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Abstract. We simulate ABA triblock copolymer melts using a lattice Monte Carlo method, known as
cooperative motion algorithm, probing various degrees of compositional asymmetry. Selected order-disorder
transition lines are determined in terms of the segment incompatibility, quantified by product χN , and
the triblock asymmetry parameters, α and β. We correlate the results of the simulation with the self-
consistent field theory and an experimental study of polyisoprene-polystyrene-polyisoprene triblock melt
by Hamersky and coworkers. In particular, we confirm the mean-field prediction that for highly asymmetric
triblocks the short A-block is localized in the middle of the B-domain due to an entropic advantage. This
results in the middle block relaxation and is consistent with the experimental data indicating that as the
relatively short A-blocks are grown into AB diblock, from the B-block side, the order-disorder transition
temperature is considerably depressed.

1 Introduction

Triblock copolymer melts are both interesting and useful
because of their potential to self-assemble into a plethora
of nanostructures [1]. This ability originates from the im-
miscibility of covalently bonded blocks which cannot seg-
regate on a macroscopic scale, and therefore form ordered
nanophases. The nanophase self-assembly is mostly gov-
erned by a competition of chain stretching energy (which
is of entropic origin) and the enthalpic interfacial energy.
A linear triblock ABC copolymer chain consists, in gen-
eral, of the three distinct blocks, A, B, and C, connected
sequentially. Terminal blocks A and C are often built from
the same type of segments, resulting in a triblock copoly-
mer ABA which has only 2 types of segments, A and B, as
the diblock. In this paper we focus on such ABA triblocks
which have been subject of numerous studies. Additional
incentive for studying those triblocks is related to their
ability to form loops and bridges [2,3] which significantly
modifies their mechanical properties. While AB-diblock
copolymer melts are known to form only a few stable
nanophases (such as layers, L, hexagonally packed cylin-
ders, C, gyroid nanostructures, G, with the Ia3d sym-
metry, cubically packed spherical cells S, and a recently
reported O70-phase [4,5]), the triblock melts form tens
of different phases [1]. In case of a diblock AB copoly-
mer melt, the phase behavior is controlled by the chain
composition, f (volume fraction of segments of type A),
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degree of polymerization (total number of segments), N ,
and the temperature-related χ parameter [6,7]. The or-
dered nanophase can be dissolved into a disordered phase,
for example, upon heating. Phase diagrams of such melts
exhibiting order-disorder transition (ODT) lines, also re-
ferred to as binodals, and order-order transition (OOT)
lines are known from experiment [8] and are successfully
predicted by mean-field (MF) theories [9,10], such as self-
consistent field theory (SCFT) which is based on the stan-
dard Gaussian chain model [11], or theories including fluc-
tuations [12,13]. Because, in the MF theories, it is suffi-
cient to know the composition, f , and the product χN in
order to determine the nanophase [9,14,15], the diblock
phase diagram are often mapped in (χN , f)-plane. Sim-
ilarly, the MF phase behavior of the ABA triblock melt
is governed by χN and the triblock composition, which
can be parametrized by 2 convenient numbers, α and β,
as follows:

f1 =
1
4
− β

2
− α, (1)

f2 =
1
2

+ β, (2)

f3 =
1
4
− β

2
+ α, (3)

where fi (i = 1, 2 or 3) is the volume fraction of the
block of type i (labels 1 and 3 correspond to the terminal
A-blocks, and label 2 corresponds to the middle B-block);
f1+f2+f3 = 1. In most previous studies [16–19] a different



344 The European Physical Journal E

parametrization was used, as shown below:

f1 = τfA, (4)

f2 = 1 − fA, (5)

f3 = (1 − τ)fA. (6)

The first parameter, α, provides a measure of asymme-
try between terminal A-blocks (f1 and f3); α = 0 corre-
sponds to a symmetric triblock with equal terminal blocks.
The second parameter, β, quantifies the volume fraction
of the middle block; β = 0 corresponds to volume fraction
equal to 1/2.

The ABA triblock phase diagram can be mapped in
the MF approximation, as shown for symmetric (α =
0) [18] and asymmetric (α �= 0) [19] cases by Matsen who
calculated ODT and OOT lines as a function of τ and
fA for 3 selected degrees of incompatibility (χN = 20,
30 and 40). This phase diagram exhibited a continuous
change from the AB diblocks to the ABA triblocks of
varying asymmetry, but the binodals were deflected for
some critical degree of asymmetry. This effect was ac-
counted for by the localization of short terminal blocks in
the middle-block B-domain due to a relative entropic ad-
vantage. This was demonstrated by both numerical SCFT
and a simplified analytical model based on the strong seg-
regation theory (SST) initially developed for copolymers
in refs. [20,21].

This picture is supported by the experimental work
of Hamersky et al. [22] in which the phase behavior of
PS-PI-PS triblocks (2 series: 9-46-A2, and 9-17-A2 with
the A-block grown into AB diblock from the B-block
side) was reported. While TODT was expected to increase
with increasing copolymer molecular weight due to greater
incompatibility (expressed by χN), it was, somewhat
counter-intuitively, depressed (up to 43 ◦C) as the length
of the grown A-block became comparable with the other
A-block, and then the trend reversed giving rise to a min-
imum in TODT . Hamersky et al. explained this behavior
by localization of the short A-block within the B-blocks,
which resulted in relaxation of the stretched B-midblock,
and thus lowering TODT . This explanation was mostly in-
spired by Matsen’s work [19], but the calculations of the-
oretical MF binodals were based on work of Mayes and
Olvera de la Cruz [16,17]. It should be noted that the
theories developed by Mayes and Olvera de la Cruz are
conceptually different from the SCFT approach (which
is, in principle, exact within the MF framework), because
they are based on 4th-order expansion of the free energy as
introduced by Leibler [9], and also (in ref. [17]) on the one-
loop approximation (OLA), which goes beyond the MF by
including some fluctuations, as proposed by Fredrickson
and Helfand [12]. Since the explanation of the localization
of the short A-blocks within the B-domain is based on the
MF theory in strong segregation limit (χN → ∞) we also
intend to use Matsen’s SCFT [19] to illustrate the effect of
TODT depression. Thus we consistently use theories which
are on the same level of approximations.

While the SCFT is both efficient and successful in elu-
cidating the phase behavior of block copolymer melts, it

is still a mean-field approach, and therefore it offers only
an approximate solutions to the Gaussian models of block
copolymer melts. In particular, the OLA theory gives the
following corrections to the binodals of symmetric diblocks
(f = 1/2) [12] and triblocks (α = β = 0) [17]:

(χN)OLA
ODT = (χN)MF

ODT + κN−1/3, (7)

where (χN)MF
ODT = 10.5 and κ = 41 for the diblock, and

(χN)MF
ODT = 18 and κ = 90 for the triblock. Note that MF

should be exact in the strong segregation limit (χN → ∞).
However, there is evidence that this theory strongly un-
derestimates the ODT fluctuation shift in χN as shown
in Monte Carlo simulations [23–25]. Recent advances in
field-theoretic simulations [7,13] also demonstrate, that
inclusion of field fluctuations (beyond the self-consistent
mean-field approximation) is crucial for quantification of
microphase separation in these systems. Particle simula-
tions of block copolymers pose a considerable challenge
because of the finite-size effects [26,27]. In this work we
use a lattice model, because lattice simulations tend to be
more efficient (compared to continuum ones [28]), while
capturing the essential physics of uncharged block copoly-
mer assembly. However, there many practical problems
with obtaining the exact results in Monte Carlo simu-
lation. Finite-size effects, competition of many relevant
length scales and prohibitively long relaxation times make
the simulation quite challenging. In addition, there are
also effects of the underlying lattice. Finally the relatively
short chain in lattice MC simulation are not Gaussian,
as noted for example by Groot and Madden [29] in their
interpretation of the dissipative particle dynamics (DPD)
simulations of diblock melts, also in simulation of Abu-
Sharkh and AlSunaidi [30] of triblock melts.

In this work we wish to confirm the SCFT predictions
for the ABA triblock melt by MC simulations. In partic-
ular, we intend to verify the binodals for selected paths in
the phase diagram, estimate the fluctuation effects, con-
firm the localization of the short A-block in the middle of
the B-domain, and relate this effect to experimental study
of Hamersky et al. [22].

2 Method

2.1 The SCFT binodals

In order to get a starting picture for the ABA triblock
copolymer phase diagram, we calculate the spinodal sur-
face where the disordered phase becomes unstable with
respect to small composition fluctuations, using Random
Phase Approximation (RPA) [9] presented in appendix A.
While the RPA spinodals and the SCFT binodals are
different, they usually (but not always) follow the same
trends. The spinodals, expressed in terms of χN , are
shown in fig. 1, as a function α and β. We can identify
a saddle point for the symmetric triblock (α = β = 0).
In this figure we show 3 lines indicating paths showing
different behavior:
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Fig. 1. RPA spinodals of the ABA melt; (χN)RPA spinodal as
a function of α and β. The relevant paths in the parameter
space are shown, MAX, MON and MIN.

– MAX, varying asymmetry, α, and fixed β = 0; with a
maximum at α = β = 0;

– MON, varying β, and fixed α = 0.19; monotonic be-
havior;

– MIN, varying β and fixed α = 0; with a minimum at
α = β = 0.

This can be compared to the SCFT binodals as re-
ported by Matsen [19]. Since Matsen reported binodals
only for 3 values of χN (20, 30 and 40), we fit his re-
sults to a polynomial as presented in appendix B. (data
for symmetric diblock and triblock are taken into account;
(χN)c = 10.5 for α = ±1/4 and β = 0, (χN)c = 18 for
α = 0 and β = 0) In fig. 2 we show the ODT surface
which resembles spinodal surface in its general shape, but
is shifted towards lower χN ’s, as expected.

2.2 Monte Carlo simulations

The simulations are performed using cooperative motion
algorithm (CMA) [31] for a face-centered cubic (FCC) lat-
tice with the coordination number z = 12 and the bond
length

√
2a, where a is the FCC lattice constant. Chain

bonds are not allowed to be broken or stretched. Stan-
dard periodic boundary conditions are applied. The lat-
tice box size is chosen to fit the chain, and the lattice sites
are completely filled with chain segments —there are no
vacancies. Since all lattice sites are occupied, a chain seg-
ment can move if other segments move simultaneously. An
attempt to move a single segment defines a single Monte
Carlo step. The interaction energy between segments of
types i and j is given by εij , where εAA = εBB = 0, and
εAB = ε. The interaction is limited to the nearest neigh-
bors (z = 12), and the interaction parameter, ε, is related
to the Flory χ parameter by the following equation:

χ =
(z − 2)ε

kT
. (8)

Fig. 2. Polynomial fit to the SCFT binodals from ref. [19];
(χN)ODT as a function of α and β.

Parameter ε serves also as an energy unit and we can
define the reduced dimensionless interaction parameter
ε∗ij = εij/ε, the reduced energy per lattice site and the
reduced temperature as

E∗

na
=

E/ε

na
, (9)

T ∗ =
kT

ε
, (10)

where na is the number of lattice sites.
We start the simulation by equilibrating the system in

the athermal limit, that is, where ε/(kT ) is zero. When
the system reaches its thermal equilibrium, the polymer
chains assume statistical conformations, random orienta-
tions, and become uniformly distributed within the sim-
ulation box. We record the translational diffusion of the
copolymer chains in order to estimate the simulation time
scale. In the athermal melt, it takes about 1.4 × 104 MC
timesteps to diffuse at a distance of the order of the radius
of gyration of the 8-16-8 copolymer chain. We equilibrate
the athermal melt for 1 × 107 MC timesteps, and from
the equilibrated melt state the system is quenched to a
required temperature. We also verify the quality of ther-
mal equilibration by heating the system up and cooling it
down again. This procedure is fully described in [32]. For
each temperature we perform 5 × 106 Monte Carlo (MC)
timesteps. First 2×106 are to equilibrate the system, and
latter 3×106 to sample the data. For a given T ∗ we repeat
the simulation experiment six times starting with differ-
ent initial states. For a given state point, all runs yield
the same type of nanostructure, and the results are aver-
aged over all such runs. While this method works quite
relatively well for high temperatures, it tends to generate
long relaxation times for lower temperatures. This results
in unreliable estimates of the sampled properties. To solve
this problem many modifications to the standard meth-
ods were proposed, such as parallel tempering method, in
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which by parallel simulation of many replicas in the rel-
evant temperature range, the energy barriers of the local
free energy minima can be overcome [33,34]. In this work
we do not use the parallel method.

To calculate binodals in this simulation we monitor
such quantities as the energy per lattice site, E∗

n = E∗/na,
specific heat calculated as

CV =
〈(E∗ − 〈E∗〉)2〉

ncT ∗2 , (11)

where nc = na/N is the number of chains, the variations of
the end-to-end distance of triblock chain, R2, as a function
of the reduced temperature. Moreover we also calculate
the structure factor, S(k), by averaging over statistically
independent configurations using the following equation:

S(�k ) =
1

nA

〈(
nA∑

m=1

cos(�k · �rm)

)2

+

(
nA∑

m=1

sin(�k · �rm)

)2〉
thermal average

, (12)

where nA denotes the number of segments of type A and
�rm denotes the position of the m-th segment of type A.
The magnitude of wave vector, k, varies from kmin = 2π/L
to kmax = 2π/b, where L is a size of the cubic lattice
whereas b is the distance between nearest monomers, i.e.√

2a. Moreover, �k vectors are commensurate with the sim-
ulation box size, and this constraint limits their num-
ber and allowed lengths. Because the system may not be
isotropic, S(k) is calculated by averaging over all S(�k )
such that |�k | is equal to k. We take the emergence of mul-
tiple peaks in S(k) as a signature of the order-disorder
transition.

3 Simulation results and discussion

First we present the relevant results for an asymmetric
triblock, 1-16-15 (consisting of one A-segment, followed
by 16 B-segments and terminated with 15 A-segments),
melt in order to verify the effect of the localization of the
short A-block (in this case consisting only of one segment)
in the middle of the B-block domain, and next we show
and discuss the Monte Carlo binodals along the MAX,
MON, and MIN paths, as defined in the introduction.

We start the simulation of the 1-16-15 melt, in the
32×32×32 box, at the athermal limit as described in the
previous section. Next we gradually decrease the tempera-
ture to obtain the strongly segregated layers at T ∗ = 4.0.
At this temperature we calculate the density profiles of
segments from different blocks, as shown in fig. 3, in the di-
rection normal to layers. As expected from Matsen’s SST
approach [19], the short A-block is localized within the
B-domain with the maximum density in the center of the
B-domain. This is also confirmed by a visual examina-
tion of the simulation snapshots as shown in fig. 4 which
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Fig. 3. Density profiles, in the direction normal to layers, from
the simulation of the 1-16-15 melt; circles: long A-block (15
segments), diamonds: B-block (16 segments), squares: short
A-block (1 segment).

Fig. 4. Simulation snapshot of the ordered lamellar phase
for the 1-16-15 melt; the short A-block is shown in black, the
B-block in gray and the long A-block is not shown.

clearly show the localization of the short A-blocks. Inter-
estingly, this effect was used by Hamersky et al. to explain
their experimental results for PS-PI-PS triblocks (2 series:
9-46-A2, and 9-17-A2 with the A-block grown into AB di-
block from the B-block side). While TODT was expected to
increase with increasing copolymer molecular weight due
to greater incompatibility (expressed by χN), it was ac-
tually depressed (up to 43 ◦C) as the length of the shorter
block was increased until both A-blocks became compara-
ble, and then the trend reversed giving rise to a minimum
in TODT . Hamersky et al. explained this behavior by lo-
calization of the short A-block within the B-blocks, which
resulted in relaxation of the stretched B-midblock, and
thus lowering TODT . In fig. 5 we show both the SCFT
binodals and the experimental ones [22] for the 9-46-A2

series. We verify that the TODT depression upon grow-
ing a relatively short A-block. It is worthwhile to stress
that, unlike Hamersky et al. [22] who used the approach
of Mayes and Olvera de la Cruz, we used the SCFT ex-
trapolated binodals. Thus we apply a theory which is on
the same MF level of approximation as the MF theory de-
veloped for explaining the A-block localization effect [19].
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Fig. 5. The ODT lines for the experimental series 9-46-A2 of
the PI-PS-PI triblock [22] (A2 varying from 0 to 27; a) the
corresponding SCFT binodals of Matsen [19], b) experimental
binodals expressed in terms of χN , where χ is related to tem-
perature via χ = A + B/T with A = 52.6 and B = 0.0739,
c) experimenal binodals in terms of temperature.

Now we report Monte Carlo binodals along the MAX,
MON, and MIN paths, as defined in the introduction, and
compare them with the SCFT binodals. We use two length
of ABA triblock copolymer microarchitecture, N = 32
and N = 34. Three different box sizes are used for shorter
chain and one for N = 34 system. For the MAX case we
simulate for the following microarchitectures:

– 32 × 32 × 32, 64 × 32 × 32, and 64 × 64 × 64 lattice:
8-16-8, 7-16-9, 6-16-10, 5-16-11, 4-16-12, 3-16-13, 2-16-
14, and 1-16-15;

– 34 × 34 × 34 lattice:
8-17-9, 7-17-10, 6-17-11, 5-17-12, 4-17-13, 3-17-14, 2-
17-15, and 1-17-16.

For the MON case we use 20-4-8, 18-8-6, 16-12-4, 14-16-2,
and 12-20-0. For the MIN case we use the simulation data
from our earlier work [3]. The ODT temperatures can be
estimated by monitoring the reduced energy per lattice
site, E∗/na, specific heat, CV , mean-squared end-to-end
distance, R2, as well as structure factor, S(k). For exam-
ple, in fig. 6 we show results for 8-16-8 triblock copolymer
melt simulated on the 32× 32× 32 lattice lattice. We no-
tice that at about T ∗ ≈ 8.0 the reported quantities show a
characteristic behavior. In particular, a decrease of energy
is seen upon cooling, and also an increase of mean-squared
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Fig. 6. Simulation results for the 8-16-8 triblock copolymer
melt simulated on the 30×30×30 lattice; a) energy per lattice
site, E∗/na, b) specific heat, CV , c) mean-squared end-to-end
distance, R2.

end-to-end distance, and a maximum in the specific heat.
We calculate structure factor from eq. (12), as we demon-
strated in ref. [35]. At high temperatures we observe a sin-
gle broad peak, characteristic of a disordered phase, but as
the T ∗ is lowered the multiple and narrow peaks develop
which indicates the onset of the ODT. Those peaks can
be used to identify the nanophase at lower temperatures.
This identification can be confirmed by visual examination
(snapshots) of the simulation configurations.

In fig. 7 we show the simulation ODT lines (binodals)
for the MAX path and the corresponding SCFT results. It
is interesting to notice that increasing asymmetry causes a
decrease of the ODT in terms of χN . It means that, if we
convert χ’s to temperatures, increasing asymmetry stabi-
lizes the ordered phase, as expected from the MF theory
and observed in experiment. While a qualitative agree-
ment between the simulation and SCFT binodals can be
observed, we can see that the MC binodals have a max-
imum which is more flat, compared to the SCFT maxi-
mum. We observe ordered layers for all simulation points.
The simulation binodals are shifted in terms of χN by a
factor of 2, when compared to the SCFT binodals. For
α = 0 this shift is larger than the OLA prediction but
smaller than the Matsen’s estimate [23] which shits the
(χN)ODT by a factor of 2.7. This shift is expected by the
Fredrickson-Helfand theory, but the its magnitude is not
easy to estimate for a variety of reasons:
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Fig. 7. The Monte Carlo binodals (a) vs. the SCFT binodals
(b) as a function of α along the MAX path. Different simulation
series are denoted as follows: the N = 32 in 32 × 32 × 32
simulation box as squares, N = 32 in 64 × 32 × 32 as circles,
N = 32 in 64 × 64 × 64 as upward triangles, and N = 34 in
34 × 34 × 34 as downward triangles.

– while the SCFT approach is based on the Gaussian
chain model, the Monte Carlo method is based on the
lattice model, and therefore the results for those mod-
els may differ, particularly for relatively short chains
and blocks;

– the relatively short lattice chains are not Gaussian;
– field-theoretic simulation [7] are the exact way to cal-

culate the fluctuations for the SCFT.

In fig. 8 we present the Monte Carlo binodals (a) and
the corresponding SCFT binodals (b) as a function of β
parameter with a fixed asymmetry parameter, α = 0.1875.
The SCFT binodals for are compared with simulation re-
sults. Simulation has been performed for five β’s values:
0.125, 0, −0.125, −0.250 and −0.375 (not shown), which
corresponds to 12-20-0 (diblock), 14-16-2, 16-12-4, 18-8-6
and 20-4-8 microarchitectures, respectively. In fig. 8 we
can notice a qualitative agreement between the SCFT
calculation and simulation. As β is increased along this
path, the binodals monotonically decrease. Moreover, we
observe a variety of ordered phases, including L, PL, S and
a an unidentified bicontinuos (B) phase. The PL phase is
probably the non-equlibrium phase corresponding to the
equilibrium G phase [36].

Finally, for the MAX path, we present the simulation
binodals from our earlier work [3] and the corresponding
SCFT binodals (fig. 9). This simulation was performed for
three ABA chain microarchitectures: 7-16-7 (β = 1/30),
10-10-10 (β = −1/6), and 3-24-3 (β = 0.3). A similar
agreement between the simulation and SCFT binodals, as
for the previous paths, is reported.

It should be noted that eq. (8), relating χ to the re-
duced temperature, may not approximate for comparing
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Fig. 8. The Monte Carlo binodals (a) vs. the SCFT binodals
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Fig. 9. The Monte Carlo binodals [3] (a) vs. the SCFT bin-
odals (b) as a function of β along the MIN path; α = 1/30.

the results of the lattice model and the Gaussian chain
model, as demonstrated by Morse and Chung [37], and
earlier by Muller and Binder [38]. Morse and Chung have
shown that the effective χ parameter should be extracted
from the lattice simulation as follows:

– the effective number of nearest intermolecular contacts
has to be calculated in the athermal state for different
chain lengths, N ;

– this number has to be extrapolated to N → ∞ (or
1/N → 0), yielding zeff ;

– zeff is to be used in eq. (8) instead of (z − 2 = 10).

For this simulation we estimate zeff ≈ 7.5, and this value
should be used to calculate the effective χ paramater,
χeff , which is smaller by 25% compared to the original
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value, obtained with z − 2 = 10. This rescaling improves
the overall agreement between the MF and Monte Carlo
results by the same factor, that is 25%.

In summary, we show that the Monte Carlo binodals
follow the same trends as the SCFT binodals for the 3 rep-
resentative cases, that is for MAX, MON and MIN paths.
However, the SCFT binodals are significantly shifted to-
wards higher values of the incompatibility expressed by
χN , and also by χeffN .

4 Conclusions

We simulate the ABA triblock copolymer melt using the
CMA method, probing various degrees of compositional
asymmetry, and determine binodals in term of the seg-
ment incompatibility, quantified by product χN , and the
asymmetry parameters, α and β. We correlate the re-
sults of the simulation with the self-consistent field the-
ory and the experiments of Hamersky et al. [22]. In par-
ticular, we verify that for a highly asymmetric triblock
melt the short A-block is localized in the middle of the B-
domain as predicted by the mean-field theory [19]. This
is accompanied by the relaxation of the middle block.
Moreover, this agrees with the experimental report of
Hamersky and coworkers showing that as the A-block is
grown into AB diblock, from the B-block side, the order-
disorder transition temperature is depressed for short
A-blocks.

We also show that the Monte Carlo binodals follow the
same trends as the SCFT binodals for the 3 representative
cases, that is for MAX, MON and MIN paths. However,
the SCFT binodals are significantly shifted towards higher
values of the incompatibility expressed by χN , and also by
χeffN . This shift is expected by the Fredrickson-Helfand
theory, but its magnitude is not easy to estimate. The
SCFT approach is based on the Gaussian chain model,
the Monte Carlo method is based on the lattice model,
and therefore the results for those models may be difficult
to relate, particularly for relatively short chains and blocks
which are not Gaussian.

Finally it is worth to notice that the general shape of
the RPA spinodal and the SCFT binodals agree. Since the
SCFT binodals correctly describe the lowing of the TODT

upon successive growing the A-block from the B-block of
the initial AB diblock, it may be possible to capture this
effect by RPA alone, without resorting to the MF theories,
such as SCFT and SST, not to mention more sophisticated
theories which include fluctuations.

Grant N204 125039 of the Polish Ministry of Science and
Higher Education is gratefully acknowledged. Significant part
of the simulations was performed at the Poznan Computer and
Networking Center (PCSS). We thank M.W. Matsen for useful
comments.

Appendix A.

The RPA structure factor, S(k), for triblock melt ABA
(with microarchitecture characterized by, f1, f2, and f3;
f1+f2+f3 = 1) is calculated using the following functions:

g0(x) = exp[−x], (A.1)

g1(x) =
1 − exp[−x]

x
, (A.2)

g2(x) =
2(x + exp[−x] − 1)

x2
, (A.3)

g11(x) = f2
1 g2(f1x), (A.4)

g22(x) = f2
2 g2(f2x), (A.5)

g33(x) = f2
3 g2(f3x), (A.6)

g12(x) = f1f2g
1(f1x)g1(f2x), (A.7)

g13(x) = f1f2f3g
1(f1x)g0(f2x)g1(f3x), (A.8)

g23(x) = f2f3g
1(f2x)g1(f3x), (A.9)

gAA(x) = g11(x) + g33(x) + 2g13(x), (A.10)

gBB(x) = g22(x), (A.11)

gAB(x) = g12(x) + g23(x), (A.12)

gBA(x) = gαβ(x), (A.13)

where

x =
R2

gk
2

6

and Rg is the radius of gyration of the Gaussian chain.
Following Leibler’s notation we have

S0(x) = gAA(x) + 2gAB(x) + gBB(x), (A.14)

W 0(x) = gAA(x)gBB(x) − (gAB(x))2. (A.15)

The inverse of the structure factor for the triblock is

S−1(x) =
1
N

S0(x)
W 0(x)

− 2χ (A.16)

or in equivalent form

1
2
NS−1(x) =

1
2

S0(x)
W 0(x)

− χN. (A.17)

Therefore the condition for the spinodal is

1
2

S0(x∗)
W 0(x∗)

− χN = 0, (A.18)

where x∗ gives the minimum value for the function
S0(x)/W 0(x).
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Appendix B.

The binodals from ref. [19] have been fitted to 6th-order
polynomial in α and β, and the result follows

(χN)SCFT
ODT = u(α, β), (B.1)

where u(α, β) is

u(α, β) = c60α
6 + c42α

4β2 + c41α
4β + c40α

4 + c24α
2β4

+c23α
2β3 + c22α

2β2 + c21α
2β + c20α

2 + c06β
6

+c05β
5 + c04β

4 + c03β
3 + c02β

2 + c01β + c00,

(B.2)
c60 = −1434.0,

c42 = 26294.0,

c41 = 13852.0,

c40 = 1761.0,

c24 = −36417.0,

c23 = −19921.0,

c22 = −4650.0,

c21 = −1259.0,

c20 = −220.5,

c06 = 3608.0,

c05 = −3088.0,

c04 = 153.9,

c03 = 405.0,

c02 = 142.3,

c01 = 0.2106.0,

c00 = 18.0.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
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