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1 Introduction

The financial ecosystem is a complex network of institutions and transactions from dif-
ferent places and a variety of volumes, values, currencies, and instruments, where finan-
cial institutions have created different vehicles, structures, services, and products to take
advantage of globalization and growing financial complexity. However, some clients and
institutions use these platforms to develop money laundering activities, and the amount
of money laundered by year is between 2% and 5% of the global Gross Domestic Prod-
uct (GDP), according to the United Nations Office on Drugs and Crime (UNODC) [1].
Namely, economic crimes and criminal organizations use different mechanisms to pro-
tect their illegal money, and taking advantage of the global financial system is one of them.
Criminals use this system to transfer or invest funds between several jurisdictions around
the world to try to legalize their money.

Preliminary studies have investigated money laundering as a global economic cross phe-
nomenon in a few cases [2—7] or as a social network analysis [8—10]. However, the integra-
tion of these phenomena could emerge as a complex systemic risk and propagate across
different systems to a global scale [11-14]. The growth of a broad range of illegal activities
and the volume of interactions in financial networks have created increasing complex-
ity and, probably, constitute a context in which criminals are the beneficiaries because
financial crimes have become more frequent and diverse. Thus, this phenomenon needs
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new approaches constantly because criminal organizations change rapidly their activity
schemes like sophisticated structures of ownership (parent firms and subsidiaries) to out-
wit authorities [15], and even more when the financial transaction volume rises every day.
It is our view in this paper that with a topological analysis of the network structure it is
possible to identify suspicious groups, and how their members are separated from each
other, in order to determine if some agents of these groups can develop financial crimes
like money laundering. Our study suggests that the structure of these networks facilitates
the emergence of certain patterns and relationships among financial and non-financial
intermediaries and offshore entities that are characteristic of money laundering activities.

The aim of this work is to gain a better understanding of the money laundering mech-
anisms in financial networks by studying the topological structure of these suspicious
money laundering groups. Indeed, we apply some tools from topology and geometry
that are well-adapted to this setting to reveal and detect the most relevant groups of
agents in the network that develop suspicious interactions that are frequently associated
with money laundering activities. For this purpose, we employ as a basis the analysis of
Caribbean financial networks that has appeared in [16], and introduce a proposal for the
topological detection of characteristic money laundering interactions in a network. We
will also employ as an aid in our study a discrete quantity called the Forman—Ricci curva-
ture of a graph that in the case of simple undirected and unweighted networks provides
information that can be obtained by degree centrality alone, but it has the advantage of
having a geometric interpretation and is well-defined in settings where more information
like weights associated to agents or interactions is present in the network. This is desirable
for a more refined analysis of suspicious activities but it will not be attempted here since
our purpose is to consider the case when only the minimum quantity of information is
available.

This paper is divided as follows. In the Sect. 2, we present some basic network and fi-
nancial terminology employed in the text and describe the datasets used in this study. The
Sect. 3 is devoted to a brief description of the discrete topological and geometrical notions
employed in this work, including a general definition of geometric simplicial complexes.
In the subsequent Sect. 4, we present a simple set of rules associated to money laundering
activities which, nevertheless, capture several of the most common characteristics of this
type of fraudulent activity. Moreover, we propose a strategy to detect and study the emer-
gence of suspicious groups in financial networks in order to identify with greater precision
their possible members. The Sect. 5 presents the most relevant results obtained by the use
of the proposed strategy to identify the largest suspicious money laundering activities in
our financial networks, including observations that are derived from topological and geo-
metrical considerations. We close the paper with Sect. 6, devoted to highlight important
aspects of our approach and provide directions for future work.

2 Materials

2.1 Data collection

The financial networks used in this work were constructed from the Bahamas Leaks and
the Panama Papers datasets based on the International Consortium of Investigative Jour-
nalists [17]. These datasets contain information about 0.7 million agents (intermediaries,
offshore entities, and officers) and almost 1 million interactions among these agents. We
have used the same data structure of the source where the data set is divided into different

subsets with information of intermediaries, offshore entities, officers, and one additional
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subset with the list of interactions. These interactions are given by their corresponding
nodes, but they do not have specific information about dates. Namely, edges could cor-
respond to permanent or occasional interactions, and it is impossible to know anything
beyond that.

We compiled the data, but these datasets require some considerations that deserve men-
tioning. (1) The datasets are historical aggregate data for the 1980-2017 with unweighted
nodes (also called agents in this setting) and undirected interactions (edges). (2) We did
not use irregular information appearing in the data like repeated names, non-registered
addresses, and non-classified agents. (3) We removed all data corresponding to interme-
diaries, offshore entities, and officers that appear without jurisdiction or other incomplete
information, i.e., we used only complete registers available. (4) We used several informa-
tion elements of the original datasets of Bahamas Leaks and Panama Papers except for the
information sources list. (5) For legal concerns, we did not use names or other informa-
tion that could be sensitive. Only those agents who have been legally being proven their
participation in money laundering activities are identified (e.g., Mossack Fonseca).

Other considerations about the data are: the agents (nodes) are classified into three
groups (see Table 1): intermediaries, offshore entities, and officers. Intermediaries are in-
stitutions that connect financial and business operations, and their activities include a
broad range of financial, consulting, legal, accounting, and management services. Inter-
mediaries have two subgroups financial and non-financial intermediaries. The financial
intermediaries comprise all financial institutions like banks, private banks, trust compa-
nies, funds, or wealth managers with operations in the Caribbean jurisdictions. The non-
financial intermediaries refer to consulting, legal, accounting, and management services
for corporate and private entities. Offshore entities are companies incorporated in juris-
dictions with low taxation rates (tax havens), and their activities are developed overseas,
i.e., the company does not undertake business with persons resident in that jurisdiction.
Additionally, its profits are not repatriated. Officers represent an intermediary or an oft-
shore entity legally, habitually. They are employees of non-financial intermediaries or, in

some cases, financial institutions.

Table 1 Type of Agents and Interactions

Agents/Nodes Type Sub-type
Intermediaries Financial Funds
Banks

Private Banks

Trust Companies

Wealth Managers
Non-Financial ~ Legal

Consulting

Accounting

Management

Offshore Entities - -

Officers - -
Edges Type
Interactions Financial
Legal
Consulting
Accounting

Management




Granados and Vargas EPJ Data Science (2022) 116 Page 4 of 19

Agents are distinguished by their characteristics: size, activity, service, global network,
to list a few, all of which can define the agent’s interactions with others. For example, first,
it may be that a law firm in several jurisdictions with a specific service is more likely to
be visible (e.g., Mossack Fonseca). Second, it may be that the global banks are more active
in a particular financial service. Third, several non-financial intermediaries with certain
specialized services are more likely to attend to particular clients like global corporations,
ultra-high wealth families, or public figures. Those examples are a sample that interactions
are distinguished by the agents’ characteristics and indicate how many agents that agent
had contact in different jurisdictions.

Furthermore, the agents in the network (intermediaries, offshore entities, and officers)
can interact between themselves through five types of edges: financial, business, legal, ac-
counting, and management relations (see Table 1). This classification is a proxy because
agents have interactions of any kind without being defined as some specific kind of trans-
action during the analyzed period. Additionally, some offshore entities and intermediaries
have the date of incorporation, or establishment, respectively, but do not have specific data
about transactions date. For this reason, interactions could be continuous or occasional,

but it is not possible to know.

2.2 Data analysis

The data analysis using some network metrics identifies that networks have a low average
node degree (see Table 2), which means that a big part of the agents is connected to at
most another one. The average path length for the Bahamas Leaks and Panama Papers
networks is 9.62 and 10.42, respectively, confirming the above.

In general, it is noteworthy that a moderate number of particular agents are highly con-
nected to many others that only connect to it. Not all agents are connected between them-
selves. On the contrary, most agents are not connected to many others. Namely, the prin-
cipal heterogeneity observed in the network has to do with two different types of inter-
acting agents: a) Central nodes connected to many other nodes and b) nodes with low
degrees connected to central nodes. Finally, the assortativity for the Bahamas network is
—0.2404, and for the Panama Papers network, it is —0.0521. In this case, a network that is
non-assortative, i.e., with negative assortativity, may comprise agents that are themselves
highly assortative but others lowly assortative. A particularity of corrupt and money laun-
dering networks is that some agents do not have the interest to connect with other high

degree agents, only in some situations or through another agent [16].

Table 2 Some Network Metrics

Variable Bahamas leaks ~ Panama papers
Total Nodes 219,856 559,433

Total Edges 246,291 657,488
Intermediaries 541 14,110
Offshore Entities 175,888 213,634
Officers 25,262 238,402
Average Node Degree 224 235
Avg. Shorthest Path Length 9.62 1042
Assortativity -0.2404 -0.0521
Connected Components 390 11,043

Detected Communities 536 11,569
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The community analysis presented in that reference shows these networks’ large-scale
distribution and complexity, revealing a sophisticated internal organization and com-
partmentalized structure into components and communities. Although the networks are
highly disconnected, both of them carry a very significant central component where the
community detection algorithm still detects several smaller (but interconnected) groups.
Thus, it becomes relevant to determine the possible role of these groups in the struc-
ture of money laundering. As it will become clear later, our topological approach shows
that the community detection strategy is not precise enough to describe the fine structure
of suspicious money laundering activities because they may comprise agents in different
communities.

Furthermore, the metrics in Table 2 indicate that it is necessary to use other tools to
single out suspicious money laundering groups. One of them is the negative assortativity of
the networks because it is a representation of a characteristic that may differ for each node
in the graph [18]. In the next section, using topological and geometrical considerations,
we implemented a procedure to identify the most relevant candidate members of these
kinds of groups.

3 Methods

To study the topological and geometrical structure of the financial networks under con-
sideration, we employ mathematical tools from topology and discrete geometry adapted
to this setting. We present here a brief overview without entering into technicalities, but
relevant references with precise details are provided in the text.

We define a graph G = (V, E) as a pair consisting of a set V' of nodes, and a set E of pairs
of nodes called edges and a subgraph G’ = (V', E’) of G is a graph with V' C V and E' C E,
where E’ contains all elements of E connecting vertices of V'. A complete graph is a graph
with edges connecting any possible pair of its vertices [19]. Subsets of the collection of
edges of a graph that are used in our analysis are:

« A path is a finite sequence of distinct edges joining a sequence of distinct vertices.

+ A circuit is a non-empty path in which the first and last vertices are repeated.

o A cycle or simple circuit is a circuit in which the only repeated vertices are the first and
the last vertices. If there are no external edges connecting any two of its vertices it is
called a chordless cycle or hole.

+ A clique is a set of vertices for which the corresponding subgraph is a complete graph.
A maximal clique is a clique that is not properly contained in a larger one. A clique
with k vertices will be called a k-cligue (although there are other notions with the
same name in the literature).

By the topological structure of a network, we refer to all the aspects related to its connec-
tions, i.e., the description of how the network nodes are interconnected between them-
selves giving rise to its characteristic distribution of paths and voids, without requiring
any notion of length or size. In contrast, by its geometric structure, we refer mainly to
those aspects directly associated with some notion of size, which can be given in terms
of distances on the network (arising from the minimum number of edges connecting two
nodes, or from any particular metric), in terms of a discrete notion of volume related to
the degree of the nodes, or in terms of another similar quantity. Although, in general, the
geometry of the network is not independent of its topology, it provides further insights
into its structure.
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Figure 1 Simplices and geometric simplicial complex. (a) Example of geometric n-simplices for n = 0 (vertex),
n=1 (edge), n =2 (3-clique including its 2D interior) and n = 3 (4-clique including its 3D interior, where the
dashed line corresponds to an edge that is hidden by the solid 3-simplex body in 3D). (b) A geometric
realization of a simplicial complex associated to a graph represented by black vertices and edges. The faces or
2-simplices, the 3-simplices and higher dimensional simplices are not usually considered for a proper (i.e.,
one-dimensional) network but can be considered in a higher dimensional approach. (c) Forman-Ricci
curvature of an edge e on a one-dimensional approach to networks is calculated in terms of the number of
other edges incident to its vertices i and j

For the topological characterization of networks, their simplicial structure is necessary
to calculate invariants such as the Euler characteristic and their simplicial homology, al-
though they are not explicitly needed for our purposes. These standard tools of algebraic
topology can be described in different degrees of generality, but we adopt here a point of
view based on the geometric realization of abstract simplicial complexes in the context of
graphs (Fig. 1a and Fig. 1b). As far as the analysis presented here goes, we only need to
provide some definitions and remark that the reduction procedure described in the forth-
coming sections leaves the topological structure of our networks invariant. Therefore, it
does not alter quantities like the Euler characteristic or their homology.

3.1 Topological notions

A geometric n-simplex of a graph G is a set of (# + 1) completely connected nodes or ver-
tices that define a complete subgraph, hence, they corresponds to an (# + 1)-clique. An
orientation of an n-simplex is an ordering of its vertices (i.e., a directed (n + 1)-clique), but
here we will deal only with undirected graphs and the orientation will not be required. In
this way, a graph G gives rise to a geometric simplicial complex understood as the finite
collection S(G) of all the possible simplices determined by its vertices and edges. By def-
inition, S(G) is required to contain all the proper subsimplices, or faces, that belong to
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any of its member simplices. Indeed, the defining property of a simplicial complex is to
be closed under the operation of taking subsimplices of its elements. It is not difficult to
show that the intersection of two simplices of S(G) neither of which contains the other is
a (possibly empty) proper subsimplex of both, i.e., a common face.

Denoting by S, the subset of all n-simplices of S(G) it is clear that we can write S(G) =
SoUS1 U---USy if n =N is the highest order of any n-simplex of G. If |S,,| denotes the
number of n-simplices of G, the Euler characteristic of G can be defined by

N
X(G) =Y (1[5, )

The Euler characteristic is a well-known topological invariant of a space and in this con-
text it is a simple quantity that encodes global topological information of a network. In our
context, its relevance lies only in the fact that this quantity remains invariant under the
reduction procedure presented in the Money Laundering section but its particular value

will not be needed in our analysis.

3.2 Geometry and curvature

In the last decade, there has been substantial interest in studying useful geometric notions
like distances and curvatures (among others) that are naturally adapted to the network
context. Some of these notions can be induced on a network by embedding it into an ap-
propriate ambient space, and in this way, the relevance of hyperbolic geometry has been
established in the literature [20] using embeddings into some of the models of this geom-
etry. Although such an approach appears explicitly extrinsic, network models have been
established for which hyperbolic geometry emerges naturally by specifying growing or at-
tachment conditions for the nodes [21]. Other approaches to these notions come from the
discretization of smooth geometric quantities using different considerations. Due to its
purely combinatorial definition, which is intrinsic (i.e., independent of any embedding of
the network into an ambient space) and its simplicity for calculations, we have chosen as a
tool to describe the geometry of our networks the so-called Forman—Ricci curvature that
was introduced in [22] in the general mathematical context of CW-complexes (Fig. 1c),
and which has a very simple definition in our situation of undirected, unweighted net-
works. Nevertheless, it should be mentioned that some of the advantages of this notion lie
precisely in providing a sensible definition when there are weighted nodes and/or edges
in the network, and this situation will not be considered here. The precise mathematical
definition is as follows.

For an unweighted graph G = (V, E) the Forman—Ricci curvature Ricg(e) of anedge e € E
is defined as the number of its vertices, i.e. 2, plus the number of faces or true topologi-
cal 2-simplices to which it belongs (that for proper graphs that carry only zero and one-
dimensional simplices is always zero), minus the number of edges of G parallel to it (which
are all their neighboring edges), see Fig. 1c. The total value is therefore equal to the sum
of the degrees of its vertices minus 2. Explicitly, this can be written as

Ricr(e) =2 — |{e’ €E:é | e}| =4 - Zdeg(v), (2)

v~e

where the relation || denotes parallelism and ~ denotes incidence.
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From an intuitive point of view, the Forman—Ricci curvature of an edge quantifies the
dispersion or divergence of paths at the two ends (i.e., vertices) of that edge and provides
a geometric assessment of the importance of that edge in terms of how it is connected to
its neighbors. Being an accurate discretization of a continuous notion, the Forman—Ricci
curvature provides a direct and intrinsic geometric analog in the network setting of a well-
established notion of Ricci curvature that is very important in applications and can be in-
terpreted as a measure of how the “discrete volume” of connections changes around the
node/edge under consideration. Although there are correlations between Forman—Ricci
curvature and other more standard network metrics, they depend on the particular net-
work, for example, for scale-free networks, there is a negative correlation with the degree
of nodes, but the correlation is weaker for real networks than for network models. Addi-
tional details can be found, e.g., in [23, 24] and references therein, including more general
definitions of this notion and its relation to other metrics in real and model networks.

4 Money laundering networks

In this section, we present a set of rules common to several instances of money laundering
activities and explain how these rules can be manifested in the topology of a financial net-
work to propose a useful strategy in determining suspicious interactions. The importance
of these rules is that they can be used in the absence of any additional information apart
from the fact that there is some interaction between the network agents.

4.1 Rules of suspicious money laundering activities

The Financial Action Task Force (FATF) defines Money Laundering as the process by
which money generated through criminal activity appears to have come from a legitimate
source. For evaluating suspicious interactions related to money laundering, like the move-
ments to distance money from their source (geographically or financially) or their busi-
ness activity, the local laundering in the jurisdiction in which the money was generated, or
the non-local laundering in other jurisdictions, distance indicators are important [7]. Al-
though the money might be moved through the trading of financial instruments or wired
through different banking accounts anywhere around the world as tax havens (or juris-
dictions with lax laws and low regulatory standards), it is expected that at least to some
extent, this money will return to the money launderer agent after various transactions (few
or a lot) determining a cycle. Thus, money laundering activities exhibit some characteris-
tics that have been identified by diverse international organizations [1, 25], and the most
relevant ones for our topological analysis can be summarized as a set of rules to detect
groups of suspicious agents (nodes) that could be related to money laundering without
the need of additional (and possibly confidential or unavailable) information concerning
those interactions:

+ Rule 1. The money launderer agent’s interactions do not grow rapidly because it is
preferable to maintain only few interactions with other agents and to keep them as
anonymous or covert as possible.

+ Rule 2. The money launderer agent does not impose restrictions on the geographical
distance required for those interactions. This includes the transference of money
between a non-haven jurisdiction and a tax haven jurisdiction.

+ Rule 3. The money launderer agent does not care how many transactions are needed
to clean the illegal money (cycle), resorting to deposits triangulation between the
same agents.
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+ Rule 4. The money launderer agent employs the breaking up of large amounts of
money into smaller amounts to avoid suspicions. The money is then deposited into
one or more bank accounts or other financial instruments either by different persons
or by a single person over a period of time.

+ Rule 5. After a process of money laundering interactions is initiated, it is to be
expected that at some point (at least part of) the involved money returns to the
money launderer agent completing a cycle.

4.2 Topology and geometry of money laundering

Using the previous list, we present here a simple translation of those rules to the language
of graphs in order to explain how those suspicious activities may be reflected in a financial
network.

We are going to assume that the information used in the construction of the graph car-
ries the bare minimum data necessary to determine all the nodes involved in the financial
interactions and that edges only represent a known interaction of some unspecified type.

Then, when studying the graph of the financial network the characterization can be
reflected in the following rules:

+ Rule 1. Look for paths for which a proportionally important part of their nodes are not

as highly connected as the rest.

« Rule 2. Do not restrict the location of those paths to be confined to a particular

community (or other subset) of the graph.

+ Rule 3. The length of the paths considered should not be restricted.

+ Rule 4. Look for paths with several bifurcation points, and study their behavior from

those points.

« Rule 5. Among the possible paths in the graph, closed paths or cycles are more

relevant that simple paths.

Consequently, for the determination of suspicious activities/interactions in a financial
network, we are led to concentrate as a fundamental task in determining those cycles in
the network passing through bifurcation points (node s) that also belong to many other
cycles. The larger cycles could be associated with a possibly stronger effort to obfuscate
the money origins, so it is natural to start looking for cycles whose size varies from the
largest to the shortest appearing in the network.

Nevertheless, since the number of cycles in a large network can be vast, the rules in-
dicate that the presence of several crossing cycles should be much more suspicious than
individual ones. We propose a simplified approach that can detect groups of agents where
the previous rules hold simultaneously in the most concentrated possible way without
specifically studying all paths or even all cycles in the network. The detection procedure
can be summarized in the following.

Strategy Three practical steps in the determination of the most suspicious money laun-
dering interactions in a financial network are:

« Step 1. Reduction: Replace each node of degree 2 (i.e., a bifurcation-free node) in the
network and its incident edges by only one edge connecting the node’s neighbors and
repeat this procedure until the elimination of all those nodes. These operations will
possibly leave pairs of nodes connected by two or more edges (multi-edges) and also
nodes with one or several self-loops so that the reduced graph is a multigraph. See
Fig. 2 for several instances of this reduction procedure.
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Figure 2 Explicit examples of the reduction procedure (Step 1). (@) Replacement of the 2-degree node e and
its edges by a simple (red) edge. (b) After elimination of node e, the resulting multiedge is replaced by a
simple (red) edge. (c) After the elimination of the 2-degree node j, a (red) self-loop appears that is also
discarded. (d) After the reduction, the two paths joining i and j become a simple (red) edge. (e) After the
detection of a true clique in the reduced network (called reduced clique), the complete cycles connecting
their member nodes are determined in Step 3, restoring all the original members of the group. The right-hand
side shows what is called an “embedded clique” in the unreduced network. It is not a true clique but a group
of intersecting cycles, and hence a candidate focus of suspicious activities

« Step 2. Clique search: Once there are no bifurcation-free nodes in the network,
proceed to determine all the maximal cliques in the reduced network, starting the
search from the largest to the smallest ones. According to the rules and since the
length of cycles plays no role after reduction, higher-order cliques should be more
suspicious than lower-order ones. Furthermore, agents belonging to the intersection
of several cliques could be pivotal centers for different suspicious activities, and their
determination should also be highly prioritized.

« Step 3. Embedding: Find how the nodes of these cliques were embedded inside the
original unreduced graph, restoring the possibly deleted vertices of 2-degree
connecting their agents to obtain all the nodes involved in the cyclic interactions.
Moreover, check some neighborhoods of those embedded cliques to study how they

interact with other close members in the financial network and detect possible agents
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connecting different cliques but which do not belong to any of them (and therefore

could not have been detected before).

Although it is possible that strictly complete subgraphs, i.e., cliques, do not correctly
appear in the unreduced financial network, the expected interconnection property of a
corrupt community highly is a topological characteristic that is preserved by the reduc-
tion Step 1. From a practical point of view, this step only reduces path lengths but leaves
the topological structure of the network invariant. Indeed, each application of this step ac-
tually removes one edge and one vertex of the original network, and therefore, preserves
its Euler characteristic and all topological invariants (up to the removal of multiedges and
self-loops). In other words, it preserves the connection structure of the network, which
carries the money laundering characteristic activities. Furthermore, from this perspective,
even the degree one nodes and their edges could also be deleted from the original network
to reduce the network size when the dataset is too large.

Notice that the cliques of the reduced network (that we will call reduced cliques for
short) do not necessarily correspond to true cliques in the original unreduced network.
However, they indeed represent sets of maximally connected nodes that carry multiple cy-
cles connecting groups of their members, and for this reason, they satisfy all the previously
listed rules. Therefore, the relevance of this reduction is that any group of intersecting cy-
cles of arbitrary lengths is converted to a clique or a set of intersecting cliques of different
sizes but which are easier to detect and organize by size. When the nodes of the reduced
k-cliques are viewed inside the original network by restoring their deleted nodes and con-
nections, they will be called embedded k-cliques, even though they do not correspond to
proper cliques in the unreduced original network. The reduction procedure does not alter
the real cliques already present in that network.

After Step 1, some k-cliques of order k > 3 do necessarily appear in the reduced network,
and the task is to find them all in Step 2. Starting from the set of highest order cliques to
the lowest order ones, an analysis of the nodes appearing in these cliques is expected to
provide an ample spectrum of corrupt candidate elements. However, since it is crucial
to check their position in the original network, Step 3 must find the precise subgraph to
which they belong, restoring possible previously deleted (and also suspicious) nodes.

Finally, the calculation of the Forman—Ricci curvature of the edges of all the embedded
k-cliques as members of the original unreduced network helps to estimate the regions of
the distribution of nodes that should be considered to be of interest for further investiga-
tion, but more importantly, it helps to corroborate that the embedded k-cliques found to
carry some asymmetry in the volume of their connections, which is reflected in the fact
that the curvature values lie around well-separated magnitudes.

Concerning the algorithmic implementation of these steps, we should point out that
many of the standard software packages for the analysis of networks already provide func-
tions to perform the reduction, the search for cliques (of particular sizes) and even for sets

of paths connecting particular nodes.!

Ifor Steps 2 and 3, we have relied on standard network analysis functions like FindClique, FindCycle, and related ones
available in Mathematica (v.11"). For the reduction procedure of Step 1 on the function IGSmoothen implemented in the
freely available Mathematica package IGraph/M.
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5 Results
Applying the proposed strategy to find suspicious groups using topological and geometri-
cal considerations introduced in the previous section, we obtained results in both financial
networks. In this section, we present the obtained cliques from the Panama Papers and Ba-
hamas Leaks networks as candidates for possible detection of money laundering of small
groups. The usefulness of these results lies in catching agents performing interactions that
generate suspicion because they have patterns commonly observed in money laundering
activities. These agents go unnoticed with other methodologies due to the size of these
financial networks.

Figure 3 shows the emergence of money laundering suspicious groups in the Panama
Papers network. First, Fig. 3a shows the Panama Papers network and Fig. 3b shows the
suspicious nodes in their communities represented in Fig. 3a. We find seven groups of

6-cliques that provide relevant information. One agent was one of the ten most essential

Figure 3 Reduced k-Cliques and Emerging Suspicious Groups in the Panama Papers

Network.(a) Communities in the Panama Papers network. (b) Position of suspicious nodes in the network
(zoom). (c) Simultaneous representation of all 5-cliques of the reduced network. Red nodes correspond to
those that are also part of the reduced é-cliques found in the network. Notice that here and in the
accompanying figures, the 5 and 6-cliques are connected between themselves in the reduced network (i.e.,
they are not independent) and the figure shows all the connections between those nodes, hence there are
more than 5 or 6-edges for many nodes
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agents (central node) in the evolution analysis of Panama Papers communities (see [16]).
For this reduced network of 5 and 6-cliques, this intermediate agent continues to be the
most important one (Fig. 3c). The 5-cliques network includes agents of the 6-cliques one,
but it was dominated by small agents (right network of Fig. 3c). We complemented this
analysis with 2-neighborhood graphs of the embedded k-cliques. Figure 4a shows the 6-
clique and how interactions between other agents and new groups appear with their fea-
tures arising from the cliques’ geometry and indicating possible money laundering pat-
terns. Similarly, in the case of 5-cliques (Fig. 4b), new activities occur with small groups
of agents.

We also obtained similar results on networks of other sizes, particularly the Bahamas
network. Figure 5a and Fig. 5b show the suspicious nodes in their communities. Figure 5¢
shows the distribution of 4-clique agents in the network. These 4-cliques result from inter-
actions between a few intermediaries and a group of offshore entities with a particularity:
some of these have the same incorporate date and place (a money laundering pattern). In
this case, one financial institution subsidiary interacts with one of these groups of cliques,
but in other cases, intermediaries are non-financial intermediaries (Fig. 5¢). It remains to
check if some of these intermediaries have certain capital relations (shareholders) with
financial institutions, although this requires further study and other methodologies.

Also, we identified these cliques in the Bahamas network and found new characteris-
tics (Fig. 5a). First, some agents interacted with offshore entities created on the same date
and place and a few times with financial and non-financial intermediaries, the cycle inside
4-clique (Fig. 5d). Additionally, we found interactions between nodes from different com-
munities (appearing in the results of the previous section) with a particular characteristic:
some of those communities were small, and they are not representative.

A summary of the number of maximal and total k-cliques found in all the reduced net-
works appears in Table 3. We conclude our analysis with some geometric considerations
obtained from the study of the Forman—Ricci curvatures of the entire networks and the
corresponding curvatures of the reduced cliques as they appear inside the original net-
works.

Figure 6 shows the distribution of Forman—Ricci curvature of the edges of the financial
networks considered. It can be observed that most edges in these networks have negative
curvature and broad distribution. By comparing distributions of edge curvatures in these
networks, it is clear that the curvature distribution of the Panama network (Fig. 6b) de-
cays very rapidly for negative values, similar to the behavior of a randomly constructed
scale-free network of similar size whose Forman—Ricci curvature histogram is included
for comparison in Fig. 6¢. In contrast, the Bahamas network (Fig. 6a) has a curvature dis-
tribution that deviates more clearly from that basic scale-free model. A detailed analysis
of the relation between deviation from scale-free behavior and the possible presence of
fraudulent activities were considered in [16].

The Forman—Ricci curvature distributions for the embedded sets of 6-cliques and 5-
cliques as they appear inside the original Panama Papers network appear in Fig. 7. Note
that these Forman—Ricci curvature values are calculated for all the edges of those reduced
cliques and not for their vertices, which explains why there are many more values than the
number of vertices. From these results, the more important observation is that the edges

accounted for in both histograms are divided into two well-separated groups, one whose
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°
L

Figure 4 Reduced k-Cliqgues Embedded in the Unreduced Networks. (a) Simultaneous view of all reduced
5-cliques as they appear embedded into the original Panama Papers network after restoring their deleted
2-degree nodes and corresponding edges, thus they are not true cliques anymore but carry many connecting
cycles. (b) Simultaneous view of all reduced 6-cliques as they appear embedded into the original Panama
Papers network after restoring their deleted 2-degree nodes and corresponding edges. Although they are not
true cliques in the unreduced network, they carry many connecting cycles. (c) Simultaneous view of all
reduced 4-cliques as they appear embedded into the original Bahamas Leaks network after restoring their
deleted 2-degree nodes and corresponding edges, in the original network they correspond to nodes that
belong to many connecting cycles

edges have a negative curvature that is roughly half of the curvatures of the other group,

showing a clear difference in the volume of interactions for each group.
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Figure 5 Reduced k-Cliques and Emerging Suspicious Groups in the Bahamas Leaks. (@) Communities in the
Bahamas Leaks network. (b) Position of suspicious nodes in the Bahamas Leaks network (zoom). (c) Largest
connected component of the set of all nodes belonging to 4-cliques of the reduced Bahamas Leaks network.
(d) The remaining connected components of the set of nodes from 4-cliques of the reduced Bahamas Leaks
network

This result shows that the groups of suspicious nodes under study are divided into two
sets, one whose volume of connections to the rest of the network is higher than the other.

This property could be considered a preliminary indication that these nodes satisfy the
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Table 3 Number of maximal/total k-cliques in the reduced networks

Cliques sizes  Panama papers ~ Bahamas leaks

6-cliques 6/6 0/0
5-cliques 26/59 0/0
4-cliques 1100/1276 88/88
3-cliques 26,368/30,443 7577/7917
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Figure 6 Forman-Ricci Curvature Histograms. The figures show histograms for the values of the
Ricci-Forman curvature corresponding to the edges (i.e., interactions) of: (a) The Bahamas Leaks network.
(b) The Panama Papers network. (c) A randomly generated scale-free network with comparable size

requirements established in the previously presented rules and particular Rule 1 of the

Sect. 4.2 for lower-curvature nodes and Rule 4 for higher-curvature ones. The simultane-
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Figure 7 Forman-Ricci Curvature Histograms for Embedded Cliques in the Bahamas and the Panama
Networks. The figures show histograms for the values of the Ricci-Forman curvature corresponding to the
edges of the reduced k-cliques as they appear when viewed (embedded) inside the original network:

(a) Values for the edges of all 6-cliques in Bahamas Leaks. (b) Values for the edges of all 6-cliques in Panama
Papers. (c) Values for the edges of all 5-cliques in Panama Papers

ous presence of these two types of nodes reinforces the plausibility that those embedded

cliques correspond to highly suspicious groups.

6 Conclusion

We analyzed suspicious interactions in financial network structures using information
from the International Consortium of Investigative Journalists. As already observed
in [16], very general aspects of this phenomenon in large-scale networks can be detected
with several network science techniques. However, details of these crimes need specially
adapted approaches because money launderers develop their activities through few in-
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teractions and small groups that escape detection through standard methods like the de-
termination of communities. As a result, many agents go unnoticed in these networks.
The combination of topology and geometry tools can facilitate a new approach to analyz-
ing money laundering in complex financial networks. Our proposed strategy allows us to
identify common suspicious groups that lie at the root of global financial crime.

Although the complete characterization of money laundering activities through only
topological considerations is not possible, we expect that Rules 1 to 5 provide a useful
starting point to more refined developments. By its very definition, the strategy proposed
here is in principle capable of detecting all groups of nodes that satisfy all the stated rules
simultaneously. The difficulty lies in the large number of independent cliques that could
appear, and their priority could be given by size. Nevertheless, it should be clear that no
definite positives to money laundering can be given with our procedure, and particularly
without further specific information on the involved interactions. The proposed strategy
only allows determining suspicious groups that could be considered primary candidates
for detailed scrutiny if more information is available.

For future work, a natural next step is to employ more refined topological and geomet-
rical tools adjusted to this setting. More concretely, from the topological side, the use of
homological techniques and invariants (e.g., Betti numbers, including the Euler invari-
ant) can be used to measure and characterize the connectivity structure of the financial
networks. At the same time, from the geometrical counterpart, further insights into the
role of curvature in this context will provide a clearer picture of the suspicious interac-
tions in these networks. A particular useful enhancement of the curvature considerations
presented in this work is to extend the analysis with the use of augmented Forman—Ricci
curvature by defining 2-simplices (or higher-order ones) in the network, taking advantage
of the cyclic interactions that occur, or by using further information from the data or its
observed behavior. In this way, the curvature values could encode more direct information
concerning, for example, the suspicious interactions specified by Rule 5 of Sect. 4.2.

Even though a more detailed analysis is required, our findings provide a preliminary in-
dication that the Forman—Ricci curvature can be used as a geometric tool to quantify how
much a set of suspicious nodes satisfies some of the expected characteristics of money
laundering interactions in these kinds of financial networks. Moreover, it is expected that
its use can be highly enhanced once weights are given to agents and interactions using ad-
ditional information from the data, which for the uniform treatment of the heterogeneous

datasets employed was not viable in this study.
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