.
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Fig. 6 Thermal energy (black dots), IS energy (green), MB
energy (yellow). Dashed lines are the ridges. The inset is
a close-up. Note that EIS is lower than EMB because the
average over the ISs gives more weight to the ISs belonging
to the deepest MBs, since those contain a larger number of
ISs

4 Entropic effects

4.1 No threshold

The usual conception of a trap is that of a local mini-
mum on the energy landscape that cannot be escaped
unless a potential energy barrier is overcome. In the
TM and other MF models, all traps are escaped at
the same energetic height, called the threshold energy
Eth [10,14,40]. In the TM, the threshold energy is
purely based on the potential energy landscape and
is thus independent of temperature. If the concept of
the threshold energy is applicable in realistic 3D super-
cooled liquids, then the TM threshold energy would
represent the energy of the ridge separating different
metabasins, Er (the ridges points are the points that,
along the trajectory, mark the separation of subsequent
ISs or MBs in the potential energy landscape).7

At each temperature, for each simulated thermal tra-
jectory we calculated the ridge between subsequent
ISs and between subsequent MBs. This is shown in
Fig. 6, along with the average IS energy, EIS(T ), and
the average MB energy, EMB(T ). We notice that all
four mentioned observables depend on T . A dependence
of EIS(T ) on temperature is expected [5], as is that
of EMB(T ) [25]. However, we also note that the ridge
energies decrease with T , at variance with the standard
TM. This suggests that as the temperature is lowered,
it becomes more convenient for the system to search

7 We calculate the ridge energy Er through the procedure
proposed in Ref. [25], which consists of minimizing two adja-
cent configurations that lead to different ISs, until their dis-
tance becomes larger than 0.001. In order to obtain a higher
estimate of the barrier, which takes into account thermal
fluctuations around the transition path, we omit the final
minimization of the gradient [35].

for rare, lower energy pathways. Therefore, there is no
single energy level that must be overcome in order to
achieve barrier hopping, and the concept of Eth cannot
be used to describe this system, at least in the tem-
perature regime we focus on. This observation is not
new, and similar conclusions were obtained in Ref. [25]
by looking at the relationship between EMB and the
barrier height.

4.2 No traps

In Fig. 6, we plot the total potential energy E(T ).
A striking feature is that E(T ) is significantly larger
than the energy at the ridge between ISs, Er, and at
the ridge between MBs, EMB

r . Further, the difference
E(T ) − Er is significantly larger than EMB

r − EMB.8
In other words, the energy of typical configurations is
significantly larger than the energy separating neigh-
boring MBs. This means that, at least in the temper-
ature range considered, we cannot think about acti-
vated dynamics as arising from the system being con-
fined between high barriers which can be overcome via
instantonic fluctuations of the energy. Instead, we argue
that at these temperatures the dynamics is controlled
by basins of attraction and the selection of rare, poten-
tially low barrier pathways between them.

Since our systems are very small and the coherence
length is of the order of the linear system size L [43],
in order to satisfy the typical scenario of a system com-
pletely confined between energy barriers which can be
overcome only through thermal activation, the system
should be at a temperature T such that E(T ) is smaller
than EMB

r (T ).9 As Fig. 6 shows, in our system this can
only happen at very low temperatures if the extrapola-
tion from high temperatures are indicative of behavior
below Tc. These temperatures are significantly lower
than that which can be probed directly by computer
simulation. Hence, even though a TM paradigm might
apply at low temperatures, it cannot hold in its simplest
form in the range Tc ≤ T ≤ To.

4.3 The search for more convenient pathways

To test the possibility that the MB dynamics are dom-
inated by entropic effects, we run the following experi-
ment. We first take a configuration φIS

ini at the bottom
of a single deep MB. We then add thermal agitation to
the configuration φIS

ini, corresponding to a temperature

8 We realize that these same observations can be drawn
from data found in previous works. For 3D binary mixtures,
we focus on Refs. [25,32], which use models similar to ours.
With N = 65, at T = 0.6, these authors find E(T ) ≈ −230
(Fig. 3b from [32]). as well as IS and MB energies of EMB ≈
EIS ≈ −295 (Fig. 2a from [32] and Fig.3a from [25]). The
energy of the barriers is ΔE = EMB

r − EMB � 6.9 (Figs. 12
and 14 from [25]). The ridge energy is thus EMB

r = EMB +
ΔE ≈ −288 � E(T ). A comparison between EIS(T ) and
E(T ) at T = 0.5 is provided in the caption of Fig. 8 of
Ref. [25].
9 This is a necessary but not sufficient condition.
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Fig. 7 Top-left: an IS
trajectory at T = 0.6.
Bottom-left: Nudged
Elastic Band (NEB)
interpolation of the
minimum energy pathway
for the same trajectory.
The initial condition for
the NEB pathway is the
thermal trajectory, as
described in the main text.
Top-right: energy barrier of
the NEB pathway at
several temperatures,
averaged over 20 exit
trajectories. Bottom-right:
length dNEB of the NEB
pathway at several
temperatures, with 15
pivots, divided by the
distance between φIS

ini and
φIS
fin
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T , and obtain φini = φ(t = 0). We next let the sys-
tem evolve until tfin = 20τα, obtaining φfin = φ(tfin).
Finally, we minimize the energy again, obtaining φIS

fin.
In Fig. 7, we show an inherent trajectory obtained in
this way.

We calculate the barrier between φIS
ini and φIS

fin
using the climbing image Nudged Elastic Band (NEB)
method [44,45].10 In the standard formulation of the
NEB, one creates npivots ordered replicas of the sys-
tem, called pivots, which interpolate between φIS

ini and
φIS

fin. The NEB pathway is obtained by optimizing a
system where each pivot feels its own potential energy
as well as an attraction to its two closest neighboring
pivots.11 The resulting path depends on the number
and the initial configurations of the pivots. A common
choice for the initial configuration of the pivots is a
linear interpolation between φIS

ini and φIS
fin. Here, since

we are interested in calculating the barrier that is sur-
mounted during the dynamics, we use the thermal tra-
jectory for the initial configuration of the pivots. We
set the first pivot to φIS

ini and the last one to φIS
fin. The

starting configurations of the intermediate pivots are
equally spaced configurations along the thermal trajec-

10 The climbing image method can be summarized as fol-
lows: After a number of NEB steps, the highest energy pivot
aims at increasing its energy instead of decreasing, in order
to better estimate the barrier height at its peak. The bar-
riers estimated through NEB and ridge method are consis-
tent when looking at transitions between neighboring ISs,
but the NEB is more suited than the ridge method for the
zero-temperature MB transitions that we consider in this
section.
11 We use the climbing image variant of the NEB, which
attracts the highest energy pivot toward higher energies, in
order to find the highest point in the trajectory.

tory between φini and φfin. We show an example of the
final NEB profile using these starting pivots in Fig. 7.

In Fig. 7, we see that the average NEB barrier (the
difference between the highest energy of the NEB and
φIS

ini) decreases in size as T is decreased. This is in agree-
ment with the observation that Er(T ) decreases with
cooling (Fig. 6), but is not in agreement with the con-
clusions of Ref. [25] where it is found that the barrier
height, which is approximately the average over T of the
one we find, is independent of temperature. We return
to this discrepancy before concluding.

Our results suggest that low-energy pathways exist,
but they are rare and it takes a very long time to find
them. If the thermal agitation is high compared to ΔE,
the barriers are jumped before a low-energy pathway
is found. If the typical ΔE

T is high, barrier hopping
becomes unlikely, and the system has the time to search
for the low-energy pathways.

In Fig. 7, we also show the total length dNEB of the
NEB pathway, divided by the distance d0 between φIS

ini

and φIS
fin. The ratio dNEB/d0 passes from 4 at T = 1,

to around 8 at T = 0.46, indicating that the system is
wandering progressively in a more tortuous manner as
temperature is lowered in order to find more convenient
pathways.

We have also tried to perform the same type of anal-
ysis with NEB pathways starting from a linear inter-
polation between φIS

ini and φIS
fin, in order to show that

in this case the barrier is independent of T . How-
ever, given the long distance and complicated landscape
between the two configurations, the linear interpolation
passes through highly unphysical configurations with
extremely high energies (∼ +106), and we were not
able to reach convergence for the energy pathways with
a reasonable number of pivots.
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4.4 Metabasin dynamics and localization

We now turn to the relationship between subsequent
MBs in a MB trajectory. In Fig. 8, we report the overlap
between MBs, qMB(n),12 as a function of the number of
MB transitions n. As expected, qMB(n) decreases mono-
tonically, and the system decorrelates progressively over
time. However, the curves have a clear dependence
on temperature. These curves do not depend on the
amount of time spent in each MB, so the longer decor-
relation time at lower T implies that the nature of
metabasin transitions takes on a different character as
T is lowered. At first sight, this result seems to contra-
dict previous observations that the squared displace-
ment R2(n) after a fixed number of MB transitions has
a weak dependence on T [23], as shown in the inset of
Fig. 8. However, notice that qMB(n) and R2(n) are dif-
ferent indicators of the system’s particle motion, and
they are influenced by the kind of rearrangements that
take place in a different manner. For example, a large
displacement of a single particle leads to a large varia-
tion in R2(n), but only a ∼ 1/N variation in qMB. The
discrepancy between qMB(n) and R2(n) is thus an indi-
cation of the localization of the particle rearrangements
along the dynamics, which must be considered with spe-
cial care. In fact, in order to decrease the overlap, sev-
eral particles need to move, so if the decay becomes
slower, this indicates that fewer particles are moving
by a significant amount. If R2(n) does not change with
lowering T , this is suggesting a crossover from a regime
in which all particles contribute equally to R2(n), to one
where the displacement is dominated by few particles.
We reserve the analysis of the localization of particle
motion during MB transitions for future. Regardless,
when viewed from the perspective of the overlap, we
see that the assumption of the TM that there should be
near-instantaneous temporal decorrelation of MB does
not hold in our system.

5 Discussion

In this work, we have revisited the relationship between
the landscape and activated processes at temperatures
higher than the mode-coupling transition temperature,
T ≥ Tc. We began by exposing some signatures of
the onset of glassiness that stem from the potential
energy landscape. In particular: (i) on time scales of
order t ∼ 1 LJ step, the overlap is q(0, t) > qIS(0, t)
in the high temperature liquid phase, but the relation
is inverted at lower temperature, once the dynamical
slowing down is driven by the underlying landscape.
(ii) The ratio between the typical (median) MB time,

12 We calculated qMB using Eq. (1) between two MBs A
and B both as the average overlap between all the ISs in A
with all the ISs in B, and as the overlap between the deep-
est configuration of each MB. We did not notice significant
differences between the two procedures. The data shown are
for the latter procedure.

Fig. 8 Metabasin overlap qMB(n) as a function of the num-
ber of MB transitions n, for different temperatures. In the
inset we show the mean squared displacement R2(n) after n
MB transitions, for the same temperatures. While R2(n) is
roughly independent of T , qMB exhibits a clear dependence.
Both quantities are normalized by a factor N

τ
1/2
MB , and the average MB time, 〈τMB〉, drops at the

onset temperature, heralding the initial growth of wide
tails in ψ(τMB).

The relationship between the landscape and dynam-
ics is highlighted by the fact that 〈τMB〉 ≈ τα at all
temperatures. As T decreases, 〈τMB〉 grows faster than
τ

1/2
MB(≈ τIS). This different rate of growth indicates that

even though typical configurations relax more slowly
upon cooling, the strong dynamical arrest of glasses is
driven by the tails of the distribution ψ(τMB). Further-
more, even τα falls short of properly describing the slow-
ing down of supercooled liquids, since the tails of τMB

are so wide that one encounters with finite probability
MBs that live several orders of magnitude longer than
τα.

We then analyzed the applicability of a picture based
on energetic barrier hopping. We find that the energy of
the ridges between MBs, Er(T ), decreases with temper-
ature and, most strikingly, the potential energy of the
system satisfies E(T ) > Er(T ). In other words, the sys-
tem is always above the ridge between MBs. However, as
others have previously remarked, we find that the land-
scape does play a role. The emerging picture is that the
MB structure in the IS energy time series, EIS(t), does
not arise from confinement between energy barriers, but
rather from groups of IS that lie in the basin of attrac-
tion of MBs with limited escape routes in a high dimen-
sional space. As T decreases, the system eventually
finds lower-energy pathways from one MB to another.
Thus, MB transitions do not occur at the lowest possi-
ble energy and instead as T is lowered it becomes more
convenient for the system to search for alternative path-
ways. This means that there is an entropic cost asso-
ciated with MB transitions even though the barrier is
much lower than the typical energy. This observation
is consistent with previous work which argued that,
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above Tc, any two configurations can be connected by a
barrierless geodesic and that the slowing down should
be attributed to the geodesics becoming more tortuous
[46–48]. However, as our work suggests, even if a barri-
erless geodesic exists, it might be too hard for the sys-
tem to find such a path. Actually, the more likely situ-
ation is that there exist an exponential number of ener-
getic barriers, as found in mean-field models [49], and
the competition between their height and their entropy
plays a key role in activated dynamics. In the regime of
temperature that we are considering, the competition
between different transition states largely dominates,
but it diminishes at lower temperature; hence, the sys-
tem is pushed to find and cross lower energetic barriers.
Consequently, we can think that the effective dimen-
sionality of the system decreases upon cooling, which
is consistent with a previous picture based on TM-like
aging functions in supercooled liquids [50].

Even though our core numerical findings are not dif-
ferent from those found in previous seminal studies
[22–25,32], our interpretation is different. In addition,
we find differences in the temperature dependence of
extracted barrier heights, which appear to be indepen-
dent of T in Ref. [25] but decrease with decreasing T
here. This distinction may be due to different ways bar-
riers are extracted in Ref. [25] versus in this work. We
note that while in Ref. [25] the barrier height is inde-
pendent of temperature, it does correlate with EMB,
which is dependent on temperature. This is somewhat
surprising since it implies that dEMB

dT = dEr
dT . These two

quantities are not expected to be related in any known
landscape-based model of glassy systems.

We also find that the overlap qMB(n) between sub-
sequent MBs decorrelates more slowly as T is low-
ered, which at first sight appears to be in contradic-
tion with the observation that the squared distance
R2(n) between subsequent MBs is almost independent
of T [23].13 However, these two observables should only
behave in the same manner in the case of fully delocal-
ized displacements. The fact that, upon cooling, qMB(n)
decays progressively more slowly while R2(n) remains
constant, seems to indicate that MB transitions become
less collective, with smaller per-particle displacements.
This is consistent with past observations showing more
localized motion approaching Tc. In fact, transitions are
string-like in that regime [52], and a localization tran-
sition takes place at Tc [53].

The above observations suggest that one should
regard a supercooled liquid as confined by large barriers
in most, but not all, directions and that the slowdown
of dynamics is mainly driven by entropy. The residual
small barriers that need to be overcome can likely be
explained by localization effects, which should be taken
into account in a MB description of the dynamics.

13 When viewed through the lens of the quantity R2(n),
MB dynamics appear to resemble a random walk [23,51],
but not if we focus on qMB(n). It should be noted that this
apparent random walk is not a renewal process, as would be
required by the TM.

We can use these ideas to analyze an argument
that has been advanced against the importance of the
growth of a static length scale (and thus a potential
energy landscape picture) in the slowdown of super-
cooled liquids [54]. This argument is based on the obser-
vation that the introduction of swap dynamics [55,56]
suppresses the glass transition temperature without
altering the free energy landscape. This argument could
be tested by looking at the inherent trajectory of a swap
simulation. A general expectation would be that swap
dynamics removes energy barriers, so the MB struc-
ture of EIS(t) would be disrupted. However, we have
argued that the slow dynamics are driven by entropic
rather than energetic effects, so the MB structure may
survive. If it does not, the landscape-based indicators of
To described here could be useful in telling us if one can
attribute this disruption merely to a shift in To [57,58]
caused by the addition of a larger number of favorable
pathways to relaxation.

The view that the activated dynamics is driven by
entropic rather than energetic barriers is further sup-
ported by a recent numerical investigation on the dis-
crete 3-spin model [19], where it was demonstrated that
a MB structure is visible in the inherent trajectory and
that observables such as trapping time distributions are
not predicted as well by the TM as they are by the
Step Model (SM). The SM is a simple toy model with
a single energy minimum, where the exponentially slow
dynamics are purely driven by the scarcity of low energy
configurations [41]. We also remark that in some tem-
perature regimes entropy-driven activation can indeed
resemble energy-driven activation [42,59–61] and can
be translated into a competition between energy and
high dimensionality [61,62], whereby an aging system
progressively passes from entropy- to energy-driven
dynamics [62].

In conclusion, we argue that in the temperature range
Tc < T < To, the potential energy landscape indeed
plays an increasingly important role in driving the
dynamics of supercooled liquids, but the nature of the
landscape picture based on MBs needs to be revised in
light of the following observations:

• The potential energy is always higher than the
energy of the barriers between metabasins.

• The ridge energy of MB transitions depends on
the temperature, indicating that the system sur-
mounts barriers only when it is more convenient
than searching for rare pathways with a low bar-
rier.

• The MB energy barriers are lower in cooler systems,
but the pathways are longer.

• The overlap between subsequent metabasins decays
more slowly as temperature is decreased.

These findings suggest that, in this regime, the state
of the system does not appear to be confined between
high energy barriers, but rather inside the basin of
attraction of large MBs, where it remains for times
that are often much larger than τα. Here, energy bar-
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riers are small, and the dynamical slowdown is there-
fore attributed to the scarcity of energetically favorable
pathways between MBs. This interpretation helps ratio-
nalize why the thermal and inherent trajectories appear
to be qualitatively so different, and why the MB struc-
ture only arises in the latter, a fact in contrast with all
models known to exhibit TM-like dynamics.

For T < Tc, one could argue that the situation stays
similar. However, at Tc the nature of the landscape
probed during the dynamics seems to change and a geo-
metric/localization transition takes place [20,21,53,63].
Random First Order Transition theory [64] suggests
that at these lower temperatures free-energy barriers
become mainly energy barriers, i.e., their entropy plays
a sub-dominant role. In this regime, activation would
then correspond to barrier hopping, and concomitantly
a picture based on classical TM-like energetic physics
may apply [6].
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Appendix A: Numerical calculation of the
metabasins

To minimize the energy, we used the FIRE algorithm.14

To find the inherent trajectory, instead of minimizing the
energy at every single time step, we used a bisection proce-
dure essentially identical to that described in Ref. [25]. We
separated the trajectory in intervals of 105 MD steps, and
calculated the IS at the beginning and at the end of the

14 With parameters dt = 0.0025, αstart=0.99, ftol = 10−5,
Etol = 10−10, wtol = 10−5.

Fig. 9 Same as Fig. 8, but with a different operational
definition of MBs, from Ref. [25]

interval [35]. If the configuration does not change,15 we pos-
tulate that all the configurations in between are the same.
If the configuration does change, we repeat the procedure
for the two resulting intervals. This procedure is iterated
for the increasingly smaller intervals, and is stopped when
either the intervals have the same energy at the beginning
and at the end, or they are one step long. To identify the
MBs, we calculate the minimum energy along the whole tra-
jectory. All the configurations between the first and the last
occurrence of this configuration are said to belong to the
same MB. We then calculate the minimum energy along
each of the remaining intervals, defining the MB time in the
same way. The procedure is stopped when there are no more
ISs with negative energy, or more than 3000 MBs are found
(which only happens for T ≥ 1).

On the definition of MBs

A different, though similar, procedure for the identification
of the MBs from the trajectory is provided in Ref. [25]. This
procedure consists of (a) identifying all the time intervals in
which each IS appears; (b) separating or (c) merging par-
tially overlapping time intervals according to heuristic crite-
ria; (d) removing intervals that are completely contained in
other intervals; (e) stating that each of the remaining inter-
vals is a MB, with τMB corresponding to the length of the
interval; (f) assigning to each MB the lowest energy that is
visited during that time interval.

We repeated our analyses using this definition of MB
and obtained analogous results. The MB times are slightly
higher, as well as the barriers, and qMB decays faster
(Fig. 9), but the overall qualitative picture does not change.
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41. A. Barrat, M. Mèzard, Journal de Physique I(5), 941

(1995)
42. C. Cammarota, E. Marinari, Phys. Rev. E 92, 010301

(2015). arXiv:1410.2116
43. S. Yaida, L. Berthier, P. Charbonneau, G. Tarjus, Phys.

Rev. E 94, 032605 (2016)
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