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Abstract. Cellular suspensions such as dense bacterial flows exhibit a turbulence-like phase under certain
conditions. We study this phenomenon of “active turbulence” statistically by using numerical tools. Fol-
lowing Wensink et al. (Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012)), we model active turbulence by
means of a generalized Navier-Stokes equation. Two-point velocity statistics of active turbulence, both
in the Eulerian and the Lagrangian frame, is explored. We characterize the scale-dependent features of
two-point statistics in this system. Furthermore, we extend this statistical study with measurements of
vortex dynamics in this system. Our observations suggest that the large-scale statistics of active turbulence
is close to Gaussian with sub-Gaussian tails.

1 Introduction

Active systems such as a flock of birds, a swarm of bac-
teria or active colloids form fascinating meso-scale struc-
tures with long-range order exceeding the sizes of indi-
vidual agents by an order of magnitude or more [1–5].
Theories describing the formation and evolution of such
meso-scale coherent structures in active systems have been
a topic of active research in the past two decades [5–12].
It is known that the core features of these diverse phe-
nomena can be modeled by taking into account just a few
dynamical effects such as self-propulsion and inter-particle
interactions [5–7].

Arguably the most diverse of these phenomena oc-
curs at the smallest of the biological scales where col-
lective dynamics of microbes or intra-cellular structures
results in interesting spatio-temporal patterns and non-
trivial dynamical features. Among these is the phe-
nomenon of “active turbulence” —chaotic dynamics of
dense suspensions— which has been observed in bacterial
as well as microtubule systems [13,14]. In particular “bac-
terial turbulence” has been recently observed in quasi–
two-dimensional suspensions of B. Subtilis [15,16]. While
the phenomenon shows considerable qualitative similarity
with hydrodynamic turbulence by virtue of which it gets
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its name, active turbulence displays an intrinsic length-
scale selection absent in hydrodynamic turbulence, which
is characterized by the formation of stable vortices of ap-
proximately constant sizes [15,17]. This typical scale is
larger than the scale on which the driving occurs as the
result of an upscale energy transport. This inverse energy
transfer is well known from two-dimensional Navier-Stokes
turbulence forced at small scales [18,19]. The main differ-
ence is that in a passive Navier-Stokes fluid, the forcing
has to be applied externally.

The chaotic nature of active turbulence calls for a sta-
tistical investigation and forms the subject matter of this
study. Our objective here is to provide an extensive sta-
tistical study of this phenomenon by using numerical sim-
ulations. Our analysis is based on a recently introduced
minimal continuum model for active turbulence [15], the
details of which are presented in sect. 2. As an example,
fig. 1(a) shows a snapshot of the vorticity field of the ac-
tive turbulent system in the statistically stationary state
obtained through direct numerical simulation. The corre-
sponding supplementary movie 1 shows the evolution of
this field with time. Note that the intense vortices in this
system are stable and have a long lifetime.

In this work, we study both the Eulerian and the La-
grangian properties as well as the characteristics of vortex
dynamics in this system. Previous works on this subject
have dealt with the Eulerian properties of the active tur-
bulence field, see e.g. ref. [17]. In sect. 3 we extend this fur-
ther with two-point velocity statistics and vorticity statis-
tics to set a reference for the subsequent investigations
after introducing the active turbulence model in sect. 2.
In sect. 4 we study the transport properties of the active
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Fig. 1. Upper row: active turbulence state with broadband forcing (α = −1). Panel (a) shows a snapshot of the vorticity field
of active turbulence obtained through direct numerical simulation of eq. (1) with parameters chosen according to ref. [17]. Note
that the vortices are approximately of the same size exemplifying the selection of a length scale in this system. The single-point
velocity and vorticity distributions are shown in panels (b) and (c), respectively; σu and σω are the standard deviations of the
respective PDFs. The single-point velocity PDF is close to Gaussian, but has slightly sub-Gaussian tails. The vorticity PDF
deviates considerably from Gaussian. Lower row: weakly excited case (α = 4). Compared to the active turbulence case, the
snapshot (d) shows less pronounced vortex structures. The single-point velocity and vorticity PDFs, (e) and (f), respectively,
are very close to Gaussian.

turbulence field by investigating both the vortex dynamics
and the Lagrangian features.

In the context of active turbulence, Lagrangian mea-
surements describe the properties of tracer particles of the
locally averaged velocity of the bacterial field, providing
insights into transport properties and mixing of bacterial
suspensions. Measurements of this kind provide a frame-
work to better understand the experimental works on bac-
terial dispersion [20] and dynamics of small objects in bac-
terial baths [21].

2 The active turbulence model

Regarding the mathematical modeling of active flows, a
continuum description appears suitable whenever larger-
scale flow structures compared to the individual extents
of the active agents are of interest. For example, such a
continuum description has been established based on a
coupled set of equations of two order parameter fields —
the velocity field and the local orientation of the active
agents [22–25]. This level of description is particularly use-
ful for characterizing the role of defects on the active dy-
namics [26,27]. An even simpler, minimal model for bac-
terial turbulence has been introduced in refs. [15,28]. We
here further investigate this model in two dimensions, in
which the locally coarse-grained bacterial velocity field is
considered as the only order parameter. This assumption

is based on the premise that in a dense suspension the lo-
cal orientation of bacteria aligns with that of the velocity
field. The equations for the coarse-grained order parame-
ter field u take the form

∂tu + λ0u · ∇u = −∇p − (Γ0Δ + Γ2Δ
2 + α + βu2)u,

∇ · u = 0. (1)

The pressure gradient ∇p is the Lagrange multiplier en-
suring incompressibility of the velocity field. The assump-
tion of incompressibility is valid for dense suspensions.
The free parameters λ0, Γ0, Γ2, α and β can be chosen
to match experimental results [15]. The parameter λ0 is
related to the type of the bacteria, i.e. whether they are of
pusher or puller type. For pusher bacteria like B. Subtilis,
λ0 > 1. As discussed below, the number of parameters
can be reduced by non-dimensionalizing the equations.
The linear terms in the above equation select a range of
scales that are excited to model the forcing in the bac-
terial flow, which occurs predominantly at small scales.
In Fourier space, the linear part of the equation can be
written as γ(k)ũ(k, t) := (Γ0k

2−Γ2k
4−α)ũ(k, t). Conse-

quently, the excited modes correspond to the ones where
γ(k) > 0. The nonlinear advective term, like in the Navier-
Stokes equation, is responsible for the energy transfer and
thus allows for the formation of large-scale structures. The
cubic term is a nonlinear saturation which together with
the squared Laplacian term ensures the regularity of these
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Fig. 2. Energy spectra of the velocity field for the active tur-
bulence case (blue) and the weakly excited case (green). The
dashed vertical lines indicate the wavenumber corresponding
to the dominant scale in the system. In the active turbulence
case, the energy spectrum peaks at a much larger length scale
(lower wavenumber) due to the formation of meso-scale vor-
tices in the system as a result of the inverse energy transfer.

equations [29]. A detailed description of these equations
can be found in refs. [28,30].

For the current investigations, we non-dimensionalize
the equations following ref. [17] and then normalize our
numerical results based on dynamically emerging length
and time scales. In summary, the procedure is as follows.
The fastest growing linear mode kc =

√
Γ0/(2Γ2) is deter-

mined by the maximum of γ(k). Consistent with ref. [17]
we select a length scale l = 5π/kc. A velocity scale can be
defined dimensionally as v0 =

√
Γ 3

0 /Γ2, which also selects
a time scale l/v0. Non-dimensionalizing eq. (1) using this
length scale and time scale reduces the two parameters
Γ0 and Γ2 to constant numbers 0.045 and 9 × 10−5, re-
spectively, thus decreasing the number of free parameters
to three. If not noted otherwise, we choose the set of pa-
rameters λ0 = 3.5, α = −1.0 and β = 0.5, which already
has been investigated in [17]. We normalize our numeri-
cal results with respect to the dominant length scale in
the system. The wavenumber kmax corresponding to the
peak of the energy spectrum (see fig. 2) defines the dom-
inant length scale in the system as L = 2π/kmax. This
length scale can also be used to define a time scale given
by T = L/V where V =

√
〈u2〉. Such a procedure char-

acterizes the significance of the dominant length scale in
the system.

We numerically solve these equations in two dimen-
sions by using a standard pseudospectral algorithm (with
1/2 dealiasing to account for the cubic nonlinearity) fol-
lowing a second-order Runge-Kutta scheme for time step-
ping with time step 0.0002. We choose a domain size
of 5π × 5π with 2048 × 2048 grid resolution. A large-
scale flow is chosen as the initial condition. By testing
different initial conditions, we ensured that the statis-
tically stationary state is independent of the particular
choices. For Lagrangian measurements, a million tracer

particles are advected with the flow. The tracer particles
are evolved according to the Lagrangian equations of mo-
tion dX(x0, t)/dt = u(X(x0, t), t), where X(x0, t) is the
position of a tracer particle at time t starting from x0 at
time t0. The velocity u(X(x0, t), t) at inter-grid points is
interpolated by using a bicubic scheme. The system is al-
lowed to evolve until it reaches a statistically stationary
state after an approximate duration of 10T before mea-
surements are taken. To identify and track vortex cores
we follow an algorithm described in ref. [23], details of
which are given in sect. 4.

3 Eulerian statistics

To connect to previous work [15,17] as well as to set a
reference point for the subsequent investigation of La-
grangian properties of the flow, we start with characteriz-
ing the Eulerian statistics of active turbulence. Figure 1(b)
shows the single-point velocity probability density func-
tion (PDF) of the active turbulence field. Since the flow
is isotropic, we use one component of the velocity field to
evaluate these PDFs. The distribution is close to Gaussian
with sub-Gaussian tails. Sub-Gaussian tails for the single-
point velocity have also been found for three-dimensional
hydrodynamic turbulence [31]. The vorticity PDF, shown
in fig. 1(c), departs strongly from Gaussianity with a com-
parably narrow core and wide tails, which roll off rapidly
for large vorticity values. As is well known from the study
of hydrodynamic turbulence, such departures from Gaus-
sianity can be regarded as a signature of coherent vortex
structures [32–34]. For example, they have also been ob-
served in decaying two-dimensional Navier-Stokes turbu-
lence [35].

The active turbulence model (1) gives precise control
over the energy injection mechanism, which motivated us
to further investigate the influence of active forcing on
non-Gaussian features of the flow. For the active turbu-
lence case with α = −1, the linear terms represented
through γ(k) introduce an active broadband forcing which
predominantly injects energy at the wavenumber kc. This
broadband forcing can be reduced to a narrow band of
wavenumbers with a reduced energy input by increasing
the damping rate. Here, we consider the case with α = 4.
The results of this numerical experiment are shown in the
lower row of fig. 1. Figure 1(d) shows a snapshot of a
vorticity field, which now displays less pronounced vor-
tex structures compared to the active turbulence case.
Still, the dynamics remains nontrivial as documented in
the supplementary movie 2. The single-point velocity PDF
shown in panel (e) is very close to Gaussian in the weakly
excited case. Consistent with the observation of less pro-
nounced vorticity structures, the vorticity PDF is now
much closer to a Gaussian with slightly super-Gaussian
tails.

To characterize multi-scale features of the flow, we ob-
tain PDFs of the longitudinal velocity increments δuE =
[u(x + r, t) − u(x, t)] · r̂ for both cases as presented in
fig. 3. Consistent with previously published results [15,17]
we find close-to-Gaussian PDFs from large to intermedi-
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Fig. 3. Eulerian longitudinal velocity increment PDFs for (a)
the active turbulence case and (b) the weakly excited case.
The small-scale increment PDF for the active turbulent case
displays considerable deviations from Gaussianity. In compari-
son, the weakly excited case with less pronounced vortex struc-
tures shows a close-to-Gaussian behavior at all scales.

ate scales in the active turbulence case (panel (a)). Only
at smaller scales on the order of L we find departures.
This change from Gaussian to non-Gaussian statistics oc-
curs rather abruptly in scale, and can be accounted to
the presence of meso-scale vortices in the flow. Consistent
with this picture, the weakly excited case shows a close-
to-Gaussian statistics for all considered cases (panel (b)).

4 Vortex dynamics and Lagrangian transport
properties

The results of the previous section have pointed out the
significance of vortex structures, which is further investi-
gated here, focusing on the vortex strength, dynamics and
lifetimes. Some of these aspects are closely related to La-
grangian features of the flow, which are also analyzed in
the following, where we restrict ourselves to the active tur-
bulence case. In the previous section, we analyzed single-
time statistical features of the active turbulence field from
an Eulerian point of view. To further characterize the role

of vortex structures, vortex cores are identified as the cen-
ters of the cells around which the velocity vector takes a
full rotation [23]. To this end, we calculate the angle Λ
which the velocity vector rotates around center point x
of each cell, and vortex cores are defined as the centers
of those cells where Λ(x) = ±2π. This allows us to cal-
culate vortex cores from the velocity field, although only
with an accuracy of the grid resolution. Having identified
the vortex cores, we are able to investigate their typical
strength. Figure 4(a) shows the distribution of vorticity at
vortex cores. From the distribution it is clear that there
are predominantly two classes: weak and intense vortices.
The intense vortices correspond to the ones clearly identi-
fiable in fig. 1(a) whereas the weak ones correspond to less
coherent, not necessarily axisymmetric vorticity patches.
The observation of the distinct large-amplitude vortices
explains the sharp roll-off of the PDF shown in fig. 1(c).
Assuming a typical profile for vortex structures, the vor-
ticity PDF can be thought of as a smeared-out version of
the vortex-core strength PDF.

The distribution of vortex core lifetimes, shown in
fig. 4(b), further clarifies the difference between weak and
intense vortices. As can be inferred from the PDF, weak
vortices typically have a much shorter lifetime than in-
tense vortices. Also, the lifetime statistics for both weak
and intense vortices decay to zero rather rapidly. We note
that there are events in which an intense vortex transforms
into a weak vortex and vice versa, which is one limiting
factor of their lifetimes. Figure 4(c) shows some trajecto-
ries of vortices with long lifetimes along with some typical
Lagrangian tracer trajectories. In comparison, the vortices
appear to have smoother trajectories than the tracer parti-
cles. This is because the vortex core trajectories by design
pick out very specific points in the flow field. In contrast to
vortex cores, typical Lagrangian tracer particles encounter
a number of vortex trapping events, which explains their
rapid coiling. Similar observations have been made in two-
dimensional turbulence [35,36].

Proceeding to the characterization of Lagrangian
statistics, fig. 4(d) shows standardized PDFs of La-
grangian single-particle dispersion, where R is one com-
ponent of X(x0, t0 + τ) − x0. Owing to the approximate
Gaussianity of the velocity, the PDFs are close to Gaus-
sian for short time scales, and the Gaussianity persists
up to the largest time scales, similar to what is found
in hydrodynamic turbulence. The mean squared displace-
ment, which characterizes the variance of this approxi-
mately self-similar process in scale, is shown in fig. 4(e).
As expected, the displacement is initially ballistic, i.e. it
scales as t2, and then transitions to a diffusive long-time
behavior with a scaling proportional to t. The transition
occurs on the order of the time scale T which character-
izes approximately the time spent by a tracer particle in
a vortex.

Finally, we wish to characterize temporal velocity fluc-
tuations along Lagrangian tracer particles. Figure 4(f)
shows the distribution of Lagrangian velocity increments
δuL, defined as either of the components of u(X(x0, t0 +
τ), t0+τ)−u(x0, t0), for different values of time lag τ . We
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Fig. 4. Upper row: statistics and dynamics of active matter vortices. Panel (a) shows the distribution of vorticity at vortex
cores. The different peaks correspond to the vortices of the two classes: weak and intense. The distribution of vortex lifetimes
for weak and intense vortices is shown in panel (b). Note that the intense vortices have on average longer lifetimes. Some sample
vortex core trajectories are shown in panel (c) (in blue) along with some passive Lagrangian tracer particles (in green). Lower
row: Lagrangian statistics of active turbulence. Panel (d) shows the single-particle dispersion PDF which is close to Gaussian
for all time lags considered. The mean squared displacement, shown in panel (e), exhibits a cross-over from a ballistic to a
diffusive regime. Lagrangian velocity increment distributions are shown in panel (f).

observe that for short time scales, the statistics of the La-
grangian velocity increment shows strong deviations from
Gaussianity, consistent with the observation for the Eu-
lerian increments. In the limit of τ → 0 the velocity in-
crement is proportional to the single-particle acceleration.
Like in the Eulerian frame, the PDFs relax to a Gaussian
shape rather sharply at a value of τ ≈ T , strengthening
the hypothesis that the velocity field in active turbulence
has a simple structure beyond the length scale of the in-
dividual strong vortices.

5 Summary and conclusions

In this work we have conducted a statistical study of a
minimal continuum model for bacterial turbulence. The
numerical and statistical results show that active turbu-
lence displays close-to-Gaussian statistics both in an Eu-
lerian and a Lagrangian frame when moderate to large
scales are considered. Similar observations can be made in
statistically stationary two-dimensional turbulence with
large-scale friction. Deviations are found at the scale
where coherent vortices occur, as can be probed with
vorticity and velocity increment statistics. Employing a
vortex identification and tracking algorithm, we find that
active turbulence selects intense vortices of rather well-
defined magnitude, which is in contrast to hydrodynamic
turbulence. The lifetime statistics of the vortices are inves-
tigated and display a rapid fall-off to zero. By increasing

the damping rate compared to the active turbulence case,
the emergence of meso-scale vortices is found to be sup-
pressed, which goes along with statistics even closer to
Gaussianity, corroborating the connection between non-
Gaussian statistics and vortex structures.

The meso- to large-scale Gaussianity of active turbu-
lence may open avenues for future analytical modeling ap-
proaches. A natural next step in the direction of this work
is the development of a statistical theory of active turbu-
lence, which is the subject of ongoing research.
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