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Abstract. We consider a model of a macro-ion surrounded by small ions of an electrolyte solution. The
finite size of ionic charge distributions of ions, and image charge effects are considered. From such a
model it is possible to construct a statistical field theory with a single fluctuating field and derive physical
interpretations for both the mean field and two-point correlation function. For point-like charges, at the
level of a Gaussian (or saddle point) approximation, we recover the standard Poisson-Boltzmann equation.
However, to include ionic correlation effects, as well as image charge effects of individual ions, we must go
beyond this. From the field theory considered, it is possible to construct self-consistent approximations.
We consider the simplest of these, namely the Hartree approximation. The Hartree equations take the
form of two coupled equations. One is a modified Poisson-Boltzmann equation; the other describes both
image charge effects on the individual ions, as well as correlations. Such equations are difficult to solve
numerically, so we develop an (a WKB-like) approximation for obtaining approximate solutions. This, we
apply to a uniformly charged rod in univalent electrolyte solution, for point like ions, as well as for extended
spherically symmetric distributions of ionic charge on electrolyte ions. The solutions show how correlation
effects and image charge effects modify the Poisson-Boltzmann result. Finite-size charge distributions of
the ions reduce both the effects of correlations and image charge effects. For point charges, we test the
WKB approximation by calculating a leading-order correction from the exact Hartree result, showing that
the WKB-like approximation works reasonably well in describing the full solution to the Hartree equations.
From these solutions, we also calculate an effective charge compensation parameter in an analytical formula
for the interaction of two charged cylinders.

PACS. 61.20.Qg Structure of associated liquids: electrolytes, molten salts, etc. – 61.20.Gy Theory and
models of liquid structure – 82.35.Rs Polyelectrolytes

1 Introduction

The mechanisms of interaction between cylindrical macro-
ions in electrolyte solutions are still not fully under-
stood [1]. The unmodified PB equation for a uniformly
charged cylinder may be inadequate in describing the
interaction for a variety of reasons. Correlation ef-
fects [1–11], image charge effects [1,5,8,10,12,13], solvent
effects [12,14–19], and structure of charged groups at the
macro-ion surface [1,12,19–22] may all play an important
role. Though, the relative degree of each of these effects is
likely to depend on the particular properties of the type
of macro-ion under consideration, most importantly its
shape, charge density and surface charge distribution of
fixed charged groups.
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Correlation effects may lead to two predicted phe-
nomena, that of charge inversion [1,7,23,24] and same-
charge attraction [1,3,5,7,9,11,25]. In charge inversion,
the amount of positive charge, due to counter-ions, ex-
ceeds the surface charge density of the macro-ion effec-
tively making it of opposite charge to its fixed charged
groups. Same charge attraction describes a situation in
which two macro-ions of the same charge are able to at-
tract each other through interactions with their counter-
ions. Notably, both these phenomena have been predicted
in the case of strong correlations between ions at the
macro-ion surface [7,6,25], where it is supposed that a
Wigner crystal forms on the surface of each macro-ion.
Here, the mechanism of attraction is that a Wigner crys-
tal on one macro-ion interlocks with the Wigner crystal on
another macro-ion, so that the positive charges associated
with one macro-ion lie close to the negative regions on the
other and vice versa [6,25]. Correlation effects are driven
by two main factors: surface charge density and valance
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of counter-ions. As both of these increase, the stronger
correlations are expected to become.

In determining correlation effects, both the size and
shape of the macro-ion are likely to have an important
role. For instance, a flat, infinite charged surface has a
proper Wigner crystal phase; but a charged rod may or
may not have, depending on its radius. This is owing to
the quasi-one-dimensional nature of a cylindrical macro-
ion surface [1], which makes thermal fluctuations at the
macro-ion surface, which disrupt such a lattice, much
larger.

In a lot of cases, most notably DNA, it may not be suf-
ficient to think of macro-ions as uniformly charged [1,26].
It has been shown that the structure of helical macro-
ions, and of counter-ions bound to their surfaces, may
cause attraction between them [1,12,20]. This mechanism
of attraction is most pronounced when ions are able to
bind strongly in helical motifs that lie between the heli-
cal patterns of fixed charged groups, on the surface of the
macro-ion, creating an alternating pattern of charge [1]. In
the case of DNA, there is strong evidence to suggest that
such localized binding, due to chemi-adsorption, does oc-
cur. For instance, evidence suggests this to be the case for
polyamines [1,27,28] and Mn2+ [1,29,30], as counter-ions.
As in the case of the Wigner crystal, the mechanism of at-
traction lies in the fact that bound positive charges on
one molecule lie close to the negative charges of the other
molecule in a commensurate interlocking fashion: an elec-
trostatic zipper [20]. In addition, how the shape of the
charge distribution influences the interaction should be
important in understanding the formation of cholesteric
phases [31,32] and in the statistical mechanics of columnar
macro-molecular assemblies [33,34]. Also, there may be
reverse interplay between the structure of certain macro-
ions and their interactions; the latter may indeed, some-
times, influence the former [1,35–37]. Sill, the parameters
that describe the effective charge distributions on helical
molecules (KL parameters) [1] have not been calculated
from any microscopic theory.

Image charge effects and solvent effects should not be
ignored. It seems reasonable to assume that the core of
a macro-ion should have a much smaller dielectric re-
sponse than the surrounding polar solvent [38]. This sit-
uation can create repulsive effects due to charges effec-
tively seeing image charge reflections of themselves in re-
gions of low dielectric constant. Even for the interaction
between two uniformly charged rods, this can give rise
to a new contribution to the interaction potential [12].
This repulsive interaction has half the range of the stan-
dard screened electrostatic interaction. It arises from the
charges on one molecule experiencing the force due im-
age charges of themselves on the other molecule. Beyond
the Poisson-Boltzmann equation, image charge effects in
the interaction of individual ions with the small macro-ion
may also become important [5,10]. Here, the effects could
be quite subtle. Image charge effects may increase the
threshold at which correlation effects cause attraction, in
terms of surface charge density and ionic valance [5]; but,
in certain cases, they may cause increased attraction [10].
Other important effects could arise from the discreteness

of the solvent. This can yield a non-local and non-linear
dielectric response [15–17] and cause hydration forces be-
tween macro-ions [12,14,39]. Also, one should also point
out that image charge effects on solvent molecules could
have an important role in determining cylinder-cylinder
interactions, at small separations [40,41].

In addition, the finite size of the small ions may have a
role in controlling the size of both image charge and corre-
lation effects. As has already been pointed out, in [1], the
finite size of charge distributions of certain counter-ions
may significantly reduce correlation effects. The satura-
tion of the local density of ions close to the surface of
macro-ions [42] should also be considered.

One way of handling some of these effects, in a system-
atic way, is to reformulate the statistical-mechanical model
that describes the macro-ion electrolyte system into a sta-
tistical field theory [3,42,43]. The advantage in such a for-
mulation is that the mean field of the fluctuating field used
in such a theory is proportional to the thermally averaged
electrostatic field. This allows for electrostatic boundary
conditions due to the macro-ion solvent interface to be
handled in a convenient manner. Another possible advan-
tage is that statistical field theories have many levels of
self-consistent approximation, the most notable of which
are the Hartree approximation and random phase ap-
proximations. These self-consistent approximations may
be built up in a systematic manner. Such self-consistent
approximations have enjoyed notable success in other ar-
eas of condensed matter physics, and may yet provide a
new useful line of attack in understanding polyelectrolyte
interactions. These particular field theories, which arise
from such models, enjoy another important advantage:
one can do a strong-coupling expansion [3,5,10]. Such an
expansion is valid when the ions in solution are highly
correlated.

Our goal is to follow on from previous work in a series
of papers, developing this field-theoretic formulation. We
hope to include the effects of finite size, image charge ef-
fects, chemi-adsorption, structure of charged groups, and
perhaps, later, model the solvent in a more sophisticated
way. Though, incorporating the last of these ingredients
into the theory is probably the hardest. In this first pa-
per, we start with a single macro-ion in considering some
of these effects. We consider a finite-size charge distribu-
tion for the small ions and interface effects between the
macro-ion and the solvent solution may all be included in
a field-theoretic formulation. We then go on to approxi-
mate solutions to equations derived from this formalism
for the simplest case of a uniformly charged rod.

In Section 2 we start by discussing the statistical me-
chanical model we shall use. Here, we show how quan-
tities like the average electric field due to the ions and
fixed charges, as well as the effective interaction (fluctu-
ating potential) between two (infinitesimal) test charges
in solution, may be calculated from the partition func-
tion. We also discuss how the more traditional Kirkwood
hierarchy [8] is obtained from the model.

Next, we briefly describe how such a model may be
transformed into a field theory; the details being left to
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one of the appendices. This is followed by a description of
the resulting theory. We also prove both that the average
electrostatic potential is indeed proportional to the mean
field of the fluctuating field of such a theory, also that the
correlation function of the fluctuating field is proportional
to the effective interaction between the two test charges.
All of this is considered in Section 3.

In Section 4, we describe the Gaussian (saddle-point)
approximation of such a field theory. We show that the
mean field satisfies the PB equation. Also, we show the
form of the free energy, which is not much different from
that of [43]. Furthermore, we are able to recast it in a
more conventional form [8] and are so able to discuss the
physics of each term. In the next section (Sect. 5) we move
on to consider the Hartree approximation to our field the-
ory. This takes the form of two coupled equations, not
too dissimilar to those derived by the authors of [43] in
their most sophisticated variational approximation. How-
ever, in our equations, what is new is that the macro-ion
solvent interface is fully taken into account with the ef-
fects of image charges, as well some finite-size effects of
the small ions. Of the derived equations, one is a modified
PB for average electrostatic field, the other an equation
for the correlation function. The physics included, beyond
the Poisson-Boltzmann formulation, incorporated in such
equations is discussed. In Section 6 we are able to ex-
tend our formalism to describe extended ionic charges and
derive generalized Hartree equations. This completes the
formal development.

In Section 7 we solve these equations for the uni-
formly charged rod, employing a WKB-like approxima-
tion to handle the equation for the correlation function.
This simplifying approximation is described in the pre-
vious two sections. This is similar to the approach used
in [13], however this is employed for cylindrical geometry
and goes beyond the Gaussian level of approximation. In
our calculations we consider only spherically symmetric
charge distributions and univalent ions. We start by cal-
culating —for point ions— the average potential, charge
density, and a function ζ(r), which we term the correlation
parameter, that describes the relative strength of image
and correlation effects on individual ions. To investigate
the size of the various effects included in ζ(r), for some
calculations we eliminate some of these effects through
simplifying assumptions in regard to the solvent macro-
ion interface. Later we go on to investigate the effects of
making the distribution of charge on small ions finite. We
see how all of this fits into the framework of an effective
theory of interaction of two charged cylinders with im-
age charge effects [12]. Such an effective theory utilizes a
Drrjaguin-Landau-Verwey-Overbeek (DLVO) approxima-
tion and from our calculations we calculate effective renor-
malized surface charge densities. Last of all, we estimate
the quantitative accuracy of this WKB-like approximation
to the exact Hartree solution, by calculating a first-order
correction.

At the end we have a discussion of our results (Sect. 8)
and a conclusion and outlook (Sect. 9), where we summa-
rize our findings and discuss the extensions that we hope
to address in future work.

Fig. 1. Schematic picture of the macro-ion–electrolyte system.
In the box is shown how the orientation of an ion is described
through Euler angles ω = (α, β, γ).

2 The statistical-mechanical model

2.1 Description of the model

Let us consider a statistical-mechanical model of a single
large cylindrical macro-ion sitting in a 1:1 electrolyte solu-
tion. We center the macro-ion at the origin of a cylindrical
coordinate system (z,R, ϕ) so that its major axis lies at
R = 0. As a refinement to [43], we may consider a core
region, where R ≤ a, for which the dielectric constant may
be taken to be much lower than the surrounding solvent.
We shall consider the case where the dielectric constant of
the core is taken to be εc ≈ 2, and that of the surrounding
solvent to be εw ≈ 80.

The counter-ions (and electrolyte ions) are restricted
to the solvent, which indeed envelops the macro-ion. To
enforce this, we may define an ionic exclusion function
ΩI(r,ω). This function ensures that there is no Boltz-
mann weight given to the unphysical situation of an ion
lying within the core region. If we consider the shape of
our small ions as spherical, for a single cylindrical polyelec-
trolyte of radius a centered at the origin it simply takes
the form ΩI(r,ω) = θ(R−b), where b ≥ a. This inequality
accounts for a hard-core radius of each ion. The hard-core
radius may be taken to be the radius of the ion together
with its inner hydration shell, which is tightly bound to
the ion. To study the effects of excluding ions from the
macro-ion, sometimes we may relax this requirement and
set ΩI(r,ω) = 1.

We suppose that there are only two species of small
ion in the solution; one positive and one negative. As a
further refinement on reference [43], we start by consider-
ing the ionic charge distributions of the small ions to be
of arbitrary shape. A schematic picture of the system is
shown in Figure 1. Any configuration of the charge of the
negative and positive ions may be described through the
charge density functions

ρ̂+(r) =
N+∑

j=1

f+(r−r+
j ,ω+

j ), ρ̂−(r) =
N−∑

j=1

f−(r−r−j ,ω−
j ).

(2.1)
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The vectors r−j and r+
j describe the positions of negative

and positive ions, respectively. The vectors ω−
j and ω+

j
describe the orientation of each ion and have the three
Euler angles (α, β, γ) as their components. The form fac-
tors, f+ and f− describe extended distributions of charge
on each ion, and are normalized so that

∫
d3rf(r,ω) = 1.

In the limit of point-like charges, we take f+(r − r′,ω) =
f−(r − r′,ω) = δ(r − r′).

For this model we may write down a partition function,
in terms of ionic charge density functions

Z[ρ̂+(r), ρ̂−(r)]N+,N− =
1

N+!

N+∏

j=1

∫ d3r+
j

λ3
t

∫ d3ω+
j

8π2

× 1
N−!

N−∏

j=1

∫ d3r−j
λ3

t

∫ d3ω−
j

8π2

×ΩI

(
r+

j ,ωj

)
ΩI

(
r−j ,ωj

)
exp

(
− Ẽint{rj ,ωj}

kBT

)

× exp

(
− Ẽself{rj ,ωj}

kBT

)
, (2.2)

where λt is the thermal de Broglie wavelength. Here N+

and N− are the numbers of small positive and small neg-
ative ions, respectively, in the solution.

The total interaction energy between ions Ẽint{rj ,ωj},
for a given configuration of ions, takes the form (as in [43]
for point charges)

Ẽint{rj ,ωj}
kBT

=
lB
2

∫
d3r

∫
d3r′

×{[qρ̂+(r) − qρ̂−(r) + σ(r)] [qρ̂+(r′) − qρ̂−(r′) + σ(r′)]

−q2
∑

j

[
f−(r − r−j ,ωj)f−(r′ − r−j ,ωj)

+f+(r − r+
j ,ωj)f+(r′ − r+

j ,ωj)
]}

v(r, r′), (2.3)

where lB = e2/(4πεwkBT ) is Bjerrum length and σ(r) is
the charge density of fixed charge groups that lie on the
macro-ion. The valance of each ion is denoted by the in-
teger q. Since we are only considering a 1:1 electrolyte,
both the negative and positive ions have been taken to
have the same valance, though the model can be general-
ized for arbitrary valances. The function eqv(r, r′)/4πεw

is the electrostatic potential at the point r due to an ion
centered at r′, with which the other ions in the system in-
teract. Now, the dielectric boundary, between the solvent
and core regions, distorts the electrostatic potential of the
ion: it does not take the form of a simple 1/r Coulomb
potential. Instead, it must satisfy the following Poisson
equation:

−χ(r)∇2v(r, r′) = 4πδ (r − r′) , (2.4)

where for a cylindrical macro-ion

χ(r) =
[
θ(a − R)

εc

εw
+ θ(R − a)

]
. (2.5)

The usual electrostatic boundary conditions, the con-
tinuity of potential and the continuity of the component
of the displacement field, D, normal to the dielectric in-
terface, apply at the macro-ion surface. Mathematically,
these boundary conditions arise naturally from proper in-
version of the operator χ(r)∇2 to find v(r, r′). For the
moment, we do not actually need to solve this equation
for a single ion to make progress.

Now, if we include a region of low dielectric constant,
we have a new term in the partition function

Ẽself{rj ,ωj}
kBT

=
q2lB

2

∑

j

∫
d3r

∫
d3r′v(r, r′)

×
{[

f−(r − r−j ,ω−
j )f−(r′ − r−j ,ω−

j )

+f+(r − r+
j ,ω+

j )f+(r′ − r−j ,ω+
j )

]

− lim
r+

j ,r−
j →∞

[
f−(r − r−j ,ω−

j )f−(r′ − r−j ,ω−
j )

+f+(r − r+
j ,ω+

j )f+(r′ − r+
j ,ω+

j )
]}

. (2.6)

This term represents the sum of the changes in the elec-
trostatic self-energy of each ion, moving from the bulk
(r → ∞) to a position in the vicinity of the polyelec-
trolyte, rj . As all ions experience increased repulsion as
they move towards the region of low dielectric constant,
this term is positive. It depends on the position of each
ion; therefore it must be included in the partition func-
tion to fully describe the system. Each term in the sum
(of eq. (2.6)) may be thought of as a change in hydration
energy of a single ion.

2.2 Mean potential and fluctuation potential

In such a model we may introduce two test point charges
q1 and q2 lying at the points r1 and r2, respectively. We
may define Ẽint{rj ,ωj ; r1, r2}, where we replace σ(r) with
σ(r) + q1δ(r − r1) + q2δ(r − r2) in (2.3). These two test
charges allow us to calculate two physical quantities

φ̄(r1) = − lim
q1→0
q2→0

[
kBT

e

∂

∂q1
ln Z(q1, q2)N+,N−

]

and

W (r1, r2) = − lim
q1→0
q2→0

[
kBT

∂2

∂q1∂q2
ln Z(q1, q2)N+,N−

]
,

(2.7)
where Z(q1, q2)N+,N− denotes the partition function with
the two test charges included. In these definitions, the po-
sitions of the test charges are not integrated over. Instead,
these charges are taken infinitesimally small so as not to
disturb the many-body system. As we will see below, the
first of these two expressions is indeed the average poten-
tial a test charge experiences from the ions and the fixed
charges. Whereas, q1q2W is the average interaction energy
between the two test charges.



D.J. Lee: Correlation effects, image charge effects and finite size in the macro-ion–electrolyte system . . . 423

∂ ln c(r)

∂q1
=

∂ ln Z

∂q1
− lB

Z

d3r′v(r1, r
′)
〈[qρ̂+(r′) − qρ̂−(r′) + q1δ(r1 − r′) + σ(r′)] [ρ̂+(r1) + ρ̂−(r1)]〉

〈[ρ̂+(r1) + ρ̂−(r1)]〉
. (2.10)

Using equations (2.2) and (2.3) in equation (2.7), we
may derive the following expressions for φ̄ and W :

φ̄(r1) =
e

4πεw

∫
d3r′v(r1, r′) 〈qρ̂+(r′) − qρ̂−(r′) + σ(r′)〉

(2.8)
and

W (r1, r2) =
e2v(r1, r2)

4πεw

− e2lB
4πεw

∫
d3r

∫
d3r′v(r1, r)v(r2, r′)

× [〈[qρ̂+(r) − qρ̂−(r)] [qρ̂+(r′) − qρ̂−(r′)]〉
− 〈[qρ̂+(r) − qρ̂−(r)]〉 〈[qρ̂+(r′) − qρ̂−(r′)]〉] . (2.9)

Here, 〈. . .〉 denotes statistical averaging over all the de-
grees of freedom associated with the position and orienta-
tion of the ions. In equation (2.8)

∫
d3r′v(r1, r′)(qρ+(r′)−

qρ−(r′) + σ(r′)) is simply the solution of Poisson’s equa-
tion for each configuration of the ions, which is averaged
with the appropriate Boltzmann weight. Therefore, the
function φ̄(r1) is, indeed, the mean electrostatic potential
of the system.

For equation (2.9) there are two terms. The first term
represents the bare electrostatic interaction between the
two test charges. The second term is a renormalization of
the interaction arising from the movement of the ions to
screen out the interaction. We call W (r1, r2) a fluctuating
potential. However, this fluctuating potential is quite dif-
ferent from the one given in reference [8]. Here, the latter
was only defined for point charges, which we denote by
φf (q, r, r′).

The formula for φf (q, r, r′) may be found by consider-
ing the average density function c(r) = 〈[ρ̂+(r1)+ρ̂−(r1)]〉,
averaged using Ẽint{rj ; q1, 0}, where the position of the
point charge q1 is now averaged over and is taken to be
finite. The trick is, when q1 → q, it becomes indistin-
guishable from any small point-like positive ion in the
electrolyte solution. Then, one may show that

see equation (2.10) above

It is possible to get rid of ∂ ln Z
∂q1

by subtracting away the
bulk concentration cb = limr1→∞〈[ρ̂+(r1) + ρ̂−(r1)]〉. In
such a way it is possible to show that

kBT

e

∂

∂q1
ln

[
c(r)
cb

]
= φ̄(q1; r) + φf (q1; r, r)

− lim
r→∞

φf (q1; r, r), (2.11)

where the fluctuating potential is given by

φf (q1; r, r′) =
e

4πεw

∫
d3r′′v(r, r′′)

×
[
〈[qρ̂+(r′′)−qρ̂−(r′′)+q1δ(r − r′′)] [ρ̂+(r′)+ρ̂−(r′)]〉

〈[ρ̂+(r′) + ρ̂−(r′)]〉

− 〈[qρ̂+(r′′) − qρ̂−(r′′)]〉
]
. (2.12)

Both equations (2.8) and (2.12) form the starting basis of
a hierarchy of equations known as the Kirkwood hierar-
chy [44]. Evaluation of the concentration is performed by
charging the charge q1 from 0 up q, through integration
of equation (2.11) with respect to q1. Higher-order equa-
tions in the hierarchy may be got by performing successive
differentiations in q1 on the average number density. Us-
ing both equations (2.12) and (2.9), one may relate both
fluctuating potentials to one another,

W (r1, r2) =

lB

∫
d3r′v(r1, r′) 〈ρ̂+(r′)+ρ̂−(r′)〉φf (0; r′, r2)

+
e

4πεw
v(r1, r2). (2.13)

But, as we shall see in the next, the correlation function
W (r1, r2) is much more natural for considering correla-
tions in a field-theoretical formulation than φf (q; r, r′).

2.3 Grand canonical ensemble

In what follows, instead of an ensemble of fixed particle
number, it will be more convenient for us to consider the
grand partition function, which takes the form

Z[ρ̂+(r), ρ̂−(r)]λ+,λ− =
∞∑

N+,N−=0

(λ+)N+(λ−)N−Z[ρ̂+(r), ρ̂−(r)]N+,N− . (2.14)

Here, λ+ and λ− are the positive and negative ion fu-
gacities. These may be easily related to usual chemical
potentials μ+ and μ− simply by λ+ = exp(μ+/kBT ) and
λ− = exp(μ−/kBT ), respectively. The average number of
positive ions and negative ions is given by the following
expressions:

〈N+〉 = λ+
∂ ln Zλ

∂λ+
and 〈N−〉 = λ−

∂ ln Zλ

∂λ−
. (2.15)

As the macro-ion–electrolyte system is electrically neu-
tral, we must have the condition that q〈N+〉+

∫
d3rσ(r) =

q〈N−〉. But, in the thermodynamic limit for an isolated
macro-ion in electrolyte solution 〈N+〉 → ∞. Then, for
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point ions and both ions having the same shape, electro-
neutrality can be achieved by simply setting the two fugac-
ities equal, λ+ = λ− = λ. Taking account of this, from now
on we shall denote the grand canonical ensemble as Zλ.
In the next section we will be able to derive expressions
for these quantities in the field-theoretical formulation.

3 The field-theoretical formulation for
point-like ions

First we consider f+(r−r′,ω) = f−(r−r′,ω) = δ(r−r′).
Now, using a trick used in [43], we may start to transform
this statistical-mechanical model into a field theory, where
we may write the following identity:

Z[ρ̂+(r), ρ̂−(r)]λ ≡
∫

Dρ+(r)
∫

Dρ−(r)

×δ∞(ρ̂+(r) − ρ+(r))δ∞(ρ̂−(r) − ρ−(r))Z[ρ+(r), ρ−(r)]λ

=
∫

Dρ+(r)
∫

Dρ−(r)
∫

Dψ+(r)
∫

Dψ−(r)

× exp
{

i

∫
d3r

[
ψ+(r) (ρ+(r) − ρ̂+(r))

+ψ−(r) (ρ−(r) − ρ̂−(r))
]}

×Z[ρ+(r), ρ−(r)]λ. (3.1)

This reformulation (through Eq. (3.1)) has an imme-
diate advantage when we come to consider the grand par-
tition function, as we may use equation (3.1) to readily
perform the sums in equation (2.14) (see App. A in Ap-
pendices given as supplementary material). As is shown in
Appendix A and reference [43], it is possible to integrate
out both ρ+(r) and ρ−(r) as well as one of the ψ-fields.
We integrate out ψ+(r) and set ψ−(r) = φ(r); in doing so,
we arrive at the grand partition function being described
by the following field theory:

Zλ =
1

ZVAC

∫
Dφ(s) exp (−Hion[φ(s)]/Ξ) , (3.2)

where

Hion[φ(s)] =
∫

d3s

[
1
4
χ̃(s) (∇φ(s))2 + iσ̃(s)φ(s)

− κ̃2

2Λ
Ω̃I(s) cos φ(s)

]
(3.3)

and Z[ρ̂+(r), ρ̂−(r)]λ has been simply replaced with Zλ.
Here s is a rescaled position vector (measured in Gouy-
Chapman lengths, so to match with the results of Ref. [43])
so that μs = r, where μ = e

2πqlBσs
. We define a new

rescaled coordinate system (zs, S, ϕ). The rescaled func-
tions χ̃(s) and Ω̃I(s) are defined as χ̃(s) = (θ(ã −
S)εc/εw +θ(S− ã)) and Ω̃I(s,ω) = θ(S− b̃), respectively,
where μã = a and μb̃ = b. Also, in equation (3.3), we have

a rescaled charge density so that σ̃(s) = eμσ(r)/σs. The
effective surface charge density σs is given by

σs = e

∫
d3rσ(r)/Sinf (3.4)

and Sinf is the effective surface area of interface. One
should note that equation (3.4) is expressed in normal
units of length, not Gouy-Chapman lengths, as σs defines
the Gouy-Chapman length. If the surface charge density
is confined to an infinitesimally thin surface layer, and is
uniform about the cylinder, so that eσ(r) = σsδ(R − a),
this gives us σ̃(s) = δ(S − ã). In this case, σ̃(s) is normal-
ized so that

∫
d3sσ̃(s) = Sinf/μ2 ≡ S̃inf .

Also, we have a rescaled inverse Debye screening length
κ̃ = μκD. As usual the Debye screening length for a 1:1
electrolyte is given by κ2

D = 8πq2lBcbulk, where cbulk is the
number concentration of ion pairs in the bulk solution.
This is related to the rescaled fugacity λ̃ = 2λR/πlBσ2

s

and λR = λ exp(q2lBv(∞,∞)/2)λ−3
t , through the follow-

ing relationship for a single macro-ion:

κ̃2 = λ̃Λ, where Λ = lim
r→∞

〈exp(iφ(r))〉 . (3.5)

Equation (3.5) is derived in Appendix A.
What plays a crucial role in the theory described by

equations (3.2–3.5) is the correlation strength

Ξ = (2π)2l2Bσsq
3/e. (3.6)

This is an important measure of the amount of correlations
between ions, near the surface of the macro-ion. We will
discuss its role in more detail in the next section.

Included in equation (3.2) is

ZVAC =
∫

Dφ(s) exp [−HVAC[φ(s)]/Ξ] , (3.7)

HVAC[φ(s)] =
∫

d3s

[
1
4
χ(s) (∇φ(s))2

]
. (3.8)

This factor ensures that vacuum fluctuations (κ̃ → 0) in
the field φ(s) are not considered; the only fluctuations in
φ(s) arise from the movement of the ions.

In the field-theoretical formulation we may evaluate
both φ̄ and W for the grand canonical ensemble. We have
that

φ̄(r1) = − lim
q1→0
q2→0

[
kBT

e

∂

∂q1
ln Zλ(q1, q2)

]
and

W (r1, r2) = − lim
q1→0
q2→0

[
kBT

∂2

∂q1∂q2
ln Zλ(q1, q2)

]
, (3.9)

where one can show

Zλ(q1, q2) =
1

ZVAC

∫
Dφ(s) ×

exp
(
−Hion[φ(s)]/Ξ − i

q1

q
φ(s1) − i

q2

q
φ(s2)

)
. (3.10)
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These definitions (cf. Eq. (3.9)) are the same as those
of (2.7), except that the quantities are now defined at fixed
fugacity and not at fixed particle number. Evaluating both
expressions yields the following relationships:

φ̄(r1) =
ikBT

qe
〈φ(s1)〉 and

W (r1, r2) ≡
kBT

q2
[〈φ(s1)φ(s2)〉 − 〈φ(s1)〉 〈φ(s2)〉]

=
kBTΞV (s1, s2)

q2
. (3.11)

Note that the functions on the L.H.S. of equation (3.11)
are functions of real positions r1 and r2, whereas on the
R.H.S. there are functions derived from the field the-
ory of rescaled positions s1 and s2. We indeed find that
q1q2W (r1, r2), the average interaction energy between two
test charges (at r1 and r2, respectively), is indeed propor-
tional to the correlation function V (s1, s2) and that the
mean field is proportional to the electrostatic potential.

Therefore, we have physical interpretations of both the
mean field and the two-point correlation function of the
field theory.

4 Gaussian approximation

Here we evaluate the mean field in the Gaussian ap-
proximation. We may write φ(s) = φ′(s) − iφ̃0(s), with
φ0(s) = i〈φ(s)〉. Then we may expand out in powers of
the fluctuating field φ′(s). At the lowest order of approx-
imation (the Gaussian) we obtain

Zλ ≈ exp ((−H0[φ0(s)] + Λ0ΔH[φ0(s)])/Ξ)
ZVAC

×
∫

Dφ′(r) exp (−HG[φ′(s), φ0(s)]/Ξ) , (4.1)

where

H0[φ0(s)] =
∫

d3s

[
−1

4
χ(s) (∇φ0(s))

2 + σ̃(s)φ0(s)

− κ̃2

2
ΩI(s) cosh φ0(s)

]
, (4.2)

ΔH[φ0(s)] =
∫

d3s
κ̃2

2
ΩI(s) cosh φ0(s), (4.3)

HG[φ′(s), φ0(s)] =
∫

d3s

[
1
4
χ(s) (∇φ′(s))2

+
κ̃2

4
ΩI(s)φ′(s)2 cosh φ0(s)

]
, (4.4)

and Λ0 = 1/2 limr→∞〈φ′(s)2〉. The mean field must satisfy
the condition δH0[φ0(s)]/δφ0(s) = 0, because we require
that 〈φ′(s)〉 = 0. This yields

χ(s)∇2φ0(s) − κ̃2ΩI(s) sinh(φ0(s)) = −2σ(s). (4.5)

This is simply the non-linear PB equation. The free energy
is given by

F =
kBT

Ξ
H0[φ0(s)] −

Λ0kBT

Ξ
ΔH[φ0(s)]

−kBT ln
∫

Dφ′(s) exp (−HG[φ′(s), φ0(s)]/Ξ)

+kBT ln ZVAC. (4.6)

The sum of the last three terms may be considered as
the leading-order contribution due correlation effects. The
last term in equation (4.6) removes a divergence present
in the second to last term, due to vacuum fluctuations,
which are not considered in the theory. This free energy
(Eq. (4.6)) has been considered for the case of two charged
plates [10,13]. This result is the same as the one given
in [43] (for the simpler variational principle of a renormal-
ized charge density, see therein) when there is no dielectric
boundary (i.e. setting εw = εc), allowing ions to penetrate
into the macro-ion, and replacing cosh φ0(s) with 1 in both
equation (4.3) and equation (4.4) Following this prescrip-
tion, we indeed recover the expression given by (31) of [43],
by rewriting equation (4.5)

∇2φ0(s) = −σ̃(s)− σ̃C(s) = −2η(s)σ̃(s)− κ̃2φ0(s). (4.7)

In the limit of no correlations Ξ → 0 the last two
terms may be neglected in equation (4.6). By correctly
identifying entropic and electrostatic energy components,
it is possible to write the free energy, in the limit Ξ → 0,
in a more conventional form [8]

F =
e2

2

∫
d3rφ̄(r) [n+(r) − n−(r) + σ(r)]

−kBT

∫
d3r [n+(r) ln n+(r) + n−(r) ln n−(r)]

+kBT

∫
d3r [n+(r) + n−(r)] , (4.8)

where n+(r) and n−(r) are the mean number densities of
positive and negative ions, respectively.

The first term in equation (4.8) is the electrostatic
part, and the second term is the contribution from the
entropies of positive and negative ions. Here the last term
in equation (4.8) is the contribution from entropy of the
solvent for an ideal solution

Ssolv = − kB

Vion

∫
d3r [1 − Vion(n+(r) + n−(r))]

× ln (1 − Vion(n+(r) + n−(r))) , (4.9)

expanded out for small n+(r) and n−(r). Here Vion is the
volume occupied by one single ion. If we choose not to ex-
pand n+(r) and n+(r) in equation (4.9) and minimize the
resulting free energy with respect to n+(r) and n−(r), sub-
ject to Poisson’s equation ∇2φ(r) = −e[qn+(r)−qn−(r)+
σ(r)], we arrive at the equations for finite-size ions effects
discussed in reference [42].
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We may ask what is the physical meaning of the last
two terms in equation (4.6). First, one is able to show that

F̃ ≡kBT ln
∫
Dφ′(s) exp (−HG[φ′(s), φ0(s)]/Ξ)−ln ZVAC

=−kBT

4Ξ

∫ κ̃2

0

dκ̃′2
∫

d3sΩI(s)
∂(κ̃′2 cos φ0(s))

∂κ̃′2
〈
φ′(s)2

〉

=−q2

∫ cbulk

0

dc

∫
d3r

(
∂n+(r; c)

∂c
+

∂n−(r; c)
∂c

)
W (r, r; c).

(4.10)

Here, bulk concentration is given by cbulk. The physical
meaning of this term is quite clear if we consider a small
change from a bulk concentration cbulk to a concentration
cbulk + Δcbulk. The small change in this energy term is
given by

ΔF̃ = −q2

∫
d3r

(
n+(r; cbulk + Δcbulk) − n+(r; cbulk)

+n−(r; cbulk + Δcbulk) − n−(r; cbulk)
×W (r, r; cbulk + Δcbulk)

)
. (4.11)

It is easy to interpret this term as the sum of self-
energies or change in solvation energy of each of the
ions when changing the concentration by an infinitesimal
amount. This is indeed, simply, the self energy of each ion
q2W (r, r; cbulk) integrated with the change in the local
electrolyte density ∂(n+(r; c) + n−(r; c))/∂c with concen-
tration. Since both the number densities and self-energies
must change with concentration, to calculate the self-
energy contribution, from all the ions to the free energy,
one must consider equation (4.10). Whereas, the change
in the solvation energy of a single ion going from a re-
gion with salt concentration c′bulk to cbulk would be sim-
ply q2(W (r, r; c′bulk) − W (r, r; cbulk)), provided that this
does not effect the concentration of the two regions. The
term proportional to Λ0 simply removes a divergence in
equation (4.11) due to the point-like nature of the ions.

Thus, we see that the field-theoretical formulation cor-
rectly describes the physics at this level of approximation.
But, the Gaussian approximation is only valid provided
that κ̃ and Ξ remain small. A perturbation theory may
be developed for corrections to the PB in powers of Ξ (for
details see App. B). But, to consider larger values of Ξ, it
is possible to use a self-consistent approximation. We do
so in the next section.

5 The Hartree approximation

We now go beyond the Gaussian approximation to include
counter-ion correlation effects. We do this as in [43], and
construct a variational trail energy functional, describing
the fluctuating part of the field, of the form

HH [φ′(s)] =
∫

d3rφ′(s)VH(s, s′)φ′(s′). (5.1)

We then may expand the partition function about

ZH [φ′(s)] =
∫

Dφ′(s) exp(−HH [φ′(s)]/Ξ) (5.2)

to first order in Hion[φ(r)]−HH [φ′(r)]. Then, we have the
following expression for the free energy:

fH = FH/kBT = − ln ZH +
1
Ξ

〈Hion[φ(s)] − HH [φ′(s)]〉H .

(5.3)
The subscript H on the averaging bracket denotes averag-
ing with the Boltzmann weight exp(−HH [φ′(s)]/Ξ). On
evaluation of the various terms, equation (5.3) yields the
following reduced free energy:

fH = −1
2

Tr lnVH(s, s′) − 1
Ξ

∫
d3s

[{
χ̃(s)

(∇φ0(s))
2

4

+σ̃(s)φ0(s) +
κ̃2

2
Ω̃I(s)ζ(s) cosh φ0(s)

}]

+
1
4

∫
d3s

∫
d3s′δ(s − s′)χ̃(s)∇s∇s′VH(s, s′)

−1
2

∫
d3s

∫
d3s′δ(0), (5.4)

where

ζ(s) = exp (−Ξ(VH(s, s) − VH(∞,∞))/2) . (5.5)

The quantity ζ(s) is essentially a Boltzmann weight asso-
ciated with the change in the ionic self-energy going from
the Bulk to a rescaled position s near the macro-ion.

We may use fH to construct a variational principle
as it satisfies the Gibbs-Bogoliubov inequality. This states
that fH ≥ f , where f is the exact reduced free energy.
For such a principle, we may treat VH(s, s′) and φ0(s) as
variational parameters to minimize the free energy, i.e.,

δfH/δVH(s, s′) = 0 and δfH/δφ0(s) = 0. (5.6)

This yields the Hartree equations

χ̃(s)∇2φ0(s) − Ω̃I(s)κ̃2ζ(s) sinh φ0(s) = −2σ̃(s), (5.7)

χ̃(s)∇2
sVH(s, s′) − Ω̃I(s)κ̃2ζ(s) cosh φ0(s)VH(s, s′) =

−2δ(s′ − s). (5.8)

Such an approximation may, indeed, be called a Hartree
approximation, as these same equations may also be de-
rived by diagrammatic expansion, where one sums over
a particular class of diagrams that correspond to such
an approximation in field theory [45]. This diagrammatic
derivation is shown in Appendix B.

If we set ζ(s) = 1 in equation (5.8), then VH(s, s′)
obeys the same equation as φf (q, r′, r) (except for rescal-
ing) in the linearized approximation described in [8]. In
such an approximation one can show that φf (q, r′, r) is lin-
ear in q. It is, then, not hard to show, under this prescrip-
tion, that both approximations yield the same Boltzmann
weight ζ(s) and so the same modified PB equation. How-
ever, equation (5.8) with ζ(s) �= 1 both formulations yield
different equations. We suggest that the Hartree approxi-
mation may be more physically appropriate, as it depends
self-consistently on the local density of ions (see discussion
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at the end of the section), which may be shown to take
the form c(s) = Ω̃I(s)κ̃2ζ(s) cosh φ0(s).

If in equations (5.7) and (5.8) we take the limit Ξ → 0,
we get results for both φ0(s) and V (s, s′) in the Gaussian
approximation and these equations become exact. These
equations also incorporate completely the first-order cor-
rection due to perturbation theory (see App. B). There-
fore, for small Ξ, they are indeed expected to give solu-
tions close to the first-order perturbation result. However,
up to what Ξ the Hartree approximation remains valid
has yet to be seen.

In general we cannot obtain an analytical solution to
equation (5.8) and the coupled equations are difficult to
solve numerically as they stand. However in Appendix C,
we are able to construct an approximate solution, which is
used in the limit s′ → s to calculate ζ(s) self-consistently.
Instead of solving equation (5.8) we solve

χ̃(s)∇2
s ṼH(s, s′) − Ω̃I(s)κ̃2ζ(s′) cosh φ0(s′)ṼH(s, s′) =

−2δ(s′ − s). (5.9)

In equation (5.9) we have replaced ζ(s) cosh φ0(s) with
ζ(s′) cosh φ0(s′). We call this a WKB-like approxima-
tion. Like the WKB approximation for a Green’s func-
tion described by equation (5.8), its accuracy depends on
how quickly κ̃2ζ(s) cosh φ0(s) varies. In Appendix C, we
show how one may calculate the difference ΔVH(s, s′) =
VH(s, s′) − ṼH(s, s′) and so capture the exact Hartree re-
sult in the form of an integral equation, which may be
easier to work with when obtaining exact solutions to
equations (5.7) and (5.8). We utilize the expression for
ΔVH(s, s′) to calculate a leading-order correction to the
solution of equation (5.9). Provided that the size of the
correction remains small, the solution to equation (5.9)
captures all the important qualitative physics (explained
below).

We obtain a partial solution to (5.9) (see App. C) of
the following form:

ṼH(s, s) − ṼH(∞,∞) = ṼHg(s, s) + δVI(s, s), (5.10)

where

δVI(s, s) =
κ̃ − κ̂(s, 0)

2π
, (5.11)

and

κ̂(s, q̃) =
√

κ̃2ζ(s) cos φ0(s) + q̃2. (5.12)

Here, ṼHg(s, s) arises from the interface. If we were to
allow for ions to penetrate into the macro-ion, we would
set Ω̃I(s) = 1, and allow the dielectric to be uniform so
that χ̃(s) = 1. The upshot is to cause ṼHg(s, s) = 0. For

Fig. 2. Schematic drawings of correlation effects (left), image
charge effects (center), and exclusion of ions (right). In the
first (from the left), ions adjust to the field of an ion creating
a correlation hole which draws the ion closer to the macro-
ion. In the second, an ion sees its image charge reflection at
the dielectric boundary, from which it is repelled. In the third,
part of the Debye atmosphere (shown schematically as a circle
with a positive ion at the center) is lost due the exclusion of
ions from the macro-ion. The hatched area refers to part of the
Debye atmosphere that is lost.

ṼHg(s, s) we obtain (App. C)

ṼHg(s, s) =

− 2
(2π)2

∞∑

n=−∞

∫ ∞

−∞
dq̃Kn(κ̂(s, q̃)S)Kn(κ̂(s, q̃)S)

×
[
κ̂(s, q̃)I ′n(κ̂(s, q̃)b̃)

(
In(q̃b̃) + ξn(ã, q̃)Kn(q̃b̃)

)

−qIn(κ̂(s, q̃)b̃)
(
I ′n(q̃b̃) + ξn(ã, q̃)K ′

n(q̃b̃)
)]

×
[
κ̂(s, q̃)K ′

n(κ̂(s, q̃)b̃)
(
In(q̃b̃) + ξn(ã, q̃)Kn(q̃b̃)

)

−qKn(κ̂(s, q̃)b̃)
(
I ′n(q̃b̃) + ξn(ã, q̃)K ′

n(q̃b̃)
)]−1

, (5.13)

where

ξn(ã, q̃) =
(γ − 1)I ′n(q̃ã)In(q̃ã)

(K ′
n(q̃ã)In(q̃ã) − γKn(q̃ã)I ′n(q̃ã))

(5.14)

and γ = εc/εw.
Now let us discuss each of the physics included in

equations (5.10–5.14). Firstly, equation (5.11) represents
a change in hydration energy of an ion moving from a bulk
(rescaled) concentration κ̃2 to a (rescaled) local concentra-
tion κ̂(s, 0)2. If κ̂(s, 0) > κ̃, this term is negative. Then,
when an ion moves towards the macro-ion, its overall po-
tential energy is reduced due to neighboring ions being
correlated with it. These ions adjust themselves in the
field of the ion, essentially creating a correlation hole [46],
see Figure 2. This effect should, indeed, depend on the
local density of ions, and become more pronounced when
this increases as more ions can adjust themselves to the
field of a single ion.

Next, there is an effect due to the exclusion of ions. In
Figure 3a we plot ṼHg(s, s) as a function of γ and fixed κ̂
at S = 5.91. We see that as we increase κ̂, and so increase
the local density of ions, we see that ṼHg(s, s) increases.
As no ions may penetrate the core, the core region cannot
participate in screening out the electrostatic self-energy of
an ion. So, this hole in the Debye atmosphere about an ion
provides a positive contribution to VH(s, s) − VH(∞,∞)
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Fig. 3. Plots of ṼHg(s, s) as a function γ and of fixed κ̂ taken at
(a) S = 5.91 and (b) S = 6.91. Here, we have set the interface
parameters at b̃ = 5.91 and ã = 4.54.

and therefore reducing ζ(s). Indeed, this effect increases as
the local ionic concentration near the macro-ion increases.

We see that ṼHg(s, s) increases with decreasing γ (the
ratio of dielectrics), as shown in Figure 3(a). This effect is
explained by image charges of small ions. As an ion moves
towards the macro-ion, it experiences repulsion due to its
image charge. The size of these image charges depends on
the value of γ. For instance, when γ = 1 there are no
image charges and at γ = 0 the image charges are largest.
As this is a positive contribution to VH(s, s), this again
reduces ζ(s).

Another qualitative feature we see in Figure 3(a) is
that, as the local concentration of ions increases, the effect
of image charge repulsion diminishes. This is because the
other ions will try and weaken the image charge effect by
adjusting themselves. The size of this adjustment depends
on the local density of ions.

We can also look at the effect of distance on ṼHg(s, s)
by plotting ṼHg(s, s) at S = 6.91 in Figure 3(b). When
compared with Figure 3(a) we have that the dependence
on κ̂ has completely changed and the overall magnitude
of ṼHg(s, s) is reduced. This can be explained by both a
reduction in the exclusion effects and image charge effects
due the effects of more ions between an ion at S = 6.91

and the macro-ion, than at S = 5.91. More of these ions
means that less of the local Debye atmosphere is lost and
the image charge is screened more effectively.

Through the initial definition of ζ(s) (Eq. (5.5)) one
is able to construct an equation to solve ζ(s). Then one
is left with solving this system of equations numerically
for both ζ(s) and φ0(s). In Section 7 we will examine all
these effects, in turn, for point ions.

6 Dealing with finite ionic charge distributions

6.1 General formulation

In this section we deal with the more realistic situation
of extended charge distributions. We will suppose for sim-
plicity, in the main text, that both species of ions have
the same charge distribution f+(r − r+

j ,ω+
j ) = f−(r −

r+
j ,ω+

j ) = f(r − r+
j ,ω+

j ). Though, actually, the sizes and
shapes of both electrolyte species can be quite different.

Using equations (2.2) and (2.14), it is possible to derive
a field theory, albeit a non-local one, that takes account
of these finite charge distributions

Zλ =
1

ZVAC

∫
Dφ(s) exp (−Hion[φ(s)]/Ξ) , (6.1)

where

Hion[φ(s)] =
∫

d3s

[
1
4
χ̃(s) (∇φ(s))2 + iσ̃(s)φ(s)

− κ̃2

2Λ

∫
d3s

∫
d3ω

8π2
Ω̃I(s,ω) cos Φ(s,ω)

]
, (6.2)

and

Φ(s,ω) =
∫

d3s′f̃(s − s′,ω)φ(s′). (6.3)

The rescaled form factor f̃ is normalized so that∫
d3sf̃(s,ω) = 1, i.e. f̃(s,ω) = μ3f(r,ω). Furthermore,

we have derived a more generalized field theory that does
not assume that both species have the same shape. This
can be found in Appendix D.

6.2 Hartree equations

From such a field theory it is possible to derive differo-
integral Hartree equations (see App. D).

χ̃(s)∇2
sVH(s, s′) +

∫
d3ω

8π2

∫
d3s1

∫
d3s2

×f̃(s − s1,ω)Ω̃I(s1,ω)κ̃2ζext(s1,ω) cosh Φ0(s1,ω)

×f̃(s1 − s2,ω)VH(s2, s′) = −2δ(s′ − s), (6.4)

χ̃(r)∇2φ0(s) −
∫

d3s1

∫
d3ω

8π2
f̃(s − s1,ω)Ω̃I(s1,ω)κ̃2

×ζext(s1,ω) sinh Φ0(s1,ω) = −2σ̃(s), (6.5)
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where Φ0(s,ω) =
∫

d3s′f̃(s − s′,ω)φ0(s′) is the potential
energy of a small ion, with orientation ω, in the average
field produced by the macro-ion and the other small ions.
Here again, there is a Boltzmann weight associated with
the change in self-energy of an ion as it moves towards the
macro-ion. This is

ζext(s,ω) = exp(−Ξ (EH(s, s,ω) − EH(∞,∞,ω)) /2),
(6.6)

where EH(s, s,ω) =
∫

d3s1

∫
d3s2f̃(s − s1,ω)VH(s1,

s2)f̃(s2 − s,ω) is the ionic self-energy for an ion with
orientation ω. In the Hartree approximation the lo-
cal concentration of ions (with a given orientation ω),
and the ionic charge density are given by c(s,ω) =
κ̃2ζext(s,ω) cosh Φ0(s,ω) and ρc(s) =

∫
d3ω

∫
d3r′f̃(s −

s′,ω)κ̃2ζext(s′,ω) sinh Φ0(s′,ω), respectively.
Equations (6.4, 6.5) and (6.6) constitute one of the

main theoretical results of this paper. These equations
may have greatest application when one considers ex-
tended molecules like cobalt hexamine or putracine, both
important in the study of DNA. As was pointed out in [1],
through simple arguments, taking account of finite-size ef-
fects for such molecules may be essential. Also, by appro-
priate choices of f̃(s− s′,ω), these equations may also be
applied to the case of a macro-ion immersed in weakly in-
teracting polar solvent, where the dipoles are considered
explicitly. In this case, where Ξ → 0, it should be possible
to recover the results of [18].

However, as a preliminary investigation into the effect
of the small ions having finite-size charge distributions,
we shall consider only the simplest case of a spherically
symmetric charge distribution, i.e. one that does not de-
pend on ω. Then ω may be simply integrated out and
here on we will drop ω from our results. Then, these equa-
tions considerably simplify (as shown in App. D). Now, by
choosing an appropriate form for f̃(s′ − s), considerable
analytic progress can be made in solving them. We choose

f̃(s′ − s) =
1
4π

1
r2
ion

1
|s − s′| exp (−|s − s′|/rion) . (6.7)

Indeed, the big advantage of (6.7) is that it is possible
to derive an approximate partial solution to equation (6.4)
as shown in Appendix D, by making the same WKB-like
approximation. The result is, however, rather cumbersome
so we refrain from quoting it the main text. But this again
leaves us with a very much simplified integral equation
on ζext(s) which can be easily solved numerically in con-
junction with the mean field. We denote the approximate
terms in the self-energy, again, with a tilde on top, i.e.
ẼH(s, s).

Such a distribution does not accurately describe the
charge distribution of a small ion, nevertheless equa-
tion (6.7) still describes important physics. For the small
values of rion that we consider, we find that Φ0(s) ≈ φ0(s).
So here, the charges may be considered point-like, so that
φ0(s) with Φ0(s) does not matter and the actual form
of the charge distribution is irrelevant. We find that the

main effect of finite size comes within the self-energy
ẼH(s, s). The term ẼH(s, s) may be divided into two
pieces ẼHg(s, s) (analogous to ṼHg(s, s) for point charges)
that describes effects due to macro-ion solvent interface
and δẼI(s, s) (analogous to δṼI(s, s) for point charges)
that describes local changes in the electrostatic self-energy
of an ion due to the varying concentration of ions. Now,
any charge smearing due to a finite charge distribution
on ions causes a reduction in ẼHg(s, s), due to a reduc-
tion in image charge repulsion, which is captured in equa-
tion (6.7). Though, we find that the term most sensitive
to finite-size effects is δEI(s, s). Here they do make quite
a difference. This term is essentially a localized solvation
energy [47]. Indeed equation (6.7) may work reasonably,
provided that the parameter rion is correctly related to
ionic size.

7 Results for the uniformly charged macro-ion

7.1 Point charges

7.1.1 The equations

In these calculations, we consider only univalent ions
and calculate both the correlation parameter and Gouy-
Chapman lengths for a surface charge density of σ =
16.8μC/cm2, which is the value for DNA, for which we
find values of Ξ ≈ 20 [48] and μ ≈ 2.2 Å. For different
charge densities, comparable with DNA, it is more conve-
nient to keep these values fixed, instead of recalculating
them for each charge density.

In what follows, we will suppose a uniform charge
distribution on the macro-ion so that σ̃(s) = σ̃(S) =
−σfδ(S − ã) [49]; here we take 0 ≤ σf ≤ 1. The quan-
tity σf represents a fraction of the DNA charge density.
So, we may consider different fixed surface charge densi-
ties and keep Ξ and μ fixed. We take the radius of the core
region to be ã = 4.54 Gouy-Chapman lengths (≈ 10 Å),
roughly that of a DNA molecule. We allow the closest ap-
proach distance from the central axes of the macro-ion, for
the small ions, to be b̃ = 5.91 (in μ, the Guoy-Chapman
length). Therefore, we assign each ion an effective hard-
core radius of 1.37μ (≈ 3 Å). This roughly corresponds to
a small ion (for instance sodium) surrounded by a tightly
bound first hydration shell of water. The key assumption
being: the electrostatic field is not strong enough to par-
tially remove this hydration shell from a significant frac-
tion of ions close to the macro-ion.

Before working with the equations numerically, it is
convenient to recast them in an integral equation form.
We may define a quantity called the excess charge density,
ρex(S) so that

χ̃(S)
[
d2φ0(S)

dS2
+

1
S

dφ0(S)
dS

]
− Ω̃I(S)κ̃2φ0(S) =

−2σ̃(S) + Ω̃I(S)ρex(S). (7.1)
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It is then possible to show that ρex(S) must satisfy the
following integral equation:

ρex(S) = κ2ζ(S)
∫ ∞

b̃

S′dS′Ḡ(S, S′)

×
(

2σf ã

b̃
δ(S′ − b̃) + ρex(S′)

)

−κ2ζ(S) sinh
∫ ∞

b̃

S′dS′Ḡ(S, S′)

×
(

2σf ã

b̃
δ(S′ − b̃) + ρex(S′)

)
, (7.2)

where

Ḡ(S, S′) = Ĝ(S, S′)θ(S − S′) + Ĝ(S′, S)θ(S′ − S), (7.3)

Ĝ(S, S′) =
K0(κ̃S)
K1(κ̃b̃)

(
K0(κ̃S′)I1(κ̃b̃) + I0(κ̃S′)K1(κ̃b̃)

)
,

(7.4)
and μb̃ = b. The reduced electrostatic potential is deter-
mined through

φ0(S) =
∫ ∞

b̃

S′dS′Ḡ(S, S′) (2σ(S′) + ρex(S′)) . (7.5)

Using our approximation, our equation on ζ(S) reads as

ζ(S) = exp(−Ξ/2(ṼHg(S, S) + δVI(S, S))), (7.6)

where δVI(S, S) and ṼHg(S, S) are given by equa-
tions (5.11) and (5.13). Now κ̂(s, q) depends spatially only
on S through ζ(S) and φ0(S).

Now, to examine the various effects, we shall con-
sider three scenarios for calculating ζ(S) for point charges,
based on the following assumptions:

1) We solve equation (7.2) with ζ(S) = 1; this corre-
sponds to the PB equation. No correlation, image charge
or exclusion effects are considered.

2) In the calculation of ζ(S) we allow small ions to
freely penetrate into the macro-ion. Also, we assume a
uniform dielectric constant of εw � 80 throughout. There-
fore, we set ṼHg(S, S) = 0 in equation (7.6), determining
ζ(S), in our calculations.

3) Exclude ions from the macro-ion core but keep the
delectric constant throughout the space at εw ≈ 80, then
γ = 1 in equation (5.14).

4) The full theory. Assume that we have a dielectric
interface for which εw  εc with εw ≈ 80 we, then, have
γ = 0 in equation (5.14).

In numerically solving these equations we use an itera-
tive technique. We start with initial guesses (trial func-
tions) for both ζ(S) and ρex(S), which are ζ0(S) and
ρ0(S). These are then fed into the R.H.S. of both equa-
tions (7.2) and (7.6), and new values ζ1(S) and ρ1(S) are
obtained from the L.H.S. of both equations. Due to the
strong non-linear nature of these equations, we then use a
particular algorithm to improve the convergence rate [50].
Instead of ρ1(S), we use ρ̄1(S) = 0.5ρ1(S) + 0.5ρ0(S).
Both ζ1(S) and ρ̄1(S) are then inserted back into the
R.H.S. of equations (7.2) and (7.6), so ζ2(S) and ρ̄2(S)

are calculated. One then iterates the process. But, cru-
cially at the n-th step, one uses the values ζn−1(S) and
ρ̄n−1(S) = 0.5ρ̄n−2(S) + 0.5ρn−1(S) to calculate both
ζn(S) and ρn(S). We iterate as many times as is required
to obtain accurate values of ζ(S) and ρex(S). This is
achieved when ζn(S) � ζn−1(S) and ρn(S) � ρn−1(S),
which we ensure to a high accuracy.

7.1.2 Numerical results

Unfortunately, we were not able to obtain solutions in all
three situations for σf = 1, the full DNA charge. This
simply may be due to the fact that our approximation
that we use in solving Hartree equations no longer works
at this fixed surface charge density. The WKB-like ap-
proximation seems to break down at the lowest values of
σf when no boundary effects are included (scenario 2),
this seems to make sense as the variation in c(S) for this
scenario becomes very large with S at values of σf just
below this. However, we are able to obtain solutions at
σf = 0.5, κ̃ = 0.48, for all four scenarios, which are shown
in Figure 4.

We notice in Figure 4a that the magnitudes of the
potentials calculated with correlation effects all lie below
those calculated with the PB equation. Those calculated
in scenarios 3) and 4) lie very close to the PB result (sce-
nario 1)). For scenario 2) (no interface assumed in cal-
culating ζ(S)) the calculated potential lies much further
away from the PB result. In Figure 4b we calculate the
local concentration of small ions. We see that when there
is no interface the concentration is much larger than the
PB equation and simply monotonically increases, whereas,
for scenarios 3) and 4) the local concentration is roughly
the same as that calculated for the PB equation. How-
ever, there is one different qualitative feature that both
these solutions exhibit; the concentration starts to fall as
one moves closer to the surface of the molecule. This is
explained when we come to examine the correlation pa-
rameter ζ(S). First we see that, at large enough distances
away from the macro-ion, the calculated values of ζ(S)
for scenarios 2), 3) and 4) all start to increase with de-
creasing S. The amount of correlations increases due to
an increase in the local density of ions; there are more
ions to adjust to the presence of a single ion at a particu-
lar instance. But also, we see that for scenarios 3) and 4),
ζ(S) exhibits a distinct dip as we come close to the surface
of the macro-ion. In scenario 3) this dip is due only to the
exclusion of ions from the macro ion, the physics of which
was discussed at the end of Section 5. Essentially as an
ion comes very close to the surface, less ions contribute
to the screening out of its electric field, so its electrostatic
self-energy starts to increase, which reduces ζ(S). When
image charge effects are considered, in scenario 4), this
dip becomes more pronounced. This is because the elec-
trostatic self-energy of ions is increased by image charge
repulsion (see Sect. 5).

In Figure 5 we examine how the results change when
we decrease σf , the relative surface charge density, by
showing results calculated for σf = 0.25, κ̃ = 0.48. For
the potentials calculated in scenarios 3) and 4), the
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Fig. 4. Results for point charges at 50% DNA surface charge
density with κ̃ = 0.48. a) For the electrostatic potential. b) The
local relative concentration of ions to the bulk c(S)/cbulk.
Here the insets show the relative concentrations of positive
n+(S)/n+bulk and negative ions n−(S)/n−bulk. c) For the cor-
relation parameter ζ(S). In all three figures, the thick solid line
corresponds to the solution of the standard PB equation. The
thin solid line corresponds to calculations in scenario 2). The
dotted line is the situation where the dielectric is uniform, but
ions are not allowed to penetrate the macro-ion. The dashed
line is when the dielectric core has a considerably smaller di-
electric constant compared to the surrounding solvent.

Fig. 5. Results for point charges at 25% DNA surface charge
density with κ̃ = 0.48. a) For the electrostatic potential. b) The
local relative concentration of ions to the bulk c(S)/cbulk.
Here the insets show the relative concentrations of positive
n+(S)/n+bulk and negative ions n−(S)/n−bulk. c) For the cor-
relation parameter ζ(S). In all, the thick solid line corresponds
to the solution of the standard PB equation. The thin solid
line corresponds to the solution where no interface is assumed
in calculating ζ(S): the dielectric is uniform and ions are al-
lowed to penetrate the macro-ion. The dotted lines correspond
to the situation where the dielectric is uniform, but ions are
not allowed to penetrate the macro-ion. The dashed lines cor-
respond to the situation where the dielectric core has a consid-
erably smaller dielectric constant compared to the surrounding
solvent.
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Fig. 6. Results for point charges at 25% DNA surface charge
density with κ̃ = 0.32. a) For the electrostatic potential. b) The
local relative concentration of ions to the bulk c(S)/cbulk.
Here the insets show the relative concentrations of positive
n+(S)/n+bulk and negative ions n−(S)/n−bulk. c) For the cor-
relation parameter ζ(S). Shown in all is the solution of the
standard PB equation (thick solid line), the solution with cor-
relations in ζ(S) but no interface (thin solid line), the situation
where the dielectric is uniform but ions are excluded from the
marco-ion (dots), and the situation where the dielectric core
has a considerably smaller dielectric constant compared to the
surrounding solvent (dashes). Note that in a) the solution for
scenario 3) is indistinguishable from the PB result.

magnitude of the electrostatic potential is larger than
the PB result (Fig. 5a). We see that in Figure 5b the
calculated local concentration of small ions without
an interface (scenario 2)) is still larger than the PB
result, but not so dramatically as what was calculated
at σf = 0.5. However now, the local concentrations
calculated in scenarios 3) and 4) are much lower than

what has been calculated for the PB equation. The
reduction in concentration seen for these two results,
at small S as we move close to the macro-ion, is more
pronounced. When we calculate the correlation parameter
ζ(S), we see that, now, for scenarios 3) and 4) ζ(S) < 1
for most values of S. This reduction in ζ(S), from the
results calculated at σf = 0.5, comes from a reduction
in correlation effects, which increase ζ(S). This reduction
is simply because the local concentration close to the
macro-ion is much reduced from that of σf = 0.5; there
is less electrostatic attraction between the bound surface
charges of the macro-ion and the small positive ions in
solution. Effects due to the macro-ion solvent boundary
dominate, simply making it unprofitable for ions, in
terms of their electrostatic self energy, to come close
the macro-ion; they lose part of their Debye atmosphere
and see image charge reflections (in scenario 4)). Indeed,
the correlation parameter ζ(S) is smallest when a small
dielectric constant is considered for the macro-ion core.

In Figure 6 we keep σf fixed, but change κ̃ and con-
sider σf = 0.25 and κ̃ = 0.32. By comparing this with
Figure 5, it seems that, as one lowers the salt concentra-
tions, the effect of excluding ions is reduced and the effect
of introducing low dielectric constant in macro-ion core is
increased. We also see that the correlation parameter ζ(S)
is pushed up slightly for all the results. This is explained
by an increase in the local relative concentration of small
ions which, in turn, increases the correlation effects.

Lastly for point charges, in Figure 7 we calculate the
charge density of small ions. When there are no inter-
face effects in ζ(S), scenario 2), the charge density is
highest. This is indeed what causes the lowest-magnitude
electrostatic potential of the four scenarios considered. At
σf = 0.5 both the charge densities calculated for scenar-
ios 3) and 4) lie close to the PB result. Furthermore, at
σf = 0.25 the results for scenario 3) (ionic exclusion, no
image charges) is almost identical to that of the PB equa-
tion. However, at this fixed surface charge density, the
result for scenario 4) (image charges included) do show
some significant deviation away from the PB result at low
values of S; the charge density of small ions is lower for
the former result. For completeness, in these figures, in the
insets we show ρex(S). Clearly one sees that, in all cases
at σf = 0.5, the fully linearized PB equation (ρex(S) = 0)
does not work. At σf = 0.25, linearization works reason-
ably well, except for scenario 2). The function ρex(S) is
useful when we consider the theory of interaction between
macro-molecules. Here, it can be used to calculate a renor-
malized charge in the DLVO approximation, used for such
a theory, as we shall do later.

7.1.3 First-order corrections

We may compute the first correction to the WKB-like ap-
proximation, employed for point charges in the numerical
calculations of this paper, from the exact solution of the
Hartree equations. The correction is given by

ΔṼH(s, s) = − κ̃2

2

∫
d3s′′ṼH(s, s′′)ΩI(s′′)

×(λ(S′′) cosh φ0(S′′)−λ(S) cosh φ0(S)) ṼH(s′′, s). (7.7)
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Fig. 7. Results for the charge density of small ions ρ(S). The
insets show the excess charge density, ρex(S) defined in equa-
tion (7.2). Here κ̃ = 0.32. a) At 50% DNA charge density. b) At
25% DNA charge density. The thick solid line corresponds to
the solution of the standard PB equation. The thin solid line
corresponds to the solution calculated in scenario 2). The dot-
ted line corresponds to the situation where the dielectric is uni-
form, but ions are not allowed to penetrate the macro-ion. The
dashed lines correspond to the situation where the dielectric
core has a considerably smaller dielectric constant compared
to the surrounding solvent.

Fig. 8. Figure showing both the correction ΔV (S) =
ΔṼH(s, s)/2 and V (S) = (ṼH(s, s)−ṼH(∞,∞))/2 for σf = 0.5
for the case where there in no interface (scenario 2)). The quan-
tity V (S) is plotted with a thick solid line (for κ̃ = 0.48) and a
thin solid line (for κ̃ = 0.32), whereas the correction is plotted
using a short-dashed line (for κ̃ = 0.48) and a dotted line (for
κ̃ = 0.32).

Fig. 9. Figures showing both the correction ΔV (S) =
ΔṼH(s, s)/2 and V (S) = (ṼH(s, s)− ṼH(∞,∞))/2 for a) σp =
0.25, b) σp = 0.5 and c) σp = 0.75. The insets show the ratio
of the these two quantities. Main figures: the quantity V (S)
is plotted with a thick solid line (for κ̃ = 0.48) and a thin
solid line (for κ̃ = 0.32), whereas the correction is plotted us-
ing a short dashed line (for κ̃ = 0.48) and a dotted line (for
κ̃ = 0.32). Insets: thick solid line for κ̃ = 0.48 and thin solid
line for κ̃ = 0.32.

In Appendix C we recast equation (7.7) in a more explicit,
but cumbersome way, which can readily be used for nu-
merical calculation.

We calculate this correction in two of the scenarios pre-
viously discussed: scenario 2), where there is no interface,
and for scenario 4), where we have the full interface.

In Figure 8 we show the correction ΔṼH(s, s) in
comparison to ṼH(s, s) − ṼH(∞,∞) for scenario 2). As
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one sees the correction is relatively small in relation to
ṼH(s, s) − ṼH(∞,∞). This is also true when smaller val-
ues of σf are considered.

The size of the correction ΔṼH(s, s) in comparison to
ṼH(s, s)− ṼH(∞,∞), for scenario 4), is shown in Figure 9
for σf = 0.75, 0.5 and 0.25. At σf = 0.25, the correction
is small in relation to ṼH(s, s)− ṼH(∞,∞), though signif-
icant. However, in the region of the parameters explored,
we see that the WKB-like approximation works less well
in situations where repulsive effects —image charges and
exclusion of ions— and correlation effects are of similar
size. This is the case when σp = 0.5. Here, there are small
regions in S where the correction is of similar size or even
larger. This is due to the fact that ṼH(s, s) − ṼH(∞,∞)
changes sign, moving from a region where image charges
and ionic exclusion effects dominate to a region where cor-
relation effects dominate. For σf = 0.75, the correction
becomes quite large at the largest and smallest values of
S for which it is calculated, but still remains smaller than
ṼH(s, s)−ṼH(∞,∞). In most cases, we see that the WKB-
like approximation does not work so well for κ̃ = 0.48 than
it does for κ̃ = 0.32.

Nevertheless, the overall conclusion here is, for the
most part, that the WKB-like approximation does not
perform too badly, although the correction can be signif-
icant. Certainly, it works well enough to give insight into
the qualitative physics. Of course, better quantitative ac-
curacy can be sought for by either incorporating the cor-
rection ΔṼH(s, s) into the calculation of the electrostatic
potential or working with the exact Hartree equations,
in an integral equation form, from which the WKB-like
approximation could form a suitable starting point (see
App. C for point charges).

7.2 Extended charges

7.2.1 Equations for the uniformly charged cylinder

Again we consider a uniform charge distribution on the
macro ion, again of the same form. Here, one can intro-
duce radial smearing of the fixed charge groups. But for
simplicity, and purposes of comparison, we keep the same
charge distribution as before.

The ionic potential energy Φ0(S) is determined
through

Φ0(S) =
∫ ∞

0

S′dS′Ḡ(S, S′)η(S′). (7.8)

An explicit expression for the Green’s function Ḡ(S, S′)
is cumbersome and is left to Appendix D. The quantity
η(S′) may be determined self-consistently through

η(S) = κ2

∫ ∞

0

dS′S′Ḡ(S, S′)η(S′)

−κ2 sinh
∫ ∞

0

dS′S ′Ḡ(S, S′)η(S′), for S > b̃, (7.9)

η(S)=
[
− d2

dS2
− 1

S

d
dS

+
1

r2
ion

]
2σ̃(S), for S <b̃. (7.10)

Fig. 10. Figure showing the ionic potential energy, Φ(S) for
rion = 0.185. a) For κ̃ = 0.48, with 100% (solid line), 75%
(dotted line), 50% (short dashes) and 25% (long dashes) of
DNA charge. b) At 100% DNA surface charge density at κ̃ =
0.48 (solid line), κ̃ = 0.4 (dotted line) and κ̃ = 0.32 (short
dashes).

Now, ζ(S) (defined as ζext(S) in previous section) is self-
consistently determined through

ζ(S) = exp(−Ξ/2(ẼHg(S, S) + δẼI(S, S))), (7.11)

where expressions for ẼHg(S, S) and δEI(S, S) (in terms
of ζ(S)) are given in Appendix D.

In the limit rion → 0, equations (7.8, 7.9) and (7.11) re-
produce equations (7.5, 7.2) and (7.6). These equations are
solved in an iterative manner similar to those of the point
charges. The difference is that instead of using ρex(S),
η(S) is used along with ζ(S) in the iterative procedure.

For the size of our charge distributions, we consider
rion = 0.185 and rion = 0.25 (sizes given in Gouy-
Chapman lengths) [51]. Not very large values of rion are
chosen for the following reason. As the charge distribu-
tion of the small ions becomes very smeared out, some
quite non-trivial behaviour is expected. There is a possi-
bility for such sizes, that there will be oscillatory behavior
in the solutions of equations (7.9) and (7.11). This is be-
cause, at sufficiently large values of rion, two of the three
decay lengths present in both Ḡ(S, S′) and E(S, S) may
become complex (see App. D). This change in the decay
lengths has not been taken into account in numerical cal-
culations [52].

7.2.2 Numerical results

We obtain solutions both for different values of σf and
κ̃. In Figure 10 we present results for the ionic potential
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Fig. 11. Results of numerical calculations at 75% DNA
charge density at κ̃ = 0.48. a) For the electrostatic potential.
b) For local concentration of small ions c(S)/cbulk to the bulk.
Here the insets show the relative concentrations of positive
n+(S)/n+bulk and negative ions n−(S)/n−bulk. c) The correla-
tion parameter ζ(S). Calculated point charges-full macro-ion
solvent interface (thin solid line), rion = 0.185 (dashes) and
rion = 0.25 (dots). Included for reference is the solution of the
standard PB equation (thick solid line).

energy Φ(S) (the potential energy of a small ion in the
mean field φ0(S)) calculated with rion = 0.185. In Fig-
ure 10a we fix κ̃ = 0.48 and calculate it for various values
of σf . In Figure 10b we fix σf = 1 and calculate Φ(S) for
various values of κ̃. The magnitude of Φ(S) increases de-
creasing κ̃. These qualitative features are consistent with
those of point charges, where Φ(S) = φ(S).

Fig. 12. Results of numerical calculations at 25% DNA charge
density at κ̃ = 0.48 for the correlation parameter λ(S). Cal-
culated point charges (full macro-ion solvent interface, solid
line), rion = 0.185 (dashes) and rion = 0.25 (dots). Included
for reference is the solution of the standard PB equation (solid
line).

Next, we examine what effect finite size has on various
calculated functions in Figure 11. Here, we set σf = 0.75
and κ̃ = 0.48. In general, we see that, by including finite-
size effects the results become closer to those calculated
for the PB equation. Most significantly in Figure 11c we
see a considerable reduction in ζ(S). Correlation effects
are much reduced. This is because in the close vicinity
of a small ion, the electrostatic forces on other ions are
very much reduced. Consequently, they are less able to
screen out the electric field of such a small ion. It is this
reduction in ζ(S) which is the dominant effect of includ-
ing finite charge distributions. We find that for all the
cases considered Φ(S) ≈ φ(S). However, this will certainly
change with increasing rion.

In Figure 12 we examine what effect the finite size
of the charge distribution on small ions has at smaller
fixed surface charge densities on ζ(S), namely σf = 0.25,
κ̃ = 0.48. We see that the effects of including finite size are
very much reduced. When S is small we see that the effect
of increasing the size of the charge distribution on the
small ions is to increase ζ(S). At close distances, the ionic
exclusion and image charge effects dominate. Therefore
an explanation for the observed trend is that the degree
of image charge repulsion an ion experiences, from the
surface of the macro-ion, is smaller, the larger the size of
the extended charge distribution. At larger values of S,
the point-like ions benefit more from correlation effects,
which leads to point ions having the largest value of ζ(S),
but for σf = 0.25 any difference is very slight.

In Figure 13 we show calculations of the charge den-
sity of the small ions. One should notice that the extended
distributions penetrate into the region ã < S < b̃. In-
deed, this allowed for the finite charge distributions; the
requirement is that the ionic centers lie outside S = b̃.
Indeed, the tail, for small S in the charge density, is due
individual charge distributions of each ion at S < b̃ de-
caying away exponentially with decreasing S. Very little
of the charge distribution penetrates into the macro-ion
core, therefore an assumption (App. D) which is used in
solving the modified PB equation for ions with extended
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Fig. 13. Calculated full charge densities (main graph) and ex-
cess charge densities (inset) for κ̃ = 0.48; calculated at a) 75%
and b) 25% of the DNA charge density; using PB equation
(thick solid line), modified PB equation for point charges (thin
solid line line), rion = 0.185 (dashes) and rion = 0.25 (dots).

charge distributions is completely justified. In the insets
we also show the excess charge distribution ρex(S). For ex-
tended charge distributions the excess charge density (so
that the linearized PB equation, Eq. (7.1) may be used in
all cases) is given by

ρex(S) = ρc(S) + κ2φ0(S) (7.12)

We see that at σf = 0.25, neglecting ρex may be an ade-
quate approximation, but for σf = 0.75 this approxima-
tion does not work well in all cases.

An important feature to see in the plots of ρex(S), for
the extended charge distributions, is that the excess goes
negative near S = b̃. This reflects the relative inefficiency
of extended ions to screen out the electrostatic interaction,
when compared to point charges.

For extended charge distributions the correction
ΔẼH(s, s) from the exact equations has not been calcu-
lated. Though it is completely feasible to calculate, the
calculations are a little more involved, and so have not
yet been done. The corrections may be smaller due to the
fact that ζ(S) is smaller.

7.3 Effective interaction between two uniformly
charged cylinders

Understanding the distribution of counter-ions is impor-
tant for calculating the interaction between macro-ions
in solution. By calculating ρex(S) one may calculate an
effective renormalized surface charge which may be used
in a DLVO approximation to describe the interaction be-
tween two such ions. Also, knowledge of ρex(S) can tell us
roughly where such an approximation is likely to break
down. One should point out that in such an approxi-
mation, attractive interactions from correlations are ne-
glected. Though, for univalent ions the former term may
be quite small compared to the other terms in the interac-
tion. Utilizing the DLVO approximation for two uniformly
charged cylinders, we may write down the following effec-
tive pair potential [1], here written in normal SI units of
length:

Vint

LkBT
= 2(1 − θ)2

lB
l2c

(
K0(κDR) + Ω(κDR, κDa)

(κDa)2 [K1(κDa)]2

)
,

(7.13)
where

Ω(x, y) = −
∞∑

j=−∞
Kj(x)2

I ′j(y)
K ′

j(y)
. (7.14)

Here lc is the distance between two fixed charge groups
on the macro-ion divided by their charge and is re-
lated to the surface charge density lc = (2πσsa)−1.
The first term in equation (7.13) represents the direct
electrostatic interaction between the macro-ions, which
is enhanced by the low dielectric cores by a factor of
(κDa)−2[K1(κDa)I0(κDa)]−2. The second term represents
an image charge repulsion term, where both the excess
counter-ions and fixed charges are repelled by their image
charges on the surface of the other macro-ion.

A possible criteria for equation (7.13) being an ade-
quate description of the repulsive part of the interaction
is that the excess charge distributions, ρex(S) of the two
macro-ions do not overlap to a great extent. However,
when θ � 1, equation (7.13) should always work for a
local dielectric description of the solvent. On examination
of the excess charge densities in Figure 12, we see that,
at an inter-axial separation of R � 14 (30 Å) (for charge
density σf = 0.75 in a salt solution with κ̃ = 0.48, De-
bye screening length λ � 4.58 Å) this criterium is roughly
satisfied.

From ρex(S) we are able to calculate θ through the
following expression (in rescaled units):

θ =
k̃

2σf

(∫ ∞

b̃

SdS [I0(κ̃S)K1(κ̃ã) + I1(κ̃ã)K0(κ̃S)] ρex(S)

+
∫ b̃

ã

SdS(ρc(S) + κ2φ0(S))[I0(κ̃S)K1(κ̃ã)

+I1(κ̃a)K0(κ̃S)]
)

. (7.15)
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Table 1. Calculated values of θ at κ̃ = 0.32 (κD ≈ 0.14 Å
−1

) for the various sizes of ions used in the modified PB equations as
well as the PB equation.

σf value PB equation Point charges Point charges Full theory Full theory
scenario 3) scenario 4) rion = 0.185 rion = 0.25

0.25 θ = −0.350 (0.044) −0.339 −0.404 −0.380 −0.391

0.5 −0.206 (0.146) −0.0755 −0.120 −0.136 −0.132

0.75 −0.0205 (0.280) 0.186 0.157 0.100 0.0921

1 0.134 (0.388) 0.406 0.386 0.288 0.275

Table 2. Calculated values of θ at κ̃ = 0.48 (κD ≈ 0.22 Å
−1

) for the various sizes of ions used in the modified PB equations as
well as the PB equation. Here N.S. means that no solution was obtained.

σf value PB equation Point charges Point charges rion = 0.185 rion = 0.25
scenario 3) scenario 4)

0.25 θ = −0.696(0.032) −0.748 −0.842 −0.776 −0.659

0.5 −0.581 (0.108) −0.473 −0.542 −0.550 −0.537

0.75 −0.435 (0.213) −0.167 −0.215 −0.299 −0.304

1 −0.285 (0.315) N.S. N.S. −0.0950 −0.0951

This equation has been modified from the one origi-
nally considered in [53], by a second term that takes into
account that no charge centers can lie at R < b̃, and any
counter-ion charge distribution, ρc(S) that lies within this
region due to extended charges. In Tables 1 and 2 we show
the calculated values for the charge compensation param-
eter for κ̃ = 0.32 and κ̃ = 0.48, respectively.

For σf = 0.25 we see that the values are quite negative,
most of this comes from the fact that ions are excluded a
distance b−a away from the core region. Through the sec-
ond term in equation (7.15), this leads to an enhancement
of the surface charge; the ions less effectively screen out
the surface charge due to this. For illustration, in brack-
ets, are the values calculated with the PB equation not
taking into account the second term of equation (7.15).
First from the results for point charges, we see that image
and exclusion effects, in the self-energy, lower θ. Further-
more, we see that finite size reduces these effects. This is
consistent with what is seen in Figure 12 for ρex(S). The
values are lower for κ̃ = 0.48 than for κ̃ = 0.32, where the
second term of equation (7.15) is largest in magnitude.
Decreasing the screening length increases the amount of
charge compensation in all cases.

As is expected, as one increases σf the charge com-
pensation increases. Also, we see that as we increase σf ,
including image charges seems to matter less; ionic exclu-
sion effects matter more. For σf = 0.75 the modified PB
equation for point ions in scenario 3), no image charges,
gives the largest value of the compensation. The enhance-
ment of the compensation, above the values calculated for
just the PB equation, is due to the correlation effects [46],
which, as we have seen, increases the surface density of
ions. These compensation values decrease as the more
spread out the distribution of charge on the small ions
becomes; there is a significant reduction in θ for values of
rion considered, when compared to point charges.

As yet, we still have to calculate an attractive term for
correlation effects, as well as accounting for adjustment
of ions in the charge compensation; in a later study these
will be included. We certainly expect the latter to have an
effect on the DNA-DNA interaction as the cylinders are
brought closer together.

8 Discussion

In the numerical solution of the simplified equations, so
far, only univalent ions have been considered. It is possi-
ble to consider divalent ions, where the effects are likely
to become much more pronounced. But care here should
be taken with the WKB-like approximation. It may only
work well, here, for relatively small surface charge densi-
ties, compared to DNA. Indeed, it is already seen to break-
down for univalent ions at the DNA charge surface density.
Perhaps, to get a better approximation, without having
to solve the full Hartree equations or include the correc-
tion, it might be possible to use the WKB-like form for
the correlation function as variational ansatz. Here, κ̂(s, 0)
would now be treated as a variational parameter along
with φ0(s), on the substitution of ṼH(s, s′) (full expression
in App. C) into equation (5.4). Such a variational approxi-
mation could also be used for extended distributions. How-
ever, this still remains an intriguing possibility that has
yet to be explored. Nevertheless, as the valance of ions is
increased, we expect the Hartree equations and the whole
variational approach to work less well. For univalent ions
for the charge densities explored, the counter-ion distri-
butions and the electrostatic potential lie relatively close
to the saddle point approximation, since ζ(S) ≈ 1. There-
fore we suppose that the Hartree approximation should be
relatively accurate as it explicitly includes the first-order
perturbation result, but this can be tested through higher-
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order perturbation theory, more sophisticated approxima-
tions and simulation. But certainly, for trivalent point-like
ions, we expect the Hartree approximation to breakdown,
close to the surface of the macro-ion. Near the surface,
a strong-coupling regime [3] will hold, as Ξ is so high.
Yet, the situation may be a little more subtle for real ions
with valences larger than, or equal to, three. These really
cannot be considered to be point-like [1,54]. And as we
have seen in this study that, for extended distributions,
the correlation effects can reduce quite markedly.

The main connection of this work, with experiment, is
determining the strength interaction between molecules.
Notably, these forces have been measured in assembly for
DNA [55]. Indeed, calculating the charge compensation
parameter θ which renormalizes the surface charges in
a DLVO approximation for the interaction between two
cylinders is an important step in that direction. However,
one should point out that there have also been attempts to
measure the profile of the counter-ion atmosphere directly
through X-ray diffraction [56], though such experiments
were at the limit of experimental accuracy [1].

Indeed, image charge effects, and the exclusion of ions
from the core of the macro-ion, push down the value of θ
and correlation effects push it up. Also, by not allowing
the charge centers of ions to come to the surface of the
dielectric core (i.e. requiring b > a, where a and b are the
radius of the dielectric core and the minimum approach
radius of an ion, respectively), we also cause a considerable
reduction in θ, which actually leads to an enhanced renor-
malized charge. Also, with increasing σf the inclusion of
image charges seems to matter less; only at intermediate
values of σf = 0.5, 0.75 are they significant. With our
results we are able to make estimates of below what sep-
aration the DLVO approximation is likely to break down.
However, in the case of a molecule like DNA, such esti-
mates may be too conservative for two reasons. The first
is that DNA is not a smooth cylinder; it has grooves in
which ions may sit accommodating their hydration shells.
The second is that chemi-adsorption is important for many
species of ion, even mono-valent alkali metals (for example
Na+) feel the presence of fractional charges on the base
pairs within the grooves [1]. Chemi-adsorption will bring
more of the condensed ions, those contributing to θ, closer
to the macro-ion surface, and this in turn should reduce
the separation above which this effective (repulsive) inter-
action is valid. Of course the full effective interaction has
yet to include an attractive term due to correlation effects
as well as counter-ion adjustment, thus going beyond the
DLVO approximation.

Chemi-adsorption is a missing ingredient that has yet
to be included [57] consistently in the theory. This cannot
simply be included in just the equation for the electro-
static field; it affects ionic correlations as well. This is be-
cause ions adsorbed at the surface may be able to adjust
themselves to the presence of an ion out in the solution, so
creating a correlation hole. This effect should draw small
ions closer, pushing up θ. Though, this effect may depend
heavily on where the ions are adsorbed and spatial charac-
teristics of the adsorption potential. To study this effect,
we hope to include chemi-adsorption in a modified WKB-

like approximation and its interplay with correlation and
image effects in future work.

A second missing ingredient is a full treatment of the
finite-size effects of the small ions. Already, we have looked
at the finite size of the charge distribution of ions, which
seems very important for the correlation effects. Also, we
have considered a minimum closest approach for an ion.
However, steric/short-range potentials should be included
consistently in the statistical-mechanical model. In the
simplest approximation, each ion may be treated as a hard
sphere, but not just at the surface of the macro-ion, in the
solution as well. The hard-core radius of each ion in solu-
tion may be taken to be that of the ion and a tightly bound
first hydration shell of water. We are currently developing
techniques to account for this in the field-theoretical ap-
proach. The goal being to develop a type of equation sim-
ilar to that considered in [42], modified to take account
of weak correlation effects. However, we want develop this
from a more rigorous statistical mechanical approach, for
the macro-ion–electrolyte system, than a lattice gas. This
equation should also include both correlation and image
charge effects (through coupling to an equation describing
the correlation function).

Of course, simulations to test at what values of the
correlation strength Ξ, and other parameters, the Hartree
approximation works would be useful. Also, one could also
try and test this by computing the next-to-leading order
correction of the full theory to the variational trial func-
tional or by trying to develop a random phase approxima-
tion. But, to go beyond the Hartree equations full steric
effects are essential. One can show that this correction
to the Hartree approximation, for point charges without
steric effects, is highly divergent. This is a manifestation
of the Bjerrum instability towards the formation of Bjer-
rum pairs. Therefore, to calculate a meaningful correction,
steric effects are essential; the hard-core size of the ion acts
as a cutoff. Indeed, there should be a very important inter-
play between effective size of ions and the validity of the
Hartree approximation on its own. If the hard-core radius
of an ion is too small, then the Hartree approximation will
not work and a large proportion of ions will form electri-
cally neutral bound Bjerrum pairs. These considerations
should also be important in looking for a strong-coupling
expansion [3,10] in the presence of salt.

Of course, our description solvent may be too simple:
a constant bulk dielectric. So another direction of devel-
opment would be to consider modeling the solvent in a
more sophisticated way. This might be achieved through
two possible routes. The first is to treat the solvent ex-
plicitly as individual dipoles. It is certainly possible to
include the solvent explicitly in the field theory of a single
fluctuating field [18]. The problem with this approach, in
water (or other strong polar solvents), is that the dipoles
interact strongly (highly correlated), so one would have to
go very much beyond the mean-field approach. Finite-size
steric effects of the water molecules would also need to be
considered. Though, solving the simpler problem of ions
in a dilute weak polar solvent may still be insightful [18].
A second approach, more phenomenological, would be to
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couple the counter-ions to a Landau-Ginzburg model, de-
scribing a local polarizability field [47,17]. Such a model
has enjoyed some success in describing the microscopic
electrostatic effects of water [47]. Whatever the approach
used, this course of study is likely to be very involved, and
should be left until later in the development of the theory.

9 Conclusion and outlook

In this work we have developed a field-theoretic formal-
ism to handle three effects that go beyond the simple PB
approach: image charge effects of the small ions, weak cor-
relation effects, and finite ionic charge distributions. From
this field theory we have derived self-consistent (Hartree)
equations; a modified PB equation and an equation for
the correlation function of a fluctuating field, which de-
scribes the additional correlation effects and image charge
effects. These equations may apply to any solution of small
rigid ions with extended charge distributions, most no-
tably cobalt hexamine and putracine.

As a first attempt at obtaining approximate solutions
to these equations we have developed a WKB-like approx-
imation. We have used this approximation to calculate
the mean electrostatic potential and distribution of small
ions about a uniform distribution of fixed charges on a
cylindrical macro-ion. We have done this for point charges
and spherically symmetric charge distributions of small
univalent ions.

For point charges, we find that ionic exclusion effects
cause a considerable reduction in ζ(S). When we include
image charges, there is a further smaller, though signifi-
cant reduction. Whereas, correlation effects have the op-
posite effect; pushing up ζ(S). When the surface charge is
low, the local concentration of ions is dominated by exclu-
sion effects and image charge repulsion, and so diminishes
as we move close to the surface of the macro-ion. As we in-
crease the macro-ion charge density, we move into a regime
where correlation effects win out over image charge effects
and the local concentration of ions increases slightly more
than what the PB equation predicts. Also, by considering
a correction, we have shown that WKB-like approximation
works well compared to full Hartree result for point ions.

When we make the charge distribution on the small
ions finite, we find that, for values of the surface charge
density close to DNA, ζ(S) is very much reduced and lies
much closer to one; the results are closer to the PB equa-
tion. At surface charge densities considerably smaller than
DNA, ζ(S) changes little for the sizes of charge distribu-
tion considered.

The main application of all this work is the in the
theory of interaction between macro-ions. Here, we have
considered the interaction of two cylinders in the DLVO
approximation. From our calculations it possible to cal-
culate a factor 1 − θ that renormalizes the fixed surface
charges density in such an approximation. We find that
correlations, image charges and finite size all have a sig-
nificant effect on θ, which becomes important when the
surface charge density is comparable to that of DNA. The
upshot is that all of these effects could be important in the

interaction, though the effects seem to cancel each other
out to a certain degree.

In following publications we hope to investigate chemi-
adsorption and the effect of including steric interactions
between ions. Also, it will be interesting to apply what
is learnt to distributions of helical charge. Here, from our
microscopic theory, we would want to calculate the heli-
cal moments (KL parameters) presented in [1], these are
important for the interaction between helical macro-ions.
Finally, we will want to consider the Hartree approxima-
tion of a system of two macro-ions. Our goal is to treat the
interaction between helical macro-ions in a more consis-
tent way than in [12]. Then we may examine the validity
of the effective KL theory for helical molecules [1,12] and,
where appropriate, modify the KL theory to take account
of correlation effects and counter-ion readjustment.

D.J. Lee would like to acknowledge the support of the Max-
Planck Institute for the Physics of Complex Systems and A.A.
Kornyshev for useful discussions.
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which four unit positive charges are equally distributed.
To take account of the flexibility requires more degrees of
freedom to be assigned to each molecule.

55. D.C. Rau, V.A. Parsegian, Biophys. J. 61, 246; 260 (1992).
56. R. Das, T.T. Mills, L.W. Kwok, K.D. Finkelstein, D. Her-

schlag, L. Pollack, Phys. Rev. Lett. 90, 188103 (2003).
57. In preparation.
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