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Abstract. A deterministic system that operates in the vicinity of a Hopf bifurcation can be described by
a single equation of a complex variable, called the normal form. Proximity to the bifurcation ensures that
on the stable side of the bifurcation (i.e. on the side where a stable fixed point exists), the linear-response
function of the system is peaked at the frequency that is characteristic of the oscillatory instability. Fluc-
tuations, which are present in many systems, conceal the Hopf bifurcation and lead to noisy oscillations.
Spontaneous hair bundle oscillations by sensory hair cells from the vertebrate ear provide an instructive
example of such noisy oscillations. By starting from a simplified description of hair bundle motility based
on two degrees of freedom, we discuss the interplay of nonlinearity and noise in the supercritical Hopf
normal form. Specifically, we show here that the linear-response function obeys the same functional form
as for the noiseless system on the stable side of the bifurcation but with effective, renormalized parameters.
Moreover, we demonstrate in specific cases how to relate analytically the parameters of the normal form
with added noise to effective parameters. The latter parameters can be measured experimentally in the
power spectrum of spontaneous activity and linear-response function to external stimuli. In other cases,
numerical solutions were used to determine the effects of noise and nonlinearities on these effective param-
eters. Finally, we relate our results to experimentally observed spontaneous hair bundle oscillations and
responses to periodic stimuli.

PACS. 43.64.Bt Models and theories of the auditory system – 82.40.Bj Oscillations, chaos, and bifurcations
– 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.)

1 Introduction

A wide range of complex systems, including lasers, chemi-
cal reactions, electronic circuits, biological cells, and neu-
ral networks, display self-sustained oscillations. Generally,
these oscillators are subjected to intrinsic or external noise
and often play a role as active subunits within a larger
system. The properties of such oscillators can be charac-
terized by their spontaneous activity and their response
to external perturbations. Since such oscillators are gov-
erned by nonlinear dynamics, only a limited number of
analytical results characterizing the spontaneous activity
and the response are known.

The behavior of a complex system is characterized by a
large number of coupled degrees of freedom. A determin-
istic description of any nonlinear system is greatly sim-
plified, however, if this system operates in the vicinity
of an oscillatory instability, the Hopf bifurcation. First,
the relaxation dynamics as well as the response to sinu-
soidal stimuli with frequencies close to the characteris-
tic frequency of the oscillatory instability are governed by
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only two degrees of freedom. Furthermore, through a se-
quence of analytic, but nonlinear, coordinate changes, the
equations describing the dynamics of these two degrees of
freedom can be condensed into a single equation, called
the normal form, of a single complex variable z [1]. This
nonlinear transformation separates the generic dynamical
part of the nonlinearities (surviving in the Hopf normal
form) from system-specific nonlinearities (included in the
nonlinear transformation). By adding noise to this nor-
mal form, one can describe the spontaneous activity of a
noisy oscillator [2–6] as well as the response to a periodic
driving. With a stochastic driving included in the dynam-
ics, it is not possible to talk about bifurcation points any-
more —the term bifurcation region coined by Meunier and
Verga [7] is more appropriate. One could also say that the
sharp bifurcation is concealed, which leads on the stable
side to noisy precursors of the bifurcation [8], but also has
consequences on the oscillatory side as we will see in this
paper.

Generally, self-sustained oscillators are ideally suited
to detect and amplify weak signals near a characteris-
tic frequency. It has been suggested that this principle is
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employed in the ear of vertebrates [9–11], reviewed in [12].
The mechanosensory hair cells in the inner ear are each
endowed with a mechanical antenna, the hair bundle, that
can oscillate spontaneously [13–19]. It has been shown ex-
perimentally for hair cells from the bullfrog that a hair
bundle’s responsiveness to sinusoidal stimuli is tuned to
the characteristic frequency of spontaneous oscillations
and displays a domain of compressive nonlinearity when
driven with stimuli of increasing magnitudes [20]. These
properties have been recognized as signatures of a dynam-
ical system that operates close to a Hopf bifurcation. In
addition, hair bundle oscillations are rather noisy. In the
presence of noise, the Hopf bifurcation is concealed and
the sensitivity that the system can achieve in response to
small stimuli is limited [21].

In general, we cannot infer the parameters of the nor-
mal form describing an oscillator from noisy physical ob-
servables. Put differently, in a physical system (such as the
hair bundle), the physical observables (e.g. the displace-
ment of the hair bundle) do not coincide with the variables
of the normal form and do not represent all relevant de-
grees of freedom. Even if we can determine solutions for
the normal form, it is unclear how to relate them to mea-
surements of these physical observables. Another impor-
tant issue is whether such measurements, as for instance,
that of a hair bundle displacement, are sufficient to com-
pletely determine the parameters of the normal form even
if the physical observables do not comprise the complete
set of dynamical variables.

Here, we start with a simple model that captures the
linear mechanical behavior of an oscillatory hair bundle
with two degrees of freedom [18]. We then add nonlineari-
ties and analyze the behavior of a noisy nonlinear oscilla-
tor in several steps. In sect. 2, we derive the normal form
of the oscillator in the absence of noise. In sect. 3 we in-
clude noise in the description and solve numerically the
time-dependent Fokker-Planck equation for the probabil-
ity density of the normal form variable. We also give ap-
proximate analytical solutions for limiting cases. In sect. 4
we show that in the limit of a low intrinsic noise, the lin-
ear response of the noisy system obeys the same functional
form as a deterministic dynamical system operating on the
stable side of a supercritical Hopf bifurcation, however,
with renormalized parameters (here and in the following
we refer to the side of the bifurcation where a stable fixed
point exists as the stable side of the bifurcation). We use
the analytical results from sect. 3 to calculate these ef-
fective parameters as functions of bare parameters of the
normal form. This allows us to give expressions for the
power spectrum and the response function that very well
fit numerical simulations. In sect. 5 we relate the theory to
the properties of sensory hair bundles from the inner ear.

This work is complementary to a recent study by some
of the authors in which the stochastic hair bundle dynam-
ics was studied in another simplificiation, namely a two-
state description [22]. While the latter approach is justified
for a system operating deep in the oscillatory regime and
may capture certain aspects of the hair-bundle dynamics
more faithfully (say, the relaxation oscillations), our ap-

proach here is more general and applies to a variety of
systems operating near a supercritical Hopf bifurcation.

2 Deterministic description of an active
oscillator

In this section, we introduce the two relevant degrees of
freedom for an oscillatory hair bundle and derive the nor-
mal form of the oscillator. We start by writing an equation
to describe the linear behavior of the hair bundle deflec-
tion X [18]

λ
dX

dt
= −kX + Fa + Fext. (1)

Here, λ and k are, respectively, the drag coefficient and
the stiffness of the hair bundle. The force Fa is a force
generated by active elements within the hair bundle such
as motors or ion channels. The system is stimulated by
a periodic external force Fext. For the system to oscillate
spontaneously, the active force Fa must provide positive
feedback to X. We write to linear order

β
dFa

dt
= −Fa − k̄X. (2)

Here, β is a relaxation rate of the active process and the
coupling coefficient k̄ has dimensions of a spring constant.
Note that X and Fa represent the two relevant degrees
of freedom of the oscillator. The combined equations (1)
and (2) describe the linear behavior of an active system
and cannot be derived from a potential.

2.1 Linear equations

In order to discuss the linear equations, it is useful to
perform a coordinate change. This procedure is described
in appendix A. In short, we first write eqs. (1) and (2) in
matrix form

ẋi = Aijxj + fi, (3)

where i = x, a and we use the notation xx = X, xa = Fa

and fx = Fext/λ. Because the system is oscillatory, the
matrix displays two complex-conjugate eigenvalues which
we denote as −r−iω0 and −r+iω0. We diagonalize the ma-
trix by using a transformation matrix M, thereby defining
the complex variables

zi = M−1
ij xj , (4)

with z = zx = z∗a. The system can thus be described by
the single complex equation

ż = −(r + iω0)z + f, (5)

where we have defined the complex force f = M−1
xj fj . We

choose the coordinate change such as to write

X =
z + z∗

2
. (6)
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The relation between the external force Fext and the com-
plex force f is given by

f =
e−iα

Λ
Fext, (7)

where Λ and α are, respectively, the amplitude and phase
of

Λeiα = λ

(
1 − i

2ω0

(
k

λ
− 1

β

))−1

. (8)

2.2 Linear-response function

As long as r > 0, the oscillator is stable and, for small
external forces, we can ignore nonlinearities. We are in-
terested in the properties of the linear-response function
χXF , defined as

X(t) �
∫ t

−∞
dt′χXF (t − t′)Fext(t′). (9)

This response function can be calculated from the re-
sponse function χzF that relates the stimulus force Fext

and z. In Fourier representation z̃(ω) � χ̃zF F̃ext(ω), with

χ̃zF (ω) =
e−iα

iΛ(ω0 − ω) + K
, (10)

where we have introduced the stiffness K = Λr > 0. The
response function χ̃XF (ω) for the Fourier mode X̃(ω) =
(z̃(ω) + z̃∗(−ω))/2 can be expressed as

χ̃XF (ω) =
1
2

(
e−iα

iΛ(ω0 − ω) + K
+

e+iα

−iΛ(ω0 + ω) + K

)
.

(11)
Note that, for ω � ω0 and ω0 � r,

χ̃−1
XF (ω) � 2χ̃−1

zF (ω). (12)

In time domain,

χXF (t) = θ(t)
e−(K/Λ)t

Λ
cos(ω0t + α), (13)

where the Heavyside function, θ(t) = 1 for t > 0 and θ = 0
otherwise, ensures causality.

As r vanishes or becomes negative, there is no linear
response of the deterministic system at its characteristic
frequency. This is consistent with the divergence of the
linear-response function if K → 0 (i.e. for r → 0).

2.3 Nonlinearities and normal form of the oscillator

The linear coordinate change given by eq. (4) permits a
description of our two-dimensional system (1) and (2) by
a single equation (5) of a complex variable z. This equa-
tion represents the normal form of the oscillator to linear
order. In general, the dynamic equations of the system

will also contain nonlinearities, which become important
at the Hopf bifurcation.

Near the bifurcation, nonlinear terms can be brought
into normal form by adding appropriate nonlinear cor-
rections to the variable z: zi = M−1

ij xj + O(xixj) (see
chapt. 2.2 in ref. [1]). Note that the linear coordinate
change (4) does not affect the structure of nonlinear terms.
The normal form is characterized by the condition of phase
invariance z → zeiφ, not only for the linear term, but for
all nonlinearities. This condition excludes quadratic non-
linearities and imposes a cubic nonlinearity of the form
|z|2z yielding the normal-form dynamics

dz

dt
= −(r + iω0)z−B|z2|z + O(|z4|z) + f, (14)

where we have introduced a complex coefficient B = (b +
ib′).

The normal form (14) describes the generic dynamics
of the variable z. However, this form is of interest only if
it provides insights into the behavior of the physical vari-
ables X and Fa. A nonlinear system stimulated by a sinu-
soidal periodic force F (t) = F1e

−iωt + F−1e
iωt responds

with all higher harmonics, i.e. X(t) =
∑

n Xne−inωt. It
can be shown on general grounds (see supplementary ma-
terial in ref. [10]) that, for small F1, the first mode X1

dominates and can be expanded as

F1 = AXF X1 + BXF |X2
1 |X1 + O(|X4

1 |X1). (15)

In appendix B, we demonstrate that the coefficients AXF

and BXF are directly related to the coefficients introduced
in the normal form:

AXF � 2Λeiα(i(ω0 − ω) + r), (16)

BXF � 8ΛeiαB. (17)

2.4 Hopf bifurcation

If r > 0, the system is quiescent and X1 = 0. If the param-
eter r changes sign and becomes negative, the system un-
dergoes a Hopf bifurcation and has limit-cycle solutions. In
the absence of an external force, F1 = 0, eq. (15) displays
nontrivial solutions corresponding to limit cycles with am-
plitude

|X1|2 = −AXF /BXF . (18)

A spontaneous oscillation can only exist at a particular
frequency ω = ωc = ω0 + (b′/b)|r| for which AXF /BXF is
a real negative number. In this case, the system oscillates
at the frequency ωc with an amplitude

|X1| =
1
2

∣∣∣r
b

∣∣∣1/2

. (19)

This is the classic scenario of a Hopf bifurcation. At the
critical point, r vanishes. For ω = ω0, the response is
essentially nonlinear with |X1| ∼ F

1/3
1 : no matter how

small the external force, the response is nonlinear. If in-
stead δω = ω0 − ω is finite, there always remains a linear
regime for small forces.
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3 Effects of fluctuations —Noisy oscillations

We now discuss the situation in which noise affects the
system. In this case, the normal form (14) becomes a
stochastic differential equation. Fluctuations are described
by a noise term ξ, which in general does not satisfy
phase invariance. If fluctuations are weak, however, the
phase-invariant component of the noise dominates the
system (see appendix C). A simple choice is given by
Gaussian white noise with 〈ξ〉 = 0, 〈ξ(t)ξ(t′)〉 = 0 and
〈ξ(t)ξ∗(t′)〉 = 4dδ(t − t′), where we have excluded the
phase-dependent component 〈ξ(t)ξ(t′)〉 (here and in the
following 〈· · ·〉 denotes the average over the white noise).

We thus arrive at the normal form of a noisy oscillator

ż = −(r + iω0)z − (b + ib′)|z|2z + f̄ e−iωt + ξ. (20)

In the presence of the external periodic force f = f1e
−iωt,

we can choose f1 = f̄ real without loss of generality. For
numerical evaluations, we have used a dimensionless ex-
pression of the normal form, thereby reducing the number
of parameters by three (see appendix D).

3.1 Statistical measures of spontaneous and driven
movements

We are interested in the time-dependent average 〈z(t)〉
and in the correlation function 〈z(t)z∗(t′)〉. The latter is
related to the spectral density

S̃(ω) =
∫ T/2

−T/2

dt

T

∫ T/2

−T/2

dt′〈z(t)z∗(t′)〉eiω(t−t′) (21)

=
∫ T/2

−T/2

dt

T

∫ T/2

−T/2

dt′ [〈z(t)z∗(t′)〉c

+〈z(t)〉〈z∗(t′)〉] eiω(t−t′), (22)

where T is the time interval of observation and 〈zz∗〉c =
〈(z−〈z〉)(z∗−〈z∗〉)〉 is the connected autocorrelation func-
tion. In the presence of an external stimulus f = f1e

−iω1t,
the average 〈z(t)〉 = z1e

−iω1t is nonzero and consequently
there exists a Fourier mode with

〈z̃(ω)〉 = 2πz1δ(ω − ω1). (23)

For a weak driving, z1 determines the linear-response func-
tion as χzf = dz1/df1 for sufficiently small f1. Further-
more,

S̃(ω) = S̃0(ω) + 2π|z1|2δ(ω − ω1), (24)

where S̃0(ω) is the Fourier transform of the connected
correlation function S0(t) = 〈z(t)z∗(0)〉c. In the absence
of the stimulus, 〈z(t)〉 = 0 and S = S0.

3.2 Fokker-Planck equation and linear response of the
noisy oscillator

In order to calculate averages and correlation functions, we
write a Fokker-Planck equation for the probability P (z, t)

to find the system at z in the complex plane at time t
(for the derivation of the Fokker-Planck equation from
the Langevin equation, see [4]). For simplicity, we use the
Gaussian white noise introduced above with 〈ξ(t)ξ∗(t′)〉 =
4dδ(t − t′).

Starting with the Langevin equation (20), we obtain
the corresponding Fokker-Planck equation for the distri-
bution P (ρ, φ, t), where points in the complex plane are
represented by polar coordinates z = ρeiφ:

∂tP = ∂ρ

[(
rρ + bρ3 − f̄ cos(φ + ωt) − d

ρ

)
P + d ∂ρP

]

+∂φ

[(
ω0 + b′ρ2 +

f̄

ρ
sin(φ + ωt)

)
P +

d

ρ2
∂φP

]
. (25)

This distribution satisfies the normalization condition∫
P (ρ, φ)dρdφ = 1. In the absence of an external force,

f̄ = 0, this equation has the steady-state solution Ps =
Nρ exp{−W/d} with ∂tPs = 0 and

W =
1
2
rρ2 +

b

4
ρ4. (26)

The linear response of the system can be discussed by
writing

P (ρ, φ, t) � Ps(1 + P1). (27)

To linear order in f̄ , P1 satisfies the equation

∂tP1 =
d

ρ
∂ρP1 + d∂2

ρP1 −
dW

dρ
∂ρP1 + (b′ρ2 + ω0)∂φP1

+
d

ρ2
∂2

φP1 +
f̄ cos(φ + ωt)

d

dW

dρ
. (28)

This equation is solved by the Ansatz

P1 = Q(ρ, ω)e−i(φ+ωt) + Q∗(ρ, ω)ei(φ+ωt), (29)

where Q satisfies

−d
d2

dρ2
Q+

dW

dρ

d
dρ

Q+i(δω+b′ρ2)Q=d
d
dρ

(
Q

ρ

)
+

f̄

2d

dW

dρ
.

(30)
A similar equation has been discussed by several authors
for the related problem of calculating the spontaneous
power spectrum of the noisy normal form [2,6]. Note that
the function Q depends on the frequency only via the de-
tuning δω = ω0 − ω between driving and eigenfrequency.
Constraints on the probability P (ρ, φ, t) provide boundary
conditions for eq. (30). First, because ρ ≥ 0, the probabil-
ity flux Jρ(ρ, φ, t) must vanish at all times and phases at
the point ρ = 0:

Jρ(ρ = 0, φ, t) =
(

d

ρ
+ f̄ cos(φ + ωt) − dW

dρ
− d

d
dρ

)
Ps

×
[
1 + Qe−i(φ+ωt) + Q∗ei(φ+ωt)

]∣∣∣
ρ=0

= 0. (31)

From this, we get that limρ→0 ρ∂ρQ(ρ) = 0, which ex-
cludes divergences of |Q| at ρ = 0 by power laws ρ−α
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(with α > 0) or by a logarithmic divergence. Near ρ = 0,
we can thus use a power series expansion of Q(ρ)

Q(ρ) =
∑
k=0

Ckρk. (32)

Inserting this expansion into eq. (30) yields exactly one
diverging term C0/ρ2. We thus impose C0 = 0 and get
the first boundary condition

Q(0) = 0. (33)

Second, for large ρ, the solution for Q which describes
linear response is proportional to ρ, which yields

Q(ρ)|ρ→∞ =
f̄

2d

b

b + ib′
ρ. (34)

We note that if both b and b′ are exactly zero,

Q(ρ)|ρ→∞ =
f̄

2d

r

i(ω0 − ω) + r
ρ. (35)

Equations (33) and (34) are boundary conditions for
eq. (30) which ensure that Q vanishes for f̄ = 0.

Equation (30) can be solved in two special cases: i) b =
b′ = 0, r > 0 (the linear stable case) where it is solved by
the right-hand side of eq. (35); ii) b′ = 0, δω = 0 (no
detuning between driving frequency and eigenfrequency
ω0) where Q becomes a simple linear function in ρ

Q =
f̄

2d
ρ for b′ = 0, δω = 0. (36)

In general eq. (30) cannot be solved analytically but can
be integrated numerically using the boundary conditions
provided by eqs. (33) and (34), the former condition be-
ing used at small but finite ρ = ε to avoid the singular-
ity at ρ = 0. Numerical solutions of the Fokker-Planck
eq. (30) were compared in two cases to simulation results
of the Langevin equation (20) in polar coordinates; we
found excellent agreement between these two approaches
(figs. 1 and 2). The first case is the analytically solvable
case b′ = 0 and δω = 0 yielding a purely real and linearly
growing function Q(ρ) shown in fig. 1. The total modula-
tion of the probability density is quite strong for a modest
driving amplitude of f̄ = 0.1. The second case shown in
fig. 2 is far away from these conditions: here b′ = 1 and
δω = 0.5. Typically, for a signal slower than the eigenfre-
quency of the system, the phase shift (the complex phase
of Q, cf. fig. 2B) remains negative for all ρ. The absolute
value |Q| can exhibit a local minimum around the min-
imum of the potential W (ρ) (for the numerical example
in fig. 2C around ρ = 1), and the total modulation of the
probability density is weak because the system is driven
off resonance. Data for b′ = 0 and δω = 0.5 look similar ex-
cept that the modulus shows only a mild nonlinear growth
with increasing ρ instead of a minimum (not shown).

For b′ = 0, it is still possible to obtain an analytical
estimate for Q for small detuning δω 	 1. To this end,
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Fig. 1. (Colour on-line) Linear-response characteristics of the
probability density Q to periodic driving in the solvable case
b′ = 0 and ω = ω0 = 1. Remaining parameters: d = 0.2, f̄ =
0.1, r = −1, b = 1. In these plots, the red line corresponds to
a numerical integration of the differential equation (30) for Q
with the boundary conditions provided by eqs. (33) and (34).
The solid line with squares shown in panel C corresponds to the
exact solution (eq. (36)). The blue circles have been extracted
from stochastic simulations of the Langevin equations (20) in
polar coordinates (ρ, φ) (using a simple Euler scheme with a
dynamical time step smaller than 4 × 10−4). In these simula-
tions, by averaging over time (about 15 × 106 periods of the
driving) we have measured the density of the driven system as
seen in a coordinate system that is co-rotating with the signal.
For fixed ρ the first Fourier coefficient with respect to the phase
φ then yields, according to eq. (29), the function Ps(ρ)Q(ρ).
From this product we can estimate Q(ρ) using for consistency
Ps(ρ) as determined from simulations in the absence of periodic
drive. The striking agreement, here and in other simulations,
between the numerical solution of eq. (30) and the result of
Langevin simulations validates the linear-response theory at
the driving magnitude f̄ = 0.1.

a first-order expansion with respect to δω and a second-
order expansion with respect to ρ is sufficient and yields
(see appendix E)

Q(ρ) =
f̄

2d

[
ρ + iδω(a1ρ + a2ρ

2)
]
, (37)

where the coefficients are given by

a1 =
1
d

b〈ρ5〉〈ρ〉 − d〈ρ2〉 + r〈ρ3〉〈ρ〉
b〈ρ4〉 + r〈ρ2〉 − b〈ρ−1〉〈ρ5〉 − r〈ρ−1〉〈ρ3〉 , (38)

a2 = −1
d

−d〈ρ−1〉〈ρ2〉 + b〈ρ〉〈ρ4〉 + r〈ρ〉〈ρ2〉
b〈ρ4〉 + r〈ρ2〉 − b〈ρ−1〉〈ρ5〉 − r〈ρ−1〉〈ρ3〉 . (39)

Here 〈. . .〉 denotes an average with respect to the station-
ary distribution Ps.
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Fig. 2. Linear-response characteristics of the probability den-
sity Q to periodic driving. Here b′ = 1, ω = 0.5, ω0 = 1; other
parameters and symbols as in fig. 1.
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Fig. 3. Approximation eq. (37) and exact numerical solution
for the function Q (A and C) and the function QPs(ρ) for a
small detuning δω = 0.01; other parameters as in fig. 1. Shown
are the real parts (A and B) and imaginary parts (C and D) of
the two functions. The inset in C displays imaginary against
real part of Q with ρ as a parameter —this should be compared
to panels A in figs. 1 and 2 and thus reveals how the transition
from figs. 1A to 2A with growing detuning takes place.

Knowing Q, the value of z1 in linear response can be
calculated as

z1 = 〈ρQ(ρ)〉 =
∫ ∞

0

dρ ρ Q(ρ) Ps(ρ). (40)

Note that this equation can be regarded also as an average
of ρ with respect to the function Q(ρ)Ps(ρ), the latter
being the additive modification of the probability density
caused by the periodic signal.

In fig. 3 we show the functions Q(ρ) and Q(ρ)Ps(ρ)
(real and imaginary parts) in the case of b′ = 0 and a
small detuning (δω = 0.01) together with the approxi-
mation eq. (37) (empty squares). The real parts are well
approximated by the function at resonance (i.e. the ex-
act solution for δω = 0 given in eq. (36)). The imaginary

part of the approximation eq. (37) shows good agreement
for a range of small to moderate values of ρ, deviates
strongly, however, for larger ρ (cf. fig. 3C); in particu-
lar, the solution eq. (37) cannot and does not obey the
boundary condition at large ρ, eq. (34). The approxima-
tion for the product Q(ρ)Ps(ρ) agrees, however, very well
with the true function (cf. fig. 3D) since the values at large
ρ are exponentially damped by the stationary density. We
thus expect that eq. (37) will give a reasonable agreement
for calculating the linear response via eq. (40) for small
detuning.

4 Effective parameters characterizing noisy
oscillations and their relation to the normal
form

4.1 Phenomenological description of spectral measures

In the presence of noise the parameters K, Λ, ω0, α and
B are renormalized. We can define effective parameters by
first looking at the linear-response function of the noisy
nonlinear system χ̃zF (ω) = dz1/dF1 = Λ−1e−iαdz1/df1

for f1 = 0. The inverse of dz1/df1 at f1 = 0 is a complex
function

df1

dz1
= G(ω)eiθ(ω) (41)

of ω with modulus G and phase θ. We define the effec-
tive frequency ωeff

0 as the frequency of maximal absolute
response, i.e. at which G is minimal and

dG

dω

∣∣∣∣
ω=ωeff

0

= 0. (42)

We can now expand G and φ at ω = ωeff
0

G � G0 + G1(ω − ωeff
0 )2, (43)

θ � θ0 + θ1(ω − ωeff
0 ). (44)

As a result, the inverse of the effective linear-response
function χ̃zF can be written to linear order in ωeff

0 − ω as

χ̃−1
zF � χ̃−1

XF /2 � eiαeff (Keff + iΛeff(ωeff
0 − ω)). (45)

Here, Keff = ΛG0, Λeff = −ΛG0θ1, αeff = α+θ0. Thus, the
linear response function χ̃XF has the same form as eq. (11)
of the noiseless problem, but with effective, renormalized
parameters. We note that the approximation given by
eq. (45) is appropriate for systems with a sharply peaked
response (ωeff

0 � Keff/Λeff).
The autocorrelation function in the absence of a stim-

ulus can also be discussed via its Fourier transform S̃0(ω).
We can define an effective noise strength Deff(ω) by intro-
ducing an effective random force ξeff with spectral density
〈ξ̃eff(ω)ξ̃∗eff(ω)〉 = 4Deff and 〈ξ̃eff(ω)ξ̃eff(ω)〉 = 0 to ac-
cord with the phase-invariance condition. With z̃(ω) �
χ̃zF ξ̃eff(ω), we write S̃0(ω) = 〈z̃(ω)z̃∗(ω)〉 � 4|χ̃zF |Deff .
Therefore

S̃0(ω) � 4Deff(ω)
K2

eff + Λ2
eff(ωeff

0 − ω)2
. (46)
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The spectral density of the spontaneous movement
C̃0(ω) = 〈X̃(ω)X̃(−ω)〉 obeys C̃0(ω) = 1/4(〈z̃(ω) z̃∗(ω)〉+
〈z̃(−ω)z̃∗(−ω)〉) and thus has the form

C̃0(ω) � Deff

K2
eff + Λ2

eff(ωeff
0 − ω)2

+
Deff

K2
eff + Λ2

eff(ωeff
0 + ω)2

.

(47)
Provided that 1

Deff

dDeff
dω 	 Λeff

Keff
, we can neglect the de-

pendence of Deff on ω and use the above expressions
up to large ωeff

0 − ω. We then can estimate 〈ρ2〉 =∫
(dω/2π)S̃0(ω) to find

〈X2〉 =
1
2
〈ρ2〉 � Deff

KeffΛeff
. (48)

Vice versa, knowing the effective parameters (see be-
low) and the second moment from the stationary density,
we obtain from eq. (48) an estimate of the effective noise
intensity.

4.2 A simple case: b′ = 0

For b′ = 0, we can use the quadratic approximation
eq. (37) for Q and derive the linear response z1 for weak
detuning as outlined in appendix E. In terms of the coef-
ficients a1,2 from eqs. (38), (39) we find

z1 = 〈ρQ〉 � f̄

2d

[
〈ρ2〉 + iδω(a1〈ρ2〉 + a2〈ρ3〉)

]
, (49)

from which we can read off that αeff = α is not renormal-
ized. Expanding the response function eq. (45) in small
detuning, comparing to eq. (49), and using the expres-
sions for a1,2, eqs. (38), (39), we obtain

Keff =
2d

〈ρ2〉Λ, (50)

Λeff � 2Λ

×〈ρ〉[〈ρ3〉〈ρ4〉 − 〈ρ2〉〈ρ5〉] + (d/b)〈ρ2〉[〈ρ2〉 − 〈ρ3〉〈ρ−1〉]
〈ρ2〉2[〈ρ4〉 − 〈ρ5〉〈ρ−1〉 + (r/b)(〈ρ2〉 − 〈ρ3〉〈ρ−1〉)] .

(51)

The effective noise strength can be estimated for our
simple example by combining (48) with (50), yielding

Deff � dΛΛeff . (52)

In the above equations the stationary moments

〈ρn〉 =
∫ ∞

0

dρρn+1e−W (ρ)/d

/∫ ∞

0

dρρe−W (ρ)/d (53)

can be expressed by error functions (even n) or Bessel
functions (odd n); the resulting expression for Λeff is
lengthy and is therefore omitted here. It is, however, in-
structive to take a closer look at the explicit expression
for the effective stiffness that can be written as follows:

Keff =
2dbΛI

d − Ir
, (54)

where

I =
∫ ∞

0

dρρe−(r/2d)ρ2−(b/4d)ρ4

=
(πd)1/2er2/(4db)

2b1/2
erfc

(
r

2(db)1/2

)
, (55)

and erfc denotes the complementary error function. In par-
ticular, we find

Keff �

⎧⎪⎨
⎪⎩

Λr, for r → ∞,

Λ(πbd)1/2, for r = 0,

2Λbd/|r|, for r → −∞.

(56)

Please note that, in the presence of noise, the value
of Keff according to eq. (50) is always positive, irrespec-
tive of the sign of K = Λr. This implies that the Hopf
bifurcation is concealed by the noise and the system be-
haves effectively like a stable fluctuating system, even for
r < 0. To illustrate this point, we discuss the weak-noise
limit of the effective parameters in the oscillatory regime
(r < 0). Here a saddle-point approximation of the mo-
ments in eq. (53) leads to

Keff � 2db

|r| Λ, (57)

Λeff �16Λ

(
2 r2 + d b

)
r2

(
9 d b r2 + 2 r4 + 12 d2b2

)
(2 r2 + 3 d b)2 (54 d b r2 + 8 r4 + 15 d2b2)

, (58)

where the expression for Keff agrees with the r → −∞
limit in eq. (56). Adding noise to the limit cycle system
prevents perfect phase locking and leads thereby to a lin-
ear response at weak forcing. The linear-response level
at the best frequency is related to the noise level via
χ(ω = ω0) ∼ 1/Keff ∼ 1/d. In the limit of zero noise, the
linear response diverges (as already discussed in sect. 2.2)
because an arbitrary small signal leads to perfect phase
entrainment with the external periodic stimulus.

We have determined the inverse of the real part and
the slope of the imaginary part of z1 at δω = 0 integrating
our numerical solution for Q according to eq. (40). The re-
sulting data for the two effective parameters Keff and Λeff

are compared to our exact result for Keff and our analyt-
ical approximation for Λeff in fig. 4 as a function of noise
intensity. Both curves show a very good agreement be-
tween numerics and analytical formulas for the full range
of noise intensities. The weak-noise expressions eq. (57)
and eq. (58) give also reasonable approximations for noise
intensities up to d = 0.1. The effective friction coefficient
varies between 1 and 2 for our standard parameters.

A more direct verification of our simple approxima-
tion is provided by the spontaneous power spectrum and
by the susceptibility of the normal form which amounts
to setting Λ = 1 and α = 0. Specifically, we look at
spectrum and susceptibility of the real part Re(z) with
respect to the signal f(t) defined by χ = (1/2)dz1/df̄ .
Spectrum and susceptibility should be approximated by
eq. (47) and eq. (45) with Keff , Λeff given by eq. (50) and
eq. (51) with Λ = 1 and α = 0. For both functions we
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Fig. 4. The effective dimensionless parameters Keff and Λeff
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as determined from the full numerical solution (symbols), from
the analytical results eq. (50) and eq. (51) (solid and dashed
lines), and from the weak-noise expressions in eq. (57) and
eq. (58) (dotted lines), shown as functions of the noise intensity
d. Bare parameters are defined by eq. (D.3) with B = 0 (see
appendix D).
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Fig. 5. The spontaneous power spectrum of Re(z) for b′ = 0
and weak noise (d = 0.05) in (a) and moderate noise (d = 0.2)
in (b). Theory is according to eq. (47) and eq. (48) both with
Keff and Λeff given in eqs. (50) and (51). Remaining parame-
ters: r = −1, b = 1.

find indeed a very good agreement between our approxi-
mation and simulation data as well as the numerical solu-
tion. For the power spectra at weak noise (d = 0.05) and
moderate noise (d = 0.2) shown in fig. 5 we find that the
Lorentzian shape describes well the spectral peak. It is
expected that the small detuning expansion will work the
better the sharper the peak is. In cases where the spec-
trum does not show a pronounced peak (i.e. at very strong
noise) the approximation is expected to fail; in this limit,
however, the normal form with phase-independent noise
is most likely not appropriate anyway.

The susceptibility depicted in fig. 6 shows a similarly
good agreement between the different numerical results
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Fig. 6. The susceptibility of the real part with respect to a
periodic stimulation of the normal form for b′ = 0 and weak
noise (d = 0.05) in (a) and moderate noise (d = 0.2) in (b).
The solid line has been calculated from χ̃Re(z),f = χ̃z,f/2 =
z1/(2f̄) = 〈ρQ〉/(2f̄) using the numerical solution for Q(ρ)
for different driving frequencies ω. The dashed line is the ap-
proximation eq. (45) using effective parameters according to
eq. (50) and eq. (51) (with α = 0, Λ = 1), and the symbols
correspond to results of stochastic simulations of the normal
form. Remaining parameters: r = −1, b = 1.

(estimation by stochastic simulations and via the numer-
ical solution for Q) and our approximation. Note that for
the power spectrum other approximations have been de-
rived (see [5,6] and references therein) whereas we are not
aware of any other analytical approach for the calculation
of the susceptibility.

4.3 General case: b′ �= 0

Here we restrict ourselves to the numerical solution of the
problem as follows. We determine the susceptibility for
varying detuning ω0−ω and from its absolute value |χ̃z,f |
we find the effective eigenfrequency of the oscillator for
b′ > 0. From the numerical values of the real and imagi-
nary parts of the susceptibility and their (numerically de-
termined) derivatives with respect to ω we can extract
the effective parameters Keff , Λeff , αeff , and ωeff

0 which are
shown in fig. 7.

We also compare these data to the analytical results
for b′ = 0 in order to get an impression of the effect of
a finite value of b′. As can be seen, the dependence of
Keff on d is hardly changed; in general its value is slightly
increased. Likewise, there are no drastic changes in Λeff

which now varies between 1 and 1.5. For a finite b′, we
observe a finite but moderate rescaling of α which lays
between 0 and π/4. Finally, the frequency ωeff

0 increases
from a value of ω0 +(b′/b)|r| = 2 to larger values. Such an
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increase in the oscillation frequency with growing noise is
typical for a nonlinear system (see, e.g., a few examples
in [23]).

In fig. 8 we show the dependence of the effective pa-
rameters for a moderate noise (d = 0.2). Both Keff and
Λeff do not vary strongly with b′, whereas ωeff

0 and αeff

increase monotonically with b′.

5 Discussion —relation to the hair bundle
oscillator

Because hair bundles can exhibit noisy spontaneous os-
cillations, they provide a unique experimental system to
assay our theoretical predictions on the behavior of noisy
oscillators. Using hair cells from the bullfrog’s sacculus,
both the autocorrelation function and the linear-response
function of oscillatory hair bundles have been measured
in vitro; these results as well as experimental details are
published in ref. [18]. For a hair bundle oscillating at fre-
quency ωeff

0 /2π � 8Hz with 〈X2〉 � 1.96 ·10−16 m2, fitting
the linear-response function to eq. (45) provided the esti-
mates Keff � 1.04 · 10−4 N/m, Λeff � 6.5 · 10−6 Ns/m and
αeff � 0.

The magnitude of the fluctuations Deff � 1.4 ·
10−25 N2 s was measured by fitting the spectral density

of bundle movement to eq. (47). Using the approximation
given by eq. (52), the noise strength can be estimated as
dΛ � Deff/Λeff � 2.1 ·10−20 Nm. Equivalently, we can use
eq. (50) to find dΛ = Keff〈X2〉 � 2.03 · 10−20 Nm. The
noise strength dΛ has units of energy and can be com-
pared to kBT . In this sense, it provides a definition of an
effective temperature

T̄eff = dΛ/kB � Deff

kBΛeff
, (59)

which satisfies (1/2)Keff〈X2〉 � (1/2)kBT̄eff . Here, we find
dΛ � 6kBT , suggesting that the energy scale in the noise
is six times stronger than that of thermal fluctuations of
a passive system with the same stiffness. Note that these
estimates are based on the assumption that the coefficient
B of the nonlinearity in eq. (14) is real. For moderate
noise, however, the effective values of Keff and Λeff show
only weak variations upon varying the imaginary part b′

of the bare parameter B (fig. 8).
The response of oscillatory hair bundles to sinusoidal

stimuli of increasing magnitudes has been previously mea-
sured [20]. Near the bundle’s characteristic frequency of
spontaneous oscillation and for sufficiently strong stim-
uli, the bundle’s response displays a compressive nonlin-
earity. This behavior is similar to that of a deterministic
system that operates close to a Hopf bifurcation. In the
presence of noise, however, the bifurcation is concealed. A
detailed description of the effects of noise on the nonlin-
ear response of such active oscillatory system is lacking.
Furthermore, higher-order nonlinearities in the dynamics
might be present as, for instance, in the case of a sub-
critical Hopf bifurcation. In the future, we will extend
the approach developed here to address these problems,
which play an important role for signal detection by sen-
sory systems.

We thank S. Camalet, T. Duke, and A.J. Hudspeth for stimu-
lating collaborations.

Appendix A. Linear transformation of the
dynamic equations

In order to put our system in the normal form, we first
rewrite eqs. (1) and (2) in matrix form

ẋi = Aijxj + fi, (A.1)

where the index i = x, a denotes the two components.
The variables are related to those in eqs. (1) and (2) by
xx = X, xa = Fa, fx = Fext/λ, fa = 0. The matrix Aij is
given by

A =
(−k/λ 1/λ

−k̄/β −1/β

)
. (A.2)

Because the system we are describing is oscillating, the
eigenvalues of the matrix A are complex conjugate. We
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denote them as −r − iω0 and −r + iω0, where

r =
1
2
(k/λ + 1/β), (A.3)

ω0 =
(

k̄/(λβ) − 1
4
(k/λ − 1/β)2

)1/2

. (A.4)

We diagonalize the matrix A using the corresponding
transformation matrix M:

M−1AM =
(−r − iω0 0

0 −r + iω0

)
. (A.5)

This transformation matrix is given by

M =
1
2

(
1 1
v v∗

)
, (A.6)

with

M−1 =
2

v∗ − v

(
v∗ −1
−v 1

)
, (A.7)

where
v =

1
2

(k − λ/β) − iλω0. (A.8)

Defining the complex variables zi = M−1
ij xj , the two com-

ponents of zi are complex conjugate: z = zx = z∗a. The
system can thus be described by the single complex equa-
tion

ż = −(r + iω0)z + f, (A.9)

where we have defined the complex force f = M−1
1j fj .

Note that with the choice of M given in eq. (A.6), X =
Re(z). The relation between the external force Fext and
the complex force f is given by

f =
e−iα

Λ
Fext, (A.10)

where Λ and α are, respectively, the amplitude and phase
of

Λeiα = λ

(
1 − i

2ω0

(
k

λ
− 1

β

))−1

. (A.11)

Appendix B. Normal form and Fourier modes

The experimentally relevant variable X is in general a non-
linear function of the complex variable z whose dynamics
is described by the normal form (eq. (14))

X = Re(z) + a1zz∗ + a2 Re(z2) + a3 Im(z2)
+b1 Re(z3) + b2 Re(z(z∗)2)
+b3 Im(z3) + b4 Im(z(z∗)2), (B.1)

in which we have limited the expansion to third order
in z. The coefficients an and bn depend on the model in
question and ensure that the coordinate change eliminates
all nonlinear terms from the dynamic equations but the
generic terms of the normal form. Note that there is no
term of the form z2z∗ in eq. (B.1) [1].

We assume that the external stimulus is sinusoidal,
Fext(t) = F1e

−iωt + F−1e
iωt, with F−1 = F ∗

1 . The system
is nonlinear and will thus respond with all higher harmon-
ics. We write X(t) =

∑
n Xne−inωt, in which each Fourier

mode Xn can be measured experimentally. It can been
shown [10] that if the system operates near a Hopf bi-
furcation, the first Fourier mode dominates and obeys an
expansion of the form

F1 = AXF X1 + BXF |X1|2X1 + O(|X1|4X1). (B.2)

By using eq. (B.1) and the normal form eq. (14), we seek
a relation between the coefficients AXF and BXF and the
linear and nonlinear coefficients of the normal form. Writ-
ing z =

∑
n zne−inωt, we have

z3 =
∑
nkl

znzkzle
−i(n+k+l)ωt,

z(z∗)2 =
∑
nkl

znz∗kz∗l e−i(n−k−l)ωt. (B.3)

Using such expressions, we can express the Fourier modes
Xn of X in terms of the zn. For the m-th Fourier mode,
we find

2Xm = zm + z−m + 2a1

∑
n

zm+nz∗n

+a2

∑
n

(zm+nz−n + z∗m+nz∗−n)

−ia3

∑
n

(zm+nz−n − z∗m+nz∗−n)

+b1

∑
nk

(zm+n+kz−nz−k + z∗m+n+kz∗−nz∗−k)

+b2

∑
nk

(zm+n+kz∗nz∗k + z∗m+n+kznzk)

−ib3

∑
nk

(zm+n+kz−nz−k − z∗m+n+kz∗−nz∗−k)

−ib4

∑
nk

(zm+n+kz∗nz∗k − z∗m+n+kznzk). (B.4)

Knowing the modes zk, we can thus discuss the modes Xk.
For simplicity, we assume that the component F−1 of

the stimulus, which corresponds to the frequency −ω, can
be neglected. This approximation is valid as long as we
focus on the response of the system to frequencies ω � ω0

close to resonance and as the system operates near the bi-
furcation. This implies |ω0| � |r|. In this case, because the
component F−1 stimulates the system far from resonance
at ω � −ω0, it will not affect significantly the active, res-
onant response elicited by the component F1 at ω � ω0.
We therefore write f(t) = e−i(α+ωt)F1/Λ and therefore

f1 = e−iαF1/Λ. (B.5)

Using (14), we find in this simple case that all modes zn =
0 vanish except for z1 which obeys

f1 = A(ω)z1 + B|z1|2z1 + O(|z1|4z1), (B.6)
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where A(ω) = i(ω0−ω)+r. Although only the first Fourier
modes is nonzero for the complex variable z, eq. (B.4)
generates all Fourier coefficients Xk for the variable X,
with X−k = X∗

k . Using eq. (B.4) with m = 1, we find

F1 = AXF X1 + BXF |X1|2X1 + O(|X1|4X1)
= AXF z1/2 + BXF |z1|2z1/8 + O(|z1|4z1)

= Λeiα(Az1 + B|z1|2z1) + O(|z1|4z1). (B.7)

Note that, because the nonlinear terms in eq. (B.4) are
not of the form |z|2z, they do not contribute to the cubic
nonlinearity in eq. (B.7). We thus find that the observed
linear and nonlinear coefficients for the response of X1 are
simply related to the coefficients of the normal form for z
given by eq. (17). Because, as stated above we neglected
the contribution of F−1 and thus z−1, these relations are
only approximations.

Appendix C. Phase-dependent noise

In the presence of noise, eq. (3) becomes

ẋi = Aijxj + fi + ηi, (C.1)

in which ηi(t) are random forces acting on the hair bundle
and on the motors [21]. We assume white noise with cor-
relations 〈ηi(t)ηj(t′)〉 = 2diδijδ(t − t′) and strength di. In
eq. (20) of the normal form of a noisy oscillator, the noise
ξ = M−1

1j ηj is then given by

ξ(t) =
i

λω0
(η2(t) − v∗η1(t)). (C.2)

The noise correlations are of the form 〈ξ(t)ξ∗(t′)〉 =
4Dδ(t − t′) and 〈ξ(t)ξ(t′)〉 = 4D′δ(t − t′), with

D =
1

2ω2λ2
(|v|2d1 + d2), (C.3)

D′ = − 1
2ω2λ2

((v∗)2d1 + d2). (C.4)

Note that the phase-dependent amplitude of the noise |D′|
is in general of a similar magnitude as D. The autocorre-
lation function C̃0(ω) = 〈X̃(ω)X̃(−ω)〉 is given by

C̃0 = 1/4(〈z̃(ω)z̃∗(ω)〉 + 〈z̃(−ω)z̃∗(−ω)〉
+〈z̃(ω)z̃(−ω)〉 + 〈z̃∗(ω)z̃∗(−ω)〉). (C.5)

Because z̃ � χ̃zF ξ̃, we find that the phase-dependent con-
tributions to C̃0 at ω = ω0 are of the order

〈z̃(ω0)z̃(−ω0)〉 �
4D′

K2 + 2iKΛω0
. (C.6)

This has to be compared to the phase-invariant contribu-
tion

〈z̃(ω0)z̃∗(ω0)〉 �
4D

K2
. (C.7)

Because |D′| is of the same oder of magnitude as D, the
contribution of phase-dependent noise to C̃0 can be ne-
glected if K 	 Λω0. This is the case when the autocor-
relation is sharply peaked, i.e. near the bifurcation for
sufficiently weak noise.

Appendix D. Dimensionless expression of the
normal form

A dynamical system that operates near a Hopf bifurcation
can be transformed into the normal form eq. (14) by a
sequence of analytic, but nonlinear, coordinate changes
(see chapt. 2.2 in ref. [1]). The normal form can be further
transformed by z = z̄e−iωt into

˙̄z = −(r + i[ω0 − ω])z̄ − B|z̄|2z̄ + f̄ + ξ̄(t), (D.1)

where ξ̄ is a white Gaussian noise which possesses the
same statistics as ξ(t) given in eq. (14).

By setting t̄ = |r|t and ˆ̄z =
√

b
|r| z̄ we can further

transform eq. (D.1) into

˙̄̂z =
(

i
ω − ω0

|r| − r

|r|

)
ˆ̄z −

(
1 + i

b′

b

)
|ˆ̄z|2 ˆ̄z

+

√
b

|r|3 f̄ +

√
b

|r| ξ̄(t̄).

Assuming r < 0 and denoting

Ω =
ω0 − ω

|r| , B =
b′

b
, ¯̄f =

√
b

|r|3 f̄ , d̄ =
b

r2
d,

(D.2)
we can thus write the dimensionless equation

˙̄̂z = (1 − iΩ)ˆ̄z − (1 + iB)|ˆ̄z|2 ˆ̄z + ¯̄f + ¯̄ξ(t), (D.3)

where the white noise has the intensity d̄, i.e. 〈 ¯̄ξi(t) ¯̄ξj(t′)〉 =
2d̄δi,jδ(t − t′). With these transformations, we have thus
reduced the number of parameters (r, b, ω0). For the nu-
merical evaluations, we have considered b = 1, r = −1 and
ω0 = 1 which reflects the discussed parameter redundancy.
Note that this rescaling changes both the magnitude of the
driving and the noise intensity.

Appendix E. Small-detuning approximation
for b′ = 0

The approximations for Q(z) and for the effective param-
eter Λeff at small detuning can be obtained as follows.
We multiply the differential equation eq. (30) governing
Q(ρ) by ρkPs(ρ) with k = 0, 1, 2, . . . and integrate over
ρ. This yields the following equation relating certain mo-
ments of the perturbation with moments of the unper-
turbed system:

D[1 − k2]〈ρk−2Q〉 + [kr − iδω]〈ρkQ〉 + bk〈ρk+2Q〉 =
f̄

2d

(
r〈ρk+1〉 + b〈ρk+3〉

)
. (E.1)

For varying integer n, this represents an infinite hierarchy
of moment equations that cannot be solved exactly for all
moments. We recall that the linear response is given by
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z1 = 〈ρQ〉. For small values of δω we may expand Q with
respect to the detuning

Q = Q0 + iδωQ1, (E.2)

where both functions Q0, Q1(ρ) are real and the first
one corresponds to the solvable case ω = ω0, i.e. Q0 =
f̄ρ/(2d). For the moments involving Q1 we obtain for
k = 0 and k = 1

D〈ρ−2Q1〉 = −〈Q0〉,

r〈ρQ1〉 + b〈ρ3Q1〉 = −〈ρQ0〉. (E.3)

The first equation represents an exact solution for 〈ρ−2Q1〉
which is, unfortunately, the only moment that can be
exactly calculated. Approximating the function Q1(ρ) =
f̄/(2d)[a1ρ+a2ρ

2], we can choose a1 and a2 such that these
two relations are fulfilled. Inserting the quadratic ansatz
in eq. (E.3), we obtain two linear equations in a1 and a2

with coefficients proportional to certain moments of the
unperturbed system. Their solution is given in eq. (38)
and eq. (39).
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