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Abstract. An experiment consisting of a network of sensors can endow several advantages over an exper-
iment with a single sensor: improved sensitivity, error corrections, spatial resolution, etc. However, there
is often a question of how to optimally set up the network to yield the best results. Here, we consider a
network of devices that measure a vector field along a given axis; namely for magnetometers in the Global
Network of Optical Magnetometers for Exotic physics searches (GNOME). We quantify how well the net-
work is arranged, explore characteristics and examples of ideal networks, and characterize the optimal
configuration for GNOME. We find that by re-orienting the sensitive axes of existing magnetometers, the
sensitivity of the network can be improved relative to the past science runs.

1 Introduction

Various experiments make use of a network of sensors
in lieu of a single, centralized device. A network of sen-
sors can come with several advantages such as having
better sensitivity than a single device, being able to
catch and correct errors, and achieving superior spatial
resolution. However, there are also a few challenges and
complexities that arise when involving many devices. In
addition to the logistical challenges of managing mul-
tiple devices at once and making sense of several data
streams, there is the foundational question of how to
best arrange the network. This question is explored for
a network consisting of a specific class of sensors: ones
that measure a vector field.

A common motivational interest in designing these
network experiments is in measuring spatially extended
phenomena. For example, interferometer networks used
to measure gravitational waves [1–3], gravimeters used
for geodesy [4], and magnetometers used for geophysics
[5–7]; all of which measure vector-field phenomena1 on
scales the size of the Earth or larger. Networks have also
been used to search for direct evidence of dark matter,
which is believed to dominate the mass of the galaxy
but only weakly interacts with visible matter; see, e.g.,
reviews in Refs. [8–10]. This includes both gravimeters
[11–14] that search for the motion of dark matter cap-
tured by the Earth as well as magnetometers [15–20]
that search for coupling between dark and visible mat-
ter.

1 The interferometer networks can be understood as mea-
suring something closer to a tensorial deformation in space-
time. However, similar to vector-field sensors that measure
a vector only along one axis, these interferometers are only
sensitive to certain polarizations of gravitational waves.

a e-mail: jsmiga@uni-mainz.de (corresponding author)

For this work, the Global Network of Optical Magne-
tometers for Exotic physics searches (GNOME) [15–18]
is of particular interest. GNOME consists of shielded
magnetometers around the Earth and has the goal
of finding new, exotic (vector) fields that couple to
fermionic spin. For example, GNOME searches for
axion-like particle (ALP) domain walls [15,17,18] via
the coupling of the ALP field gradient to nucleon spin.
The gradient, in this case, is in effect a vector field;
albeit with typical constraints, such as having a van-
ishing curl.

This paper is organized as follows: a method of calcu-
lating the network sensitivity is described in Sect. 2, a
quantification of network quality is described in Sect. 3,
ideal and optimized networks are described in Sect. 4,
and concluding remarks are given in Sect. 5. Through-
out this paper, the network under consideration will
consist of the GNOME magnetometers. However, the
principles explored here can be extended to other net-
work experiments.

2 Sensitivity

The magnetometers in the network each possess a “sen-
sitive axis” that results in the attenuation of a signal
when the vector field is not parallel or anti-parallel to
the sensitive axis. Denote the sensitive axis of magne-
tometer i with di . The magnitude of this vector reflects
the strength of the coupling such that a vector (field)
m will induce a signal si = di · m in the ith magne-
tometer. Consider the case in which only one vector m
describes the signal. For a domain wall, this could be
the gradient at the center of the wall with the timing of
the signal adjusted to account for delays as the domain
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wall crosses the network. The signals observed by the
network can be simplified into the linear equation,

Dm = s , (1)

where D is a matrix whose rows are {di} and similarly
s = {si}. To avoid a trivial case, it is assumed that
the network consists of at least one operating sensor;
so there exists a vector m such that Dm �= 0.

In practice, one will measure a set of signals s with
some error. Let Σs be the covariance matrix in the mea-
surements s that characterizes this error; the matrix
will generally be diagonal as noise between the GNOME
magnetometers is uncorrelated. An approximate solu-
tion to Eq. (1) given the error in measurement is
obtained by minimizing χ2 = (Dm−s)T Σ−1

s (Dm−s).
This solution is given by

m = ΣmDT Σ−1
s s (2a)

for Σ−1
m = DT Σ−1

s D , (2b)

where Σm is the covariance matrix for m. As long as Σs

is a positive-definite matrix, as is the case for a realis-
tic network, Σ−1

s is well-defined. However, Σm will not
be well-defined if D has a non-trivial kernel, Dm = 0
for m �= 0; in other words, the network has a “blind
spot.” In this pathological case, one cannot uniquely
reconstruct m, though one can still salvage a meaning-
ful definition of sensitivity.

The network sensitivity is defined as the magni-
tude necessary to induce a |m| signal-to-noise ratio
ζ =

√
mT Σ−1

m m of one. Thus, the sensitivity in the
direction m̂ is

β(m̂) = 1/
√

m̂T Σ−1
m m̂ . (3)

This will vary by direction. However, one can find the
range of sensitivities over different directions by solv-
ing for the eigenvalues of the symmetric, positive semi-
definite matrix Σ−1

m =
(
DT Σ−1

s D
)

— the smallest
eigenvalue λmin = β−2

0 giving the “worst-case” sensitiv-
ity as a large signal β0 would be needed to induce a sig-
nificant signal. Likewise the largest eigenvalue λmax =
β−2
1 gives the “best-case,” and the corresponding eigen-

vectors are the directions that induce such signals. If
the network has a blind spot, then λmin = 0 so β → ∞
along the corresponding direction.

3 Quality factor

Given the sensitivity defined by Eq. (3), there remains
the question of how to optimize the network; in partic-
ular, how to optimize the directions {di} for the best
network. If there is distribution of directions of interest
for the vector field, one could define the optimization
by performing some weighted average of Eq. (3) over

this distribution. If one is ambivalent about the direc-
tion of the signal, the worst-case direction indicates a
bound on sensitivity.

Ideally, the magnetometers in the network will be
oriented to evenly cover all directions. If there is a
preferred and unpreferred direction, one could improve
the sensitivity in the unpreferred direction by rotating
the sensitive axis of magnetometers toward this direc-
tion. Under practical conditions, it is not possible to
have GNOME always operating under optimal condi-
tions because the noise in individual sensors varies over
time and magnetometers will occasionally activate and
deactivate.

To judge how well the GNOME network is perform-
ing, it helps to define some quantitative “quality fac-
tor.” This factor would ideally reflect how optimally
the network is set up with the magnetometers available
and not the absolute sensitivity of the network. That is,
the quality of the network refers to how well the magne-
tometers are oriented and is not affected by improving
all magnetometers by a constant factor. One possibility
is the quotient of the best and worst sensitivity,

q0 := β1/β0 . (4)

This factor will be zero if network has a blind spot
(β0 → ∞) and one if the network has no preferred direc-
tion. Generally, a more optimally oriented network has
a larger q0. The quality factor for GNOME during the
Science Runs is given in Fig. 1b.

A few terms are defined here based on the quality of
a network. Namely, an “ideal” network is one for which
q0 = 1, while an “optimal” network is one in which the
sensitivity β0 cannot be improved by re-orienting the
sensors in the network.

Given a set of magnetometers with covariance matrix
Σs and known coupling, it should be possible to deter-
mine a theoretical best sensitivity. For this, we will
consider a network with n independent magnetome-
ters that are all described by a single sensitive axis di

with coupling strength κi := |di|. Consider the case
in which the angle between any vector signal and any
sensitive axis is random (this would be the case for

many randomly oriented sensors). Because
(
d̂i · m̂

)2

≈
〈
cos2 θ

〉
= 1/d, for d = 3 spatial dimensions, Eq. (3) in

this case becomes,

βopt ≈
√√
√√d

/
n−1∑

i=0

(κ2
i /σ2

i ) (5)

This may not be the optimal sensitivity, but it pro-
vides a heuristic for an optimal network. The quo-
tient between the observed and optimal sensitivity for
GNOME over time is given in Fig. 1c.

With the quality factor in mind, it helps to consider
exactly how sensitivity varies with direction. The net-
work has been fairly stable with many active sensors
during the recent Science Run 5. A map of the aver-
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(a)

(b)

(c)

Fig. 1 The quality factor over time for Science Runs 1–5. Solid lines represent 1 day rolling averages. a The number
of active sensors over time. b The quality factors over time. The color indicates the number of active sensors. c The
approximate factor by which the network could be improved if the sensors were optimally oriented using the approximate
optimized sensitivity, Eq. (5)

age sensitivity2,
〈
β (m̂)−1

〉−1

, in different directions is
shown in Fig. 2. The network quality could be improved
by improving the quality/reliability of stations sensi-
tive to insensitive directions (e.g., Moxa or Daejeon) or
rotating/adding additional sensor(s) toward the worst
direction.

4 Ideal and optimized networks

With the quantitative definition of network quality
given in the previous section, various optimized and
ideal networks are given here. In particular, we consider
properties and explicit arrangements of ideal networks
as well as numerical optimizations of more realistic net-
works.

To better understand the characteristics of networks,
it helps to define some additional formalism. Define a
network with a given set of orientations as a pair of
(n×d) directional matrix and (n×n) covariance matrix
N = {D,Σ}; for n sensitive axes and d = 3 spatial
dimensions. Two networks N0 = {D0,Σ0} and N1 =
{D1,Σ1} can be considered equivalent N0

∼= N1 if there
exists a permutation matrix P such that D1 = PD0

2 Using the average of the inverse sensitivity accounts for
blind spots β−1 → 0.

and Σ1 = PΣ0P
T ; that is, they are the same up to

ordering. Additionally, a network can be decomposed
into two complementary subnetworks N ∼= NA ⊕ NB

if

N ∼=
{[

DA

DB

]
,

[
ΣA 0
0 ΣB

]}
.

Observe that the subnetworks NA and NB are indepen-
dent/uncorrelated.

In addition to the basic equivalence relation described
above, there are some additional symmetries for a
network. First, the sensitivity β(m̂) is invariant with
respect to parity reversal of a subnetwork; i.e., DA �→
−DA for N ∼= NA ⊕ NB . Further, though the sensi-
tivity β(m̂) of a (non-ideal) network can change under
arbitrary rotation of the whole network DT �→ RDT ,
the value of the worst sensitivity, best sensitivity, and
quality factor do not.

4.1 Ideal networks

There are a few useful characteristics of ideal net-
works that are worth considering. For an ideal net-
work, q0 = 1 so the smallest and largest eigenvalues of
DT Σ−1D are the same which implies that this matrix
is proportional to the identity matrix. In particular,
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Fig. 2 Average sensitivity β of GNOME during Science Run 5 (23 August–31 October 2021). A position on the Earth
represents the direction perpendicular to that point on the Earth. The direction of the sensitive axes of the stations is
represented by � (parallel) and ⊗ (anti-parallel). That is, if a sensor was moved to the corresponding geographical location,
then its sensitive axis would be vertical. The � markers are labeled with name of the station, given by the city in which
the sensor is physically located. The marker color is a visual aid to associate the pair of markers on opposite sides of the
Earth representing the same station

DT Σ−1D = β−21. It also follows that the sensitiv-
ity of an ideal network is independent of global rota-
tions.

Consider, now, how ideal networks are combined. Let
NA and NB be two complementary, ideal subnetworks
of N , then

[
DA

T DB
T
] [

ΣA 0
0 ΣB

]−1 [
DA

DB

]
=

(
β−2

A + β−2
B

)
1 .

That is, the network N ∼= NA ⊕ NB is also ideal with
sensitivity

(
β−2

A + β−2
B

)−1/2
. Further, because an ideal

network remains ideal under rotations, one can rotate
either ideal subnetwork without affecting the sensitiv-
ity of the network N . Further, if N = NA ⊕ NB is an
ideal network and NA is an ideal subnetwork, then NB

is also an ideal subnetwork. An ideal network that can-
not be separated into ideal subnetworks is “irreducible.”
Because an ideal network needs at least d sensitive axes
(for d = 3 spatial dimensions), an ideal network with
n < 2d is irreducible, because it cannot be split into
two ideal networks.

One can consider certain explicit cases of ideal net-
works with some simplified conditions. In particular, let
N = {D,Σ} be composed of n identical, independent,
single-axis sensors — that is, Σ = σ21 and |di| = κ
where di is the ith row of D. If there are d = 3 sen-
sors oriented such that their sensitive axes are orthog-
onal,

then the resulting network will be ideal with sensitiv-
ity β = σ/κ. Heuristically, one would like to orient the
magnetometers to evenly cover all directions. One way
to do this is to take some inspiration from the Platonic
solids by designing a network in which the sensitive axes
of the sensors are oriented from the center of the solid to
each of the vertices; see Table 1. Most of these solids will
generate a network with two ideal subnetworks having
opposite sensitive axes. Thus, one can obtain ideal net-
works with three (octahedron), four (tetrahedron and
cube), six (icosahedron), and ten (dodecahedron) sen-
sors through this method; denoted N3, N4, N6, and
N10. These arrangements have the sensitivity β = σ/κ√

n/3

and are irreducible. With these networks alone, it is evi-
dent that there are multiple unique ways of orienting a
given number of sensors that do not rely on using the
same set of ideal subnetworks; for example, six sensors
can be arranged as N6 or N3 ⊕ N3.

Combining N3 and N4 subnetworks, one can design
ideal networks with three, four, six, or more sensors.
What seems to remain is a way to orient five identi-
cal, independent sensors into an ideal network. One can
show that two such network arrangements N5a and N5b

are given by
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Table 1 Examples of optimal networks based on the pla-
tonic solids. The orientations of sensitive axes in an ideal
network are given as lines (dashed in one direction, solid in
the other). The number of vertices are separated by ideal
network. For example, the cube has eight vertices, and the
corresponding ideal network consists of two ideal networks
with four sensors each; hence, “4 + 4” is listed. In each case
here, X + X vertices describe two ideal networks with X
sensitive axes in opposite directions

D5a = κ

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

0
√

5
6

√
1
6

0 −
√

5
6

√
1
6√

5
6 0

√
1
6

−
√

5
6 0

√
1
6

0 0 1

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

and D5b = κ

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

1 0 0

−
√

1
3 −

√
2
3 0

−
√

1
3

√
2
3 0

0
√

1
6

√
5
6

0 −
√

1
6

√
5
6

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

, (6)

each with sensitivity β =
√

σ/κ
√

5/3. These networks
are unique, even when considering parity reversal of
individual sensors, reordering, and global rotations; this
is evident because D5b has orthogonal sensors while D5a

does not, and orthogonality of two vectors is invari-
ant under these operations. Further, these are irre-
ducible ideal networks because n < 6. Along with N3

and N4, one can generate any ideal network with at
least three identical, independent sensors using these
arrangements.

Though one can always arrange three or more iden-
tical, independent sensors into an ideal network, it is
not always the case that a given set of sensors can be
arranged into an ideal network. For example, consider
a set of n ≥ d = 3 sensors all with the same coupling
κ = 1, but n − 1 sensors have noise σ0 and the last
sensor has noise σ1 < σ0/

√
(n − 1)/2. An optimized

network would be arranged with the first n − 1 sensors
evenly oriented around the plane orthogonal to the last

sensor and have a quality q0 = σ1
σ0

√
n−1
2 < 1 and sen-

sitivity β0 = σ0√
(n−1)/2

. The least-sensitive direction is

orthogonal to the last sensor’s sensitive axis, and any
adjustments to the sensors’ orientations would worsen
the sensitivity in this plane. The problem in this sce-
nario is that one sensor is much more sensitive than the
others, so they cannot compensate, even collectively.
The extreme case of this would be if the first n− 1 sen-
sors were so noisy that they were effectively inoperable;
this arrangement would not be much different than an
n = 1 network, which cannot be ideal.

4.2 Optimizing networks

Regardless of whether a given set of magnetometers
can be arranged into an ideal network, their arrange-
ment can always be optimized; at least at a given time.
In practice, the noise in each GNOME magnetometer
varies over time and magnetometers turn on and off
throughout the experiment, so an optimal arrangement
at one time may not be optimal at another.

A non-optimized network can still be improved via
an algorithm. An example of a “greedy” algorithm
would be one in which, each step, a sensor is randomly
selected, removed from the network, and re-inserted in
the least-sensitive direction for the network without the
removed sensor. This step can then be repeated many
times until reaching some optimization condition. For
multi-axis sensors that always have the same relative
angle between the sensitive axes, the orientation by
which to re-insert the sensor is a bit more complicated.
Roughly, one would apply a rotation to the sensor to
align the best- and worst-directions for the multi-axis
sensor and the rest of the network (see Appendix A).

This algorithm will also work regardless of whether
an ideal network arrangement exists, though the result-
ing network may not be optimal. Subsequent steps of
the algorithm may converge to a non-optimal network
or alternate between network configurations.
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Table 2 Optimizing GNOME for each run. In particular, a network is constructed using all magnetometers active for at

least 25% of the run. Noise is calculated as the average standard deviation of the data
〈
σ−1

〉−1
after applying a 1.67 mHz

high-pass filter, 20 s averaging, and notch filters to remove powerline frequencies. This choice in how the average noise
is calculated suppresses the influence of brief periods in which there was a spike in noise. The columns contain the run
number, number of sensors used in the optimization, network characteristics, optimized network characteristics, theoretical
optimized sensitivity from Eq. (5), and factor by which the optimization algorithm improved sensitivity

During run Optimized
Run Size β0 (pT) q0 β0 (pT) q0 βopt (pT) Improved

1 6 0.74 0.19 0.27 0.62 0.22 2.72
2 9 0.48 0.49 0.30 1 0.30 1.59
3 7 0.51 0.27 0.26 0.61 0.21 1.97
4 9 1.13 0.22 0.42 0.79 0.37 2.67
5 11 0.25 0.55 0.18 0.86 0.17 1.35

The optimization can be applied to the GNOME net-
work to better understand the potential of the experi-
ment. In particular, this was performed for GNOME’s
official Science Runs:

• Science Run 1: 6 June–5 July 2017.
• Science Run 2: 29 November–22 December 2017.
• Science Run 3: 1 June 2018–10 May 2019.
• Science Run 4: 30 January–30 April 2020.
• Science Run 5: 23 August–31 October 2021.

The results of the optimization are given in Table 2 in
which the coupling was assumed to be one. For most of
the Science Runs, the improvement was less than a fac-
tor of two with the largest improvement being by a fac-
tor of 2.7 from Science Run 4. Additionally, the Science
Run 2 network could be made ideal with the same sen-
sitivity as predicted in Eq. (5). It should be noted that
the networks used in the optimization included sensors
available at least 25 % of the run, while it is not typi-
cal for all these sensors to be active at the same time.
Another example of network optimization is given in
Appendix B wherein only a couple sensors are reori-
ented and an additional sensor is added.

5 Conclusions

In this paper, we have considered a network of sensors
with directional sensitivity and how the collective sensi-
tivity of the network is affected by the choice in how the
sensors are oriented. To do this, a “quality factor” was
introduced to quantify how efficiently the network sen-
sors are oriented regardless of their underlying sensitiv-
ity. Various properties and examples of ideal networks
were presented, along with a means of optimizing an
existing network. By optimizing GNOME, we can show
some modest improvement in the network sensitivity
without requiring additional sensors or improvements
in existing sensors.

In practice, there are still some limitations in how
sensors can be oriented. For example, depending on

how the sensor is built, it may not be possible/practical
to reorient it, or it may only be possible to orient its
sensitive axis vertically or horizontally. Additionally,
what may be an optimal network under some set of
conditions may not be optimal under later conditions
depending on how the sensitivities of the sensors change
and which ones are active. However, if there are many
decent/reliable sensors, the network as a whole will not
usually deviate too much from its optimal arrangement.

This work only considered the manner in which the
sensors were oriented, not their position. The relative
positions and distances between the sensors are not rel-
evant to understanding the sensitivity of the network
as a whole. Briefly, the optimal placement of the sen-
sors in a network differs depending on the goal of the
experiment. It is generally simpler to observe a signal
that crosses a network of nearby sensors; because the
potential crossing time is shorter, less data need to be
compared between the sensors. However, measuring the
direction and speed of some phenomena crossing the
network can be done more accurately when the sensors
are more distant from one another.

The work described in this paper can be applied to
any experiment involving a network of directionally sen-
sitive devices. These networks are useful in detecting
features in a vector field or gradient that traverse a spa-
tial region. Both the design and improvement of these
networks can be meaningfully improved through careful
consideration of how sensors are oriented.

Moving forward, this study can have a direct influ-
ence on Advanced GNOME; a planned general upgrade
to the GNOME experiment. In particular, this study
provides the tools to understand how to orient new
sensors and re-orient existing sensors as to optimize
the network sensitivity—taking advantage of the major
upgrade period to make improvements to the collective
network. The Advanced GNOME upgrade includes the
addition of SERF comagnetometers [21] with the option
to operate in two-axis mode. The use of multi-axis sen-
sors can be incorporated into the work presented here
by treating them as multiple sensors with correlated
noise. These sensors also have the constraint that the
sensitive axes must remain orthogonal. Optimization
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with multi-axis sensors is explored in Appendix A con-
sidering this constraint.
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Appendix A: Multi-axis sensors

Consider a multi-axis magnetometer that can only be
reoriented by rotating the entire sensor—one cannot
adjust individual sensitive axes. Some effort is needed
to understand how to orient such a sensor with respect
to a larger network.

Let Na = {Da,Σa} describe the orientation of the
multi-axis sensor and Nb = {Db,Σb} describe the rest
of the network. The matrices DT

i Σ−1
i Di (for i ∈ {a, b})

can be diagonalized as UiΛiU
T
i where the Λi is a diag-

onal matrix whose jth element along the diagonal is
the jth-smallest eigenvalue λij , and Ui is an orthogonal
matrix (U−1

i = UT
i ) whose jth column is the respective

(normalized) eigenvector uij . The orthogonal matri-
ces have the effect of rotating the coordinate axes to
the best- and worst-directions (i.e., most- and least-

sensitive) for the respective network: x̂ �→ the worst-
direction and ẑ �→ the best-direction. Finally, define Ũi

as Ui with its columns reversed; this also reverses which
coordinate axis will be rotated to which direction.

When orienting the multi-axis sensor to be included
in the rest of the network, it is optimal to orient the
respective best-direction of the multi-axis sensor with
the worst-direction of the rest of the network and vice-
versa. This is accomplished by rotating the multi-axis
sensor as follows:

Da → Da

(
ŨbU

T
a

)T

. (A1)

This rotation maps:

ŨbU
T
a :worst for a �→ x̂ �→ best for b

best for a �→ ẑ �→ worst for b .

For the diagonal matrix with the eigenvalues in descend-
ing order Λ̃i (i ∈ {a, b}), the combined network will
have DT

abΣ
−1
ab Dab = UbΛabU

T
b for Λab = Λ̃a+Λb, a diag-

onal matrix of eigenvalues (not necessarily ordered).
The quality factor is given by the ratio of the small-
est and largest eigenvalue q0 =

√
λmin
λmax

. The eigenval-
ues for the combined network consist of the sum of the
smallest eigenvalues for one subnetwork and the largest
eigenvalues for the other. This decreases the range of
eigenvalues and optimize the network.

For example, the Hayward, Krakow, and Mainz sen-
sors could operate as two-orthogonal-axis magnetome-
ters during Science Run 5; though at the cost of worse
sensitivity, roughly doubling the variance. Replacing
these three sensors during the Science Run with (uncor-
related) two-axis sensors and including them with opti-
mal orientations improves the sensitivity by a factor
of 1.35 to β0 = 0.18 pT. This is slightly better than
the 1.21 factor of improvement for optimizing the three
sensors in single-axis mode.

Appendix B: Applied optimization

It is useful to consider an explicit examples of optimiz-
ing parts of the network. Specifically, consider reorient-
ing the Mainz and Krakow magnetometers and adding
another magnetometer with 0.2 pT standard deviation
noise after filtering/averaging. The new magnetometer
will be located in Berkeley, CA, USA. This optimization
will use the Science Run 5 characteristics.

Locally, the orientation is expressed in horizontal
coordinates; using altitude (alt) and azimuthal (az)
angles expressed as the pair (alt, az). The altitude is
the angle relative to the horizon, while the azimuth is
the angle relative to noise (measured clockwise). The
Mainz sensor is oriented with alt = −90◦, while the
Krakow sensor is oriented as alt = +90◦ during Science
Run 5.
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Optimizing the direction of the three magnetome-
ters would result in a sensitivity of β0 = 0.17 pT with
q0 = 0.89. Using Eq. (5), the optimal sensitivity would
be βopt = 0.16 pT. When optimized, the Mainz mag-
netometer is oriented as (74◦, 99◦), the Krakow mag-
netometer is oriented as (6◦,−19◦), and the Berkeley
magnetometer is oriented as (10◦, 123◦).
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