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Received 28 March 2015 and Received in final form 2 May 2015
Published online: 22 June 2015
c© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract. The applicability of Wenzel’s equation to describe a liquid droplet settled on the solid surface
regularly patterned with rectangular prisms was examined by means of simulations of the droplet/surface
system morphology and energetics. The droplet deposited on the meso-scale surface roughness (i.e. the
droplet size was larger than the size of heterogeneities by about an order of magnitude) was considered.
Several different approaches to the estimation of the contact angle were employed. The discrepancies
between the results of simulated experimental measurements and the predictions based on the Wenzel
equation were analyzed and discussed. The influence of three-phase contact line effects on the droplet
morphology and the existence of metastable states was shown.

1 Introduction

Wetting phenomena have been the subject of numer-
ous experimental and theoretical studies since their un-
derstanding is related to many significant technological
and industrial applications, including lubrication, coating,
printing, waste water treatment, mineral processing, and
microfluidics [1–4]. A widely used approach to character-
ization of wetting properties of surfaces involves the mea-
surement of contact angles (CAs). For the ideal, namely
perfectly smooth and chemically homogeneous solid sur-
faces, the relation between CA and the surface free energy
has been developed by Thomas Young [5]. However, most
of the natural or fabricated surfaces are geometrically or
chemically heterogeneous. In extreme cases, in which the
liquid completely penetrates into all cavities producing ho-
mogenous liquid-solid interface, or in which some gas bub-
bles remain entrapped underneath a droplet, the morphol-
ogy of a liquid droplet settled on a geometrically heteroge-
neous (rough) surface can be described in categories of the
Wenzel regime [6] or the Cassie regime [7], respectively.

In the Wenzel regime, the CA measured on the rough
surface (the Wenzel CA, θW) can be predicted from the
equation [9]

cos(θW) =
S

S=
cos(θ∗) = f cos(θ∗), (1)
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in which parameters S and S= stand for the actual area
of the solid surface and the area of its projection on the
plane parallel to it, θ∗ is the CA characterizing the solid
material of ideally smooth surface (Young CA [10]) and f
represents the so-called surface roughness parameter (or
roughness ratio) [11,12].

Equation (1) holds when a droplet takes shape of a
spherical cap according to the Plateau law [6,13–15] and
the droplet size is infinitely larger than the scale of the
roughness [16]. The Wenzel law correctly predicts the
trend of the apparent (i.e., experimentally measured) CA
with increasing roughness of hydrophilic or hydrophobic
surfaces when the droplet is sufficiently large compared
with the scale of roughness [17]. But, even when the rel-
ative size of heterogeneities is very small, the droplet
assumes an asymmetric irregular shape with the corru-
gated three-phase contact line (triple line) [13,14,18–20],
especially for the inhomogeneities represented by linear
grooves, where the droplet behavior in parallel and per-
pendicular directions to the grooves is different [21]. How-
ever, if the size of inhomogeneities remains small as com-
pared to the droplet size (micro-roughness), the corruga-
tion of the triple line due to imperfections of the solid sur-
face does not produce a significant discrepancy between
measured CAs and those predicted by the Wenzel equa-
tion [14–17,22–25]. On the other hand, with a decrease
in the droplet size relative to the size of surface rough-
ness features, the predictive applicability of the Wenzel
equation has often been observed to fail [26,27].

For a small droplet the contribution of interactions
at the triple line becomes significant enough to affect its
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wetting behavior [28,29]. The critical importance of the
triple line in the wetting behavior was shown by Gao and
McCarthy [23], who found experimentally that CA of a
droplet is defined solely by the triple line, while the rough-
ness beneath the droplet is irrelevant. However, there are
still many controversies regarding the conclusion of Gao
and McCarthy. The extensive reviews on this topic have
been published recently [30,31].

A mechanism which is most often proposed as respon-
sible for the discrepancy between CAs measured on rough
surfaces and those predicted from the Wenzel equation
is the apparent pinning of the triple line on surface de-
fects, such as the edges of asperities [14]. The results
of some studies indicate the existence of factors affect-
ing the CA on rough surfaces different from the pinning
of the triple line to sharp edges of surface structure fea-
tures. For instance, Promraksa et al. [8,32] studied the
droplet behavior on a surface represented by a square
array of cosine wave-like pattern, that is on the surface
whose roughness was classified by de Gennes et al. [10] as
“soft” (i.e., the surface whose shape can be described in
terms of the function that is continuously differentiable)
and demonstrated, both experimentally and on the ba-
sis of simulation methods, that the wetting phenomena
occurring in the studied system cannot be described in
categories based on the averaging of free interfacial ener-
gies over all geometric irregularities (in Wenzel’s regime)
nor on energetic inhomogeneities (in the Cassie regime)
but should be related to the successive wetting transi-
tion from the Wenzel to the Cassie regime. The mixed
wetting state (i.e. wetting partly in Wenzel’s and partly
in Cassie’s regimes) have been also reported by Miwa et
al. [33] and Marmur [34]. Additional discrepancy between
CAS measured experimentally and predicted by Wenzel’s
law can be caused by the effect of impregnation of the
solid material [35].

Deformation of the triple line caused by the pinning
has been extensively studied both theoretically [25,36–38]
and experimentally [15,39,40]. It was found, that droplets
are often trapped in metastable states [14] separated by
free energy barriers [41–43]. Pinning effect may cause a
strong wetting hysteresis [44] and wetting anisotropy [45].
The droplet on anisotropic structured surfaces exhibits
different CAs along the directions parallel and perpendic-
ular to the surface features [46]; a difference of up to 25%
in CA measured for the same droplet was observed [47].
The significance of the triple-line influence on the appar-
ent CA depends on the degree of non-uniformity of the
surface roughness; the effect matters much for strongly
non-uniform roughness [48].

The corrugation of the triple line due to pinning ef-
fects depends rather on the size of surface inhomogeneities
than on the surface roughness (defined by the parameter
f), thus the inhomogeneity size is an important factor de-
termining the departure of CAs from Wenzel predictions.
Three different ranges of the surface roughness scale with
regard to the droplet size can be distinguished: macro-,
meso- and micro-scale roughness. In the case of macro-
roughness (i.e., if the size of a heterogeneity is compa-
rable to the size of the droplet), the droplet can spon-

taneously change its position and shift to a fragment of
the surface which is energetically more favorable and then
its morphology and CA can be described by i) the Young
equation taking into account the slopes and the area of
the wetted planes and ii) by the equations/inequalities
taking into account the effects at the sharp edges of inho-
mogeneities (pinning or spreading effects [49,50]). Thus,
in the case of macro-scale roughness a good estimation
of the CA can be obtained from the Young equation. For
micro-scale roughness, such an estimation is given by the
Wenzel equation (in the Wenzel regime where liquid pene-
trates the surface texture). In the case of both, macro- and
micro-scale roughness the estimations of CA are based on
its interpretation in terms of interfacial free energy. In the
intermediate range of the roughness scale, the morphology
of a droplet is mostly determined not by the interfacial ef-
fects but by phenomena occurring at the triple line, as
numerous recent studies have indicated.

In this paper a correlation between the morphology of
the droplet settled on a surface with a meso-scale rough-
ness (represented by a regular pattern of geometric forms
having sharp edges and whose sizes were from a few to
about 20 times smaller than the size of the droplet) and
the interfacial free energy as well as the triple-line effects
was examined through computer simulation. To this end,
the values of CA were estimated employing several meth-
ods differing in the way this quantity is assessed and com-
pared with the CAs calculated on the basis of interfacial
thermodynamics, assumed as reference values.

The CA estimations were obtained by minimization of
the interfacial free energy of the system. In order to char-
acterize the dispersion of CAs found by means of stan-
dard experimental methods and caused by different initial
states of the deposited droplet, distributions and mean
values of CAs computed series of independent simulations
were carefully analyzed.

2 Methodology

The system under consideration consisted of a droplet set-
tled on the solid surface decorated with a regular pattern
of geometrical forms of a shape close to rectangular prisms
of a square base with a constant height and a variable
length of the edge of the base. The details of the solid-
surface shape were defined by the equation

z = I

(
x

L
mod 2 − x

L
mod 1 +

y

L
mod 2 − y

L
mod 1

)
,

(2)
where x, y and z are the Cartesian coordinates of the sur-
face points, L is the base edge length (different in each
simulation series) and I the height of surface roughness
elements (or, in other words, the amplitude of surface
roughness). In simulations, the actual angles α between
the side and top walls of geometrical forms modeling the
surface defects were slightly greater than those following
from eq. (2) and were equal to (105± 3)◦; thus these sur-
face structure elements had the shape of squared frusta.
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Fig. 1. The droplet settled onto solid surface a) the initial
mesh, b) the mesh after several iterations (there is seen much
better reproduction of the details of the surface structure as
compared with the starting situation), c) the schematic view
of the triple line in the course of simulation. The black color
indicates triangles chosen for the calculation of θT (A = 1.5,
I/V 1/3 = 0.175, L/V 1/3 = 0.263, T/V 1/3 = 5.8 · 10−3, θ∗ =
60◦).

The simulations of behavior of the droplet deposited
onto the analyzed surface was performed using the public-
domain program Surface Evolver [51,52]. In the course of
simulations, the morphology of the droplet at a station-
ary state was obtained by minimizing the interfacial en-
ergies. The liquid and solid surfaces were represented by
a mesh of small triangles spanning the nodes. Mechani-
cally stable interface configurations were obtained by min-
imizing the sum of interfacial energies being functions of
the coordinates of the nodes. Furthermore, a fixed liquid
volume was constant during energy minimization, repre-
senting an integral constraint to the shape of the liquid
surface. Nodes belonging to the triple line were subject to
a local constraint because their motion was restricted to
the boundary determined by surface equation (2). Mini-
mization steps included a combination of conjugate gradi-
ent descent steps and refinements of triangulated surfaces
made to portray the details of solid surface. The simu-
lation started with the solid surface practically free from
roughness details defined by eq. (2), as shown in fig. 1a.
In initial stages of simulations, the edge of the evolving
droplet, representing the triple line, could freely move on
the solid surface.

In the course of the simulations and refinement of the
surface shape, the number of nodes increased, so also in-
creased the accuracy of mapping of the surface eq. (2)
(see fig. 1b), which led to the appearance of sharp edges
hindering the free movement of the triple line.

As in the system analyzed the geometric parameters
of the droplet morphology and the droplet energy were
expected to be dependent on the initial position of the
droplet with respect to the solid, the studies were per-
formed assuming random initial droplet positions and dif-
ferent scenarios of reaching the stationary state by the
droplet. These scenarios were realized by a chaotic shift
(fluctuation) of the nodes, described by the vector pro-
duced by a generator of pseudo-random numbers from the
range [0, T ), where T is the maximum amplitude of fluc-
tuations. The random modifications of the droplet and
solid surface were applied to mimic the real procedure of

Fig. 2. Modes of deposition of the droplet on the solid surface
characterized by different values of the parameter A: (a) A < 1,
(b) A > 1.

droplet deposition, which is practically unrepeatable (it is
impossible to deposit a droplet in the same exact spot and
thus, the initial droplet positions in repeated trials are de-
termined by somewhat different locations of the triple line
on the surface). The independent simulations gave droplet
morphologies differing in details and different values of the
final parameters describing the geometry and energy of the
system. The final position of the droplet on the solid sur-
face was stable and did not undergo measurable changes,
as it was checked in the independent simulations including
additional iterative steps.

The shape of the initial lump reproducing the droplet
(rectangular cuboid of square base) from which the sim-
ulations started, was determined by an index A (termed
in this paper as the index of initial droplet flattening),
defined as the ratio of the length of the base edge to
the height of the cuboid. In the model this index re-
flected the mode of droplet deposition on the solid sur-
face: a small value of A corresponded to a delicate depo-
sition with no deformation of the droplet (its shape was
close to a sphere), while a high value of A corresponded
to a high impact deposition accompanied by flattening
of the droplet [53,54], as shown schematically in fig. 2.
The simulations were performed for different values of A
and T .

At the end of simulations, some parameters charac-
terizing the equilibrium morphology were calculated: the
internal Surface Evolver variables like the internal pres-
sure, some geometrical features of the droplet and the total
free energy of the system including all interfacial energies.
Additional calculations involving the solution of implicit
eqs. (10) and (14) were performed by numerical methods
in the SciLab package [55].

For convenience, in all simulations the gravitational
effects were neglected. Also, the line tension was not in-
corporated in the model. Moreover, it was assumed that
in all cases considered, the surface wetting was realized in
the Wenzel regime, that is, there were no unwetted points
on the solid surface within the circumference marking the
droplet contact with the surface [3].

All types of CAs considered in this study (and de-
scribed in detail in sects. 3.1–3.5) were obtained from
4000 independent simulations. The mean values of CAs
were calculated as averages of cosine of appropriate angles
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Fig. 3. Schematic presentation of the limiting values of the
pinning angles φ for a) θ∗ = 60◦ and b) θ∗ = 120◦. Since the
figure refers to the right side of the droplet, the left edges of
a rectangular prism are internal whereas the right edges are
external with regard to the droplet centre.

achieved on the basis of the mean values of the parameters
describing the surface and energy of the droplet, according
to the equations given in sect. 4.

Simulations were performed for two values of θ∗ equal
to 60◦ and 120◦.

The assumed values of θ∗, together with the values of
α, determined the behavior of the droplet in the course of
simulation. And thus, since these values did not respect
the following condition (known as the Concus-Finn con-
dition [49]):

2θ∗ + α ≤ 180◦, (3)

there was no unlimited spreading of the droplet along in-
terior edges of the surface structure.

On the other hand, another criterion, given by the fol-
lowing inequality [6,30]:

180◦ − 2α < 0, (4)

was fulfilled, which implied that the liquid could cross the
concave bottom edges and fill up the cavities in the solid-
surface structure.

The presence of sharp edges on the surface structure
features can cause the pinning of the triple line. The pin-
ning appears if the angle between the free liquid surface
and the wall of the surface structure element, hereafter
referred as the pinning angle, satisfies the so-called can-
thotaxis condition expressed by [50]

θ∗ ≤ φ ≤ θ∗ + α, (5)

where φ denotes the pinning angle which can take any
value from the range limited by the above inequality. If
condition (5) is satisfied, the Young equation no longer
works; the slope of the free surface of the droplet will be
defined rather by φ than by θ∗.

For the assumed values of θ∗, the values of φ must
come from the ranges (60◦, 165◦) and (120◦, 225◦), re-
spectively, which means that for both studied values of
θ∗, the pinning effect can be expected at both the internal
and external edges of surface features (see fig. 3 for the
explanation), and the actual pinning angle measured with
respect to the plane parallel to the solid can vary in the
following ranges:

1) θ∗ = 60◦ ⇒ ϕ ∈ (0◦, 60◦) for the internal edge and
ϕ ∈ (60◦, 165◦) for the external edge,

2) θ∗ = 120◦ ⇒ ϕ ∈ (120◦, 225◦) for the external edge.

3 Estimations of apparent CA

In this section different approaches to the evaluation of
CA from the simulation results, used in the study, are
presented.

3.1 CA from the surface roughness parameter

The theoretical value of Wenzel CA, θW, was calculated
from eq. (1) on the basis of the surface roughness param-
eter f , which was found from the value of surface area of
the solid S obtained from simulations. The mean Wenzel
CA, 〈θE〉 was found from

cos (〈θW〉) =
〈

S

S=

〉
cos(θ∗), (6)

where S= is the area of the projection of the solid surface
onto the planar parallel surface.

This estimation of CA is based only on the properties
of the solid surface applied.

3.2 CA from the solid/liquid interface area

Similarly as above, the CA was calculated from eq. (1),
but instead of the surface roughness parameter, the ac-
tual area of the solid surface wetted by the droplet, Sd,
obtained by the numerical minimization of the interfacial
energies of the system, was used. The CA calculated in
this way was denoted as θE. The mean value of this angle,
〈θE〉, was calculated from the equation

cos (〈θE〉) =
〈

Sd

Sd=

〉
cos(θ∗), (7)

where Sd= stands for the area of projection of Sd onto the
plane parallel to surface. The CA found in this way takes
into account the pinning effect of the triple line at surface
edges.

3.3 CA from the tangent angle at the triple line

The most widely used technique of CA measurement is
a direct measurement of the tangent angle at the three-
phase contact point on a sessile drop profile [2]. In this
study, the values of this angle denoted as θT were calcu-
lated on the basis of the inclination of all mesh triangles
representing the free liquid surface and being in contact
with the triple line to the plane parallel to the solid sur-
face from eq. (8a), while the mean values 〈θT〉 were then
obtained from eq. (8b):

θT = arccos
(

z

ST

)
(8a)
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Fig. 4. The values of θT measured along the droplet contour (n
is the number of subsequent triangles) at two different values
of A (indicated in the figure legend); and θ∗ = 60◦, I/V 1/3 =
0.175, L/V 1/3 = 0.263, T/V 1/3 = 5.8 · 10−3.

and

〈θT〉 = arccos
(〈

z

ST

〉)
, (8b)

where z and ST denote correspondingly the vertical coor-
dinate and the length of the normal vector of a triangle.
The triangles whose slopes were used for evaluation of θT

are indicated in fig. 1c.
The averaging of θT, discussed later on, was performed

for the entire perimeter of the droplet obtained in a single
simulation and for the all series of simulations. The θT val-
ues obtained from a single simulation revealed a consider-
able variation and deviated from Wenzel’s law prediction.
They oscillated in a very broad range, assuming the values
consistent with the predictions based of the ranges of the
pinning angle φ (inequality (5)), as shown in fig. 4.

3.4 CA from the droplet shape

The drop shape analysis is another widely used way to
measure CA [56,57]. In this study, in order to extract
CA from the droplet shape obtained by the numerical
minimization of the interfacial energies, the dimension-
less droplet shape parameter, named the droplet shape
quotient Q, was calculated. This parameter and its mean
value 〈Q〉 were defined by the following equations:

Q =
S3

d=

V 2
(9a)

and

〈Q〉 =
〈Sd=〉3

V 2
. (9b)

Knowing these values, the corresponding CAs, denoted as
θS and 〈θS〉, were found from numerical solution of the
equation

X = 9π
(1 + cos(θS))3

(1 − cos(θS))(2 + cos(θS))2
(10)

with X = Q or X = 〈Q〉, respectively.
The calculation of CA based on the use of the droplet

shape quotient is a generalization of a number of exper-
imental methods employing direct measurements of geo-
metrical parameters of the droplet: the diameter of cur-
vature of the liquid/gas interface D = 2R, the diameter
of the droplet base, d = 2r (for CAs greater than 90◦) [2]
and the droplet height H (H and d are adequate for each
CA value) [50], as well as other methods permitting the
calculation of the radius of curvature of the free surface of
the droplet, R, measured at the projection of the droplet
cap on the plane perpendicular to the solid surface [50].
The droplet shape quotient Q is correlated with parame-
ters R, r and H, directly measured from experiment, by
the following equations:

Q = 9π
r6

((R+
√

R2−r2)(R2+r2+R
√

R2−r2))2
(11)

Q = 36π
r6

H2(H2 + 3r2)2
. (12)

The correlations described by eqs. (10)–(12) indicate
that the model values of θS directly correspond to the
CAs measured by the experimental methods based on the
droplet shape analysis.

3.5 CA of the equivalent droplet

From the simulation results, the Laplace pressure inside
the droplet was found and then used for the calculation of
the radius of curvature of the droplet free surface, R, [6,
55] and its mean value 〈R〉, according to the equations

R =
2γL

Δp
(13a)

and
〈R〉 =

2γL

〈Δp〉 , (13b)

where Δp is the pressure difference between inside and
outside of the droplet. Equation (13b) defines the average
curvature radius of the set of droplets of different locations
and hence of different apparent CAs determining the free
liquid curvature.

Since in the equilibrium state, the pressure in the
whole droplet is the same, the mean curvature at any point
of the liquid surface should be identical as a consequence
of the Laplace law. However, as shown in fig. 5, the mean
curvature C (calculated for all mesh vertices representing
the free liquid surface) is not uniform over the whole sur-
face of free liquid. At high elevation, the curvature of free
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Fig. 5. Dependencies of relative mean curvature C of the liquid
surface on the z-coordinate for θ∗ = 60◦ at A = 1.5 and θ∗ =
120◦ at A = 0.8 (I/V 1/3 = 0.175, L/V 1/3 = 0.263, T/V 1/3 =
5.8 · 10−3).

liquid surface is constant and independent of z. At small z,
where the liquid surface is corrugated by inhomogeneities,
the mean curvature values are widely scattered around the
expected value. This dispersion of C values indicates that
the Laplace law is violated and the droplet is rather in a
metastable state than at equilibrium.

Next, it was assumed that the droplet for which the
simulation was performed, existed in equilibrium with an-
other droplet of the same volume but placed on the ideally
smooth solid surface (Laplacian droplet). The CAs of this
reference thermodynamically equivalent droplet, θP, and
its mean value 〈θP〉, were calculated from

Y 3 =
3V

π(2 − 3 cos(θP) + cos3(θP))
(14)

with Y = R or Y = 〈R〉, respectively.
As far as we know, there is no standard method for es-

timation of CA based on the idea presented here. Nonethe-
less, for the purpose of this study the measurability of 〈θP〉
was assumed.

4 Results and discussion

As explained in the Methodology section, in the course
of the optimization process the lattice nodes, determining
both the position of the free surface of the droplet and the
position of the solid surface, were subjected to random
shifts in space at each stage of simulations, in order to
mimic the scatter of results due to different initial droplet
positions at the surface in repeated trials. As a result of
random shifts of nodes of the lattice representing the solid
surface, the morphology of this solid surface also under-
went small changes and the sizes of inhomogeneities also

Fig. 6. Distributions of θW for different sizes of surface rough-
ness features (L values are indicated in the figure, I/V 1/3 =
0.175, T/V 1/3 = 5.8 · 10−3, A = 1.5, θ∗ = 60◦).

showed a certain scatter. Thus, also the values of Wen-
zel CA determined on the basis of the surface roughness
parameter were somewhat distributed. The distributions
of θW obtained for different sizes of the surface structure
elements, L, and for θ∗ = 60◦, are presented in fig. 6.

The obtained distributions of θW are symmetric and
to a high accuracy can be described by the Gaussian dis-
tribution with the correlation coefficient of 0.997 ± 0.002.
At θ∗ < 90◦ the value of θW monotonically decreases with
decreasing L, which is understandable taking into regard
that the total area of the surface increases as L decreases.
The observed decrease in θW is not regular which is a
consequence of varying ratio of L to the size of lattice tri-
angles mapping the solid surface. The distributions of θW

obtained for θ∗ = 120◦ were analogous to those presented
in fig. 6, as they were obtained on the basis of the same
simulation results; only the sign of the proportionality co-
efficient in eq. (6) was changed (i.e., cos(θ∗) = −1/2).
The above presented results characterize the solid surface
used in the study and illustrate the predictions following
from the Wenzel law. One could expect such dispersion of
θW values, if its only reason was the deviation of results
following from random steps of simulation and there were
no systematic biases arising from specific behavior of the
droplet.

The θE quantifies the free energy of wetting and it was
assumed as a reference CA. The obtained values of θE are
presented in figs. 7 and 8 for θ∗ = 60◦ and θ∗ = 120◦,
respectively. The θE values and their distributions were
calculated on the basis of the free energy of wetting, Ed,
obtained as a result of the numerical minimization of the
total free energy of the system:

Sd

Sd=
=

Sd(γSL − γS)
Sd=(γSL − γS)

=
Ed

Ed=
, (15)

where Ed= is the free energy of wetting of a reference sur-
face, i.e. of a smooth solid surface of the area equal to that
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Fig. 7. Distributions of θE for different values of L (L val-
ues are indicated in the figure, θ∗ = 60◦, I/V 1/3 = 0.175,
T/V 1/3 = 5.8 · 10−3, A = 1.5).

Fig. 8. Distributions of θE for different values of L (L values
are given in the figure, θ∗ = 120◦, I/V 1/3 = 0.175, T/V 1/3 =
5.8 · 10−3, A = 1.0).

of projected area, while γSL and γS denote solid-liquid and
solid-vapor interfacial tensions, respectively. Thus, the val-
ues of θE hold the information on the real values of inter-
facial energy of the system.

As shown in fig. 7, the distributions of θE, similarly
as those of θW, decrease monotonically with decreasing L.
However, in this case the dependence is more complicated.
Some individual distributions are shifted to make groups
of two or three, they are broader, especially for small L,
and some of them (at L/V 1/3 = 0.146, 0.263, 0.351 and
0.439) reveal a hyperfine structure indicating that a given
total distribution is a sum of a few distributions with the
expected values of θE differing by 1◦ to 3◦. The changes
in the distributions follow from the fact that some of the
possible final shapes of the droplet are preferred because
of the pinning effect. As a result of this effect, in the course

Fig. 9. Distributions of θT, θS and θP for different values of
L (L values are given in the figure, θ∗ = 60◦, I/V 1/3 = 0.175,
T/V 1/3 = 5.8 · 10−3, A = 1.5).

of the rearrangement of the droplet shape from its initial
to final form, the triple line shifts from the solid surface
structure elements, on which it can freely move and the
inclination of free liquid surface is invariably θ∗, to the el-
ements on which the position of the contact line is strictly
defined by sharp edges but the inclination of liquid surface
can vary and must satisfy inequality (5). The scatter of θE

for a given L implies that the modeled droplet can assume
many different morphologies, differing, e.g., in the degree
of anisotropy and in the mean radius of curvature of the
droplet free surface, in the regions near the edge at which
the triple line is pinned. It means that the morphologies,
in general, do not correspond to the state of thermody-
namic equilibrium of the droplet but only to the station-
ary states at local energy minima at which the Laplace
law is not satisfied (see fig. 5). For θ∗ = 120◦ (fig. 8),
θE values behave analogously, but with more pronounced
broadening and hyperfine structures.

Figure 9 presents the distributions of θT, θS and θP

for different values of L. These distributions are gener-
ally much broader than those of θE (particularly for θT

and θP). They are also disordered in the sense that the se-
quences of maxima in the distributions are different from
those of θE and θW, which is best visible for θS. It is
difficult to find any correlation between the distributions
shown in fig. 9 and those of θE and θW.

The above-presented results were obtained at the same
values of parameters T and A, which in the simulations
mimic different locations of the droplet in respect to the
surface structure elements in repeated trials of the CA
measurement and the impact of the droplet on the surface,
respectively.

The influence of the amplitude of fluctuations, T , on
the mean values of CAs estimated by different methods
is illustrated in fig. 10. As seen, the mean CA values are
practically independent of T in the range considered in
this study (the simulations were performed for T/V 1/3 of
5.8·10−3 and 5.8·10−2). Hence, the influence of this param-
eter on the simulation results can be neglected. However,
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Fig. 10. Dependencies of 〈θW〉, 〈θE〉, 〈θP〉, 〈θT〉 and 〈θS〉
against T (θ∗ = 60◦, A = 1.5).

Fig. 11. The influence of A on the CA values estimated by
different approaches as identified in the figure legend, I/V 1/3 =
0.175, L/V 1/3 = 0.263, T/V 1/3 = 5.8 · 10−3 and a) θ∗ = 60◦,
A0 = 1.732, b) θ∗ = 120◦, A0 = 0.577.

one should be aware that although the T value does not in-
fluence the simulation results, the fluctuations defined by
T are the only factor responsible for the appearance of dif-
ferent morphologies of the droplets, imitating the random
character of the droplet morphology on the solid surface
and the randomness of the results of the CA measure-
ments.

In the simulations, the droplet was initialized as a
cuboid, whose shape was determined by the parameter
A. As follows from the comparison of results presented
in figs. 11a and b, there is no distinct influence of A on
the values of 〈θW〉, for both studied values of θ∗. In the
whole A range studied, the values of 〈θW〉 underestimate
the effect of surface roughness on CA both for θ∗ = 60◦
and for θ∗ = 120◦ (being too high or too low, respec-
tively), but they are more similar to corresponding 〈θE〉
values then the estimations of CAs obtained from simu-
lated experimental measurements. Moreover, at θ∗ = 60◦

Fig. 12. The influence of L on the CA values estimated
by different approaches (identified in the figure legend) for
I/V 1/3 = 0.175, T/V 1/3 = 5.8 ·10−3, θ∗ = 60◦ and a) A = 0.6,
b) A = 1.5.

a noticeable change in 〈θE〉 is observed in the vicinity of a
certain value of A (denoted as A0), which corresponds to
the d/H ratio characterizing the shape of the droplet at
equilibrium. For higher A values the pinning of the triple
line of the flattened droplet to surface defects hinders the
rearrangement of the droplet to its equilibrium shape and,
in consequence, the difference between 〈θE〉 and 〈θW〉 is
greater. It is noteworthy that at θ∗ = 120◦, for which the
triple line is relatively short, and hence, the contribution
of the pinning phenomenon is smaller, the Wenzel equa-
tion gives quite good estimation of 〈θE〉.

On the other hand, a significant dependence of the
values of 〈θP〉 and 〈θS〉 on A is found. Moreover, it can be
also observed that when A tends to a certain value slightly
smaller than A0, the values of these CAs approach those
of 〈θE〉. The exception is the behavior of 〈θP〉 for θ∗ =
120◦; in the studied A range the value of 〈θP〉 does not
reach that of 〈θE〉. The values of 〈θT〉, which are the most
sensitive to the conditions at the triple line from among
CA estimations employed in the study, differ considerably
from those of 〈θE〉 in almost whole A range examined.

A deviation of 〈θP〉 from the expected value 〈θE〉 is
caused by the fact that the rearrangement of the droplet
shape toward that of a spherical cup is hindered by the
pinning effect (as seen in figs. 1b and c, the triple line is
contorted). With this arrested droplet shape, the system
does not satisfy the Plateau law. So, the measured values
of CAs are not the equilibrium values predicted by the
Wenzel law.

Figures 12 and 13 summarize the results of estimation
of CA by means of the approaches described in sect. 3, in
the form of plots of 〈θW〉, 〈θE〉, 〈θP〉, 〈θT〉 and 〈θS〉 against
L. According to fig. 12a, representing the results found for
θ∗ = 60◦ and A value small as compared to A0 (A = 0.6),
the CA estimations based both on the Wenzel law as well
as on simulated experimental measurements give higher
values than the corresponding values of 〈θE〉 in the whole
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Fig. 13. The influence of L on the CA values estimated
by different approaches (identified in the figure legend) for
I/V 1/3 = 0.175, T/V 1/3 = 5.8·10−3, θ∗ = 120◦ and a) A = 0.3,
b) A = 1.0.

L range studied. On the other hand, when the initial
droplet shape is only weakly distorted (fig. 12b), the esti-
mations based on simulated measurements, at least 〈θP〉
and 〈θS〉 are closer to the corresponding values of 〈θE〉, but
their scattering is greater than the error of any standard
experimental methods of CA measurement [50]. The 〈θT〉
estimations differ considerably from the expected 〈θE〉 val-
ues for both A studied. These differences are greater than
the error reported for the techniques of CA determina-
tions based on direct measurement of the tangent angle at
the three-phase contact line (e.g. 5% in the tilting plate
method [2]).

For θ∗ = 120◦ (fig. 13), at which the contribution of the
effect of corrugation of triple line becomes less severe (be-
cause of smaller length of the triple line), the agreement
between 〈θW〉 and 〈θE〉 was obtained at both selected val-
ues of parameter A (0.3 and 1.0). However, the results
of simulated experimental measurements deviate signifi-
cantly from the 〈θE〉 values; except for some estimations
of 〈θS〉 obtained for the value of A parameter correspond-
ing to only a small deviation of the initial droplet shape
from the hypothetical equilibrium shape.

The distinct differences in CAs estimated by various
approaches, as presented in figs. 12 and 13, indicate that
the apparent CA cannot be used as a measure of the solid-
surface free energy if the roughness scale of the solid is not
small enough.

5 Conclusions

In this paper different approaches to the assessment of the
CA values from numerical simulations of a liquid droplet
settled on surfaces with meso-scale roughness pattern were
employed and the obtained results were analyzed in terms
of the applicability of the Wenzel law for the determina-
tion of the solid-surface free energy.

It was found that the Wenzel equation overestimates
(for θ∗ = 60◦) or underestimates (for θ∗ = 120◦) the values
of apparent CA as compared to those estimated on the
basis of correctly calculated free energy of wetting, that is,
when the actual solid surface occupied by the droplet, not
the surface roughness parameter, is taken into account.

It was also found that the CA values obtained from
simulated experimental measurements, i.e., 〈θT〉, 〈θS〉 and
〈θP〉, do not provide a correct description of the thermo-
dynamics of a droplet deposited on a rough solid surface,
since, in general, there is no direct correlation between
these CAs and the free energy of wetting. The differences
between these “measured” CAs and the CA values esti-
mated on the basis of the free energy of wetting (〈θE〉),
increase with increasing deviation of the initial droplet
shape from the equilibrium shape (|A−A0|). This relation
follows from the dependence of the resulting morphology
of the droplet on the mode of its deposition on the solid
surface.

A droplet deposited on the solid surface with the meso-
scale roughness can exist in a metastable state for which
the Laplace law is not satisfied, i.e. the curvature of the
free liquid surface is not uniform and exhibits significant
dispersion close to the triple line. It is so because the val-
ues of actual CAs are not the same at different surface
structure elements, and hence, there are variations in the
slope of the tangent to the local free liquid surface of the
droplet.

The discrepancies between CA estimations yielded by
different approaches result from the phenomena taking
place at the triple line. In the range of θ∗ studied, the
corrugation of the triple line is caused by the pinning ef-
fect. In a wider range of θ∗ other effects, related to the
Concus-Finn condition, are expected (3).
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