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Abstract. We studied the directional dependency of electronic stopping power of swift light ions in nickel
using real-time time-dependent density functional theory. We report a variation of electronic stopping
for moving ions as the projectile probes different electronic densities of the host material. These results
show that while the predicted magnitude stays in reasonable agreement with experiment, for v > 2. a.u.
simulating only low index crystallographic directions is not enough to sample the experimental average
values. The ab initio simulations give us access to microscopic quantities, such as non-adiabatic forces,
momentum transfer and transient excited state charges of the projectile and host ions, which are not
available through other methods. We report these quantities for the first time.

1 Introduction

The study of energetic ions traversing condensed matter
has important applications in areas of nuclear medicine
[1,2], deep ion implantation [3–5], defect profiles [6],
radiation protection [7] and atomic structure of sur-
faces [8,9]. The retarding force acting on the energetic
ion (projectile) due to the interaction with the irradi-
ated material, which results in a loss of the ion kinetic
energy, is referred to as stopping power S. This force
can be quantitatively described as the average energy
deposited per path unit length by the ion to the host
(target) material. The stopping power depends on the
type of ion, its kinetic energy (or its velocity relative
to the host material) and also on the properties of the
material it passes through. In crystalline materials, not
all trajectories are equivalent; there is yet an extra
dependency on its orientations with respect to crys-
tallographic directions. This dependency is the main
topic of this manuscript. Atomistic simulations are in
a unique position to explore this dependency in a sys-
tematic way, beyond what models [10] and the most
accurate state-of-the-art experiments can do [11].

There are two main contributions to the stopping
power phenomena: (i) electronic stopping power Se [12–
16] which is mainly due to electronic excitations of the
target electrons and (ii) nuclear stopping power Sn [17–
20] which is due to the elastic collision of the projectile
with the target nuclei, where energy is dissipated as lat-
tice defects or vibrations. Our discussion in this paper
focuses on the first category of electronic stopping and
pertains to the regime in which the phenomena occur
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in the femtosecond time scale, with explicit simulation
of electron dynamics.

Extensive experimental work on stopping of light
ions on different targets at a wide range of energies
has been performed over the years [21–28] (and refer-
ences therein), obtaining a reasonably complete picture
of the average behavior of electronic stopping power in
a diversity of materials. Although there are numerous
research works on stopping of ions at higher energies,
there are little available data on intermediate and low
energies regimes and the probing of the effects of crys-
talline structure of the target materials [29,30].

As in the general case, the electronic stopping power
depends on the specific target material, the elemen-
tal projectile and its velocity. Apart from this, projec-
tile direction with respect to the crystallographic direc-
tions of the target affects the electronic stopping power
as well, since the projectile tends to lose energy more
effectively as more electrons are available for excitation
in the nearby region. For example, a higher electronic
density tends to yield higher electronic stopping. This
effect is typically averaged out over directions for poly-
crystalline samples and most experimental setups. In
fact, in Ref. [31] we proposed that a random direction
can capture this average. At low energies however, an
explicit discrimination of low index directions is neces-
sary to improve averaging methods [32].

Among these crystalline systems, nickel and nickel-
based alloys are known for their optimal mechanical
properties, thermal stability, withstanding to swelling
and radiation tolerance, therefore making them good
candidates for radiation resistant structural materials
for energy applications [33–37] and aerospace applica-
tions [38–40]. Given the recent interest in this fam-
ily of materials, our goal is to study Se of proton
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and of helium ions in a nickel target to describe
the initial stages of particle radiation in these crys-
talline materials. We focus on crystalline effects essen-
tially absent in historical theories until this point [41],
i.e., beyond homogeneous electron gas and/or linear
response approximations. Recent advances in simu-
lation techniques [42] and computational power [43]
enable this study.

White and Mueller [44] measured the electronic stop-
ping for H and He at energies 30–140 keV and 50–
120 keV, respectively, in Cr, Mn, Fe, Co and Cu targets,
and in Ni target in particular. The measurements were
made utilizing a high-resolution silicon surface-barrier-
detector system. Their measured average stopping val-
ues (with a reported error of ± 3%) for 4He (Fig. 2
in Ref. [44]) and 1H (Fig. 3 in Ref. [44]) were in good
agreement with previous measurements in Ref. [45].

Gertner et al. [46] investigated the electronic energy
loss of ions in solids in the energy range 101–104 keV/
nucleon both experimentally and theoretically. Exper-
imentally, they measured the Se on C, Cr, Cu and Ni
thin targets, where the energy loss for protons and
deuterons was reported. Theoretically, they used the
Lindhard–Winther (LW) [47] formalism for the homo-
geneous electron gas to compute the Se of ions in a free-
electron gas model (with no crystalline information). In
the high-energy region (proton energies above 500 keV),
they obtained relatively fair results between theory and
experiment [46]. In this regime, the main contribution
to Se is universal (linear response of the homogeneous
electron gas); however, at lower energies, significant dis-
crepancy is observed with other models where the major
contribution to Se stems from the valence electrons
only, and therefore, their lattice structure, electronic
structure and directionality have to be modeled explic-
itly. Nonlinear response effects, which tend to be rela-
tively stronger at low velocities, and explicit treatment
of the target lattice are the main motivations to utilize
ab initio simulations like the one presented here. These
aforementioned historical results are now included indi-
rectly in the SRIM database and model [10], which we
include in the plots for comparison along with more
recent experimental results by Roth et al. [48] (for H+),
Mikheev et al. [49] (for He) and Tran et al. [50] (for both
H+ and He projectiles in Ni).

Regarding directionality studies, Li et al. [51] cal-
culated, from first principles, the electronic stopping
power of slow H+ and He2+ ions in CdTe under chan-
neling conditions. For protons, they obtained good
agreement between calculated results and experimen-
tal results up to the stopping maximum along the
〈100〉 and 〈111〉 directions. For the case of helium ion,
the 〈100〉 direction results agreed well with experimen-
tal results but in the 〈111〉 direction, they observed
a transition between two velocities regimes at v =
0.4 a.u. which was attributed to extra energy loss due
to charge resonance (in addition to electron-hole exci-
tation). However, the results for 〈110〉 direction under-
estimated experimental data for v > 0.5 a.u. and
v > 1.0 a.u. for protons and helium ions, respectively.
Recently, Lee and Schleife [52] used time-dependent

density functional theory to study the radiation toler-
ance of phosphide-based III–V semiconductor materi-
als. To understand the high radiation tolerance of these
materials, they calculated electronic stopping and pro-
ton dynamics in InP, GaP and In0.5Ga0.5P as an initial
step in understanding collision cascades. They obtained
a pronounced direction-dependence of electronic stop-
ping along different (〈100〉 and 〈110〉) channels. This
was attributed to the magnitude of electron density
that interacts with the proton projectile in these crys-
talline channels.

In this paper, we present the electronic stopping
power of nickel target under proton and helium irra-
diation, taking into account the directional dependence
of the projectiles on the electronic stopping. The paper
is structured as follows: We describe the simulation
method, the theoretical framework and computational
details in the next section; later, we present the results
and their corresponding discussion, where we concen-
trate on the detailed analysis of the electronic stop-
ping power and other microscopic quantities that can
be extracted from postprocessing first principles simu-
lations.

2 Method

We used time-dependent density functional theory
(TDDFT) [53] for this study. TDDFT is one of the
most practical frameworks used over the years to tackle
the dynamics of many-body electronic systems [16,
31,36,52,54–58]. To obtain the electronic stopping, we
solve the time-dependent Kohn–Sham (TDKS) equa-
tions. The TDKS equations describing the wavefunc-
tions ϕi of effective individual electrons are (in atomic
units):

i
∂

∂t
ϕi(r, t) =

{
−∇2

2
+ VKS[n, {RJ (t)}J ](r, t)

}
ϕi(r, t),

(1)
where the electronic density is given by

n(r, t) =
∑
i

|ϕi(r, t)|2. (2)

The Kohn–Sham effective potential VKS is conceptu-
ally partitioned in three contributions:

VKS[n(t), {RJ (t)}J ](r) = Vext[{RJ(t)}J ](r)
+ VH[n(t)](r) + Vxc[n(t)](r)

(3)

where Vext[{R(t)J}J ](r, t) is the external potential
due to nuclei core potential (including moving ions
during the stopping process, hence the explicit t-
dependence). VH[n(t)](r) is the Hartree potential which
describes the classical electrostatic interaction between
electrons. Vxc[n(t)](r) denotes the exchange-correlation
(XC) potential and it is a placeholder for common
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approximations to the many-body effects of the elec-
tron problem. (Time dependence is implicit in n.)

All the calculations are performed using the Qball
code package [43] which contains time-dependent and
other modifications over the Qbox code [59]. In this
study, local density approximation (LDA) [60] XC func-
tional was used within the adiabatic approximation.
Note that the adiabatic label here refers to the fact that
this XC term is taken to be an instantaneous function
of the electronic density and not the density values at
other (past) times; these simulations are still fully non-
adiabatic with respect to ion motion.

For the current framework, a plane-wave pseudopo-
tential scheme is used in solving the time-dependent
Kohn–Sham (KS) equations. Electronic wavefunctions
ϕi are expanded in terms of plane waves. Coulombic
ionic potentials are replaced by smoother versions with
approximately the same scattering properties [61] that
allows to use a finite set of plane-wave terms to sim-
ulate valence electrons and ignore core, deeply bound
electrons.

We use a simulation cell consisting of 108 Ni atoms
(1728 explicit valence electrons) in a cubic supercell
with a simulation volume of (19.98 aB)3 forming an
FCC lattice. Periodic boundary conditions along with
Ewald-type summation for the Coulomb energy are
used throughout this study. The ions are represented
by the norm-conserving Troullier–Martins pseudopo-
tentials [62], and the KS orbitals are expanded up to
a 160 Ry energy cutoff.

As any time-explicit method, a particular instance
simulation needs the specification of an initial condi-
tion, both for the ion positions and the electronic state.
The initial condition corresponds to a perfect FCC lat-
tice together with the projectile (either H or He) sta-
tionary at its initial position with electrons in the cor-
responding ground state. The electronic ground state
(i.e., ϕi(t = 0)) was obtained by performing a time-
independent density functional theory (DFT) calcula-
tion, by solving the time-independent KS equations for
the target plus projectile system. Therefore, a time-
dependent DFT calculation was then carried out start-
ing from the ground state, resulting in a time-evolving
electronic wavefunction (ϕi(t > 0)).

In each simulation, a specific velocity is given to
the projectile and the electronic system is monitored
for several femtoseconds. This was done to allow the
moving projectiles to produce a dynamical steady state
where the total energy of the electronic system increases
at a well-defined rate as described in Ref. [42]. The
remaining (host) ions are fixed at their perfect (unre-
laxed) ion positions. This fixed-ions (host) strategy is
not only a good approximation given the velocity of the
projectile, but it is also a practical constrain to evalu-
ate the electronic-only stopping (without spurious con-
tributions from the nuclear—purely ionic—stopping).

The time propagation of Eq. 1 of the electronic sys-
tem is achieved by the enforced time-reversal symme-
try (ETRS) integration [63], implemented as described
in Ref. [43]. A numerical integration time step of
0.024 attoseconds was used. Details of the convergence

of the simulation parameters for nickel-based systems
are discussed elsewhere [36,64].

The method described here, including the approxi-
mations regarding electronic interactions, proved in the
past to achieve a good balance of accuracy while treat-
ing large complicated atomistic systems. The method
may still lack the accuracy of many-body approaches,
for example, those based on the dielectric response
including the exact dynamic exchange-correlation treat-
ment for low velocity projectiles [65].

3 Results and discussion

3.1 Total energy increase of the target system

When the projectile is given a fixed velocity v, the
total energy of the electronic system, initially at the
ground state value, changes continuously as the projec-
tile moves in the material. The total electronic energy
E of the electronic system is given instantaneously by:

E(t) =
∑
i

∫
drϕi(r, t)∗

[
− ∇2

2
+ Vext(r, t)

]
ϕi(r, t)

+ EH[n](r, t) + Exc[n](r, t) + Eion−ion(t), (4)

where the terms are: the electronic kinetic energy,
the electron–ion (external) potential Vext(r, t), the
Hartree (Coulomb) interaction energy EH[n](r, t), the
XC density-functional approximation Exc[n](r, t) and
Eion−ion(t) is the interaction between the nuclei (ion).

Figure 1 shows the increase in the total electronic
energy as a function of the distance traveled by the
projectile, resulting from a time-dependent simulation
at different velocities in a specific direction.

As the projectile starts to travel in the crystal, a
steady state is achieved at some point which is roughly
marked by a vertical dotted line; x ≥ 5.0 a0. After this
transient region, a value for the electronic stopping is
then obtained as the slope fitting of the change in total
energy versus projectile displacement (Eq. 5).

At finite velocities, the projectile produces elec-
tronic excitations, a non-adiabatic behavior that in turn
increases the electronic energy. (In the real system, this
happens at the expense of the ion kinetic energy; in the
simulation, the ion kinetic energy is held constant for
simplicity.) The smooth oscillations in the total energy,
on top of an otherwise mostly linear increase, are corre-
lated to the lattice periodicity of the target (host) crys-
tal. The correlation is clear in the v = 0 case, in which
the simulation should not show an overall increase in
the energy (adiabatic behavior), just oscillations in the
energy which are natural to the periodic crystal.

For lower velocities, a linear fit coupled with oscilla-
tory function is used to extract the Se with a minimal
fitting error. At higher velocities, extracting the slope is
more straightforward since there is relatively less oscil-
lation amplitude in the energy versus position curve, so
a simple linear fit is enough to extract electronic stop-
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Fig. 1 Total electronic energy as a function of proton dis-
placement in pure Ni crystal for the 〈100〉 trajectory. As
proton channels through the lattice, the 108 atoms of Ni
are kept at their equilibrium positions. The region below the
vertical dotted lines denotes the transient phase (where the
rate of change in total energy of the system with respect to
projectile displacement is unsteady). The adiabatic behav-
ior, which corresponds to the formal limit of v → 0, shows a
periodic energy (with no net increase) as expected since the
electrons here are constrained to remain in the ground-state

ping. (For details of this fitting procedures, see Fig. 2 in
Ref. [16]). The slopes are systematically extracted for
different velocities and different trajectories for both
the H and the He projectiles.

This rate of change in E(t) as a function of pene-
tration depth x(t) in the material is identified as the
electronic stopping power Se and is given by the aver-
age over a trajectory;

Se(v) =
〈

dE(t)
dx(t)

〉
v

(5)

3.2 Directional effects

In this section, we concentrate on the behavior of Se

for both, proton (hydrogen) and helium, in three differ-
ent trajectories characterized by channeling directions.
Since the projectile explores different environments and
electronic densities of the lattice with respect to its
direction, we expect the total electronic energy E(t),
and therefore the stopping power, to change with each
direction.

In Fig. 2, our TDDFT simulation results for protons
in bulk Ni are shown for three different projectile direc-
tions. For 〈100〉 and 〈110〉 directions, our calculated Se

is below the empirical SRIM data [10] for all range of
velocities considered. Ullah et al. [32] obtained a sim-
ilar trend, an underestimation of experimental results
when they calculated electronic stopping of H in Ge for
directions with open channels and therefore low elec-
tronic density (〈001〉 and 〈011〉 projectile directions for
v > 0.3 a.u. in the diamond structure).

Fig. 2 Electronic stopping power versus velocity of a H+

(top panel) and He (bottom panel) projectiles in bulk Ni
along different crystal channel directions as obtained from
TDDFT and compared with experimental measurements
(SRIM database [10]; black lines). For the three directions,
all the trajectories are along the centers of respective chan-
nels. The filled circles (red) with error bars, crosses (blue)
and square (brown) show our calculated Se for 〈111〉, 〈110〉
and 〈100〉 trajectories, respectively

Our 〈111〉 direction result coincides with SRIM
empirical data for velocities below 1.5 a.u. and for
higher v, but mismatches the empirical results by more
than 25% at higher velocities. No particular direc-
tion is expected to give the experimental result for
experiments without directional information; in previ-
ous works, we developed an averaging method based
on random directions (random high index) to compare
with the bulk of these experiments.

The reason for the discrepancy between particu-
lar directions and random directions will be explained
when we discuss the effective electronic density in an
FCC Ni target along the three directions in the follow-
ing section.

The calculated electronic stopping of He in nickel
is shown in Fig. 2 for the same range of velocities
and directions. As in the proton case, the 〈100〉 and
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Fig. 3 (top panel) The three directions of the projectile in the FCC nickel crystal with 〈100〉, 〈110〉 (most open) and 〈111〉
(narrower directions). The direction of the projectile is straight inward into the viewing plane at the position of the shaded
circle. (bottom panel) The electronic valence density is shown as a function of position along the 〈100〉 (brown dotted lines),
〈110〉 (blue dashed lines) and 〈111〉 (red solid lines) directions. (Density is given in units of electrons/a3

0)

〈110〉 directions result in values below the experimen-
tal data. For the 〈111〉 direction, we find it to coin-
cide with experimental data for most of the velocity
regime. Although in the 1.5 < v < 3.0 a.u. range of our
TDDFT results overshoots over SRIM data, the values
still remain within 5%.

For v < 0.5 a.u., the Se results for the three different
directions are converging into one curve. This means
that as v → 0, the relative difference in magnitude of
the electronic stopping decreases for the different direc-
tions. In previous simulations (Refs. [16,31,36,54]), a
similar pattern is observed, where channeling (in this
case 〈100〉) as well as off-channeling trajectories collapse
into one curve at lower velocities, apparently showing
independence of geometry on electronic stopping.

We observe that as the projectile velocity increases,
there is significant difference in the electronic stopping
for the different directions for both types of projec-
tiles. For instance, in the case of helium, the difference
between the Se for 〈100〉 and 〈110〉 directions is up to
10%, and between the 〈100〉 and 〈111〉 directions it can
be a factor two. To understand in detail these direc-

tional dependencies on the stopping power as depicted
in Fig. 2, we plotted the ground state electronic density
for the three directions (〈100〉, 〈110〉 and 〈111〉) along
the z-axis as shown in Fig. 3.

The 〈111〉 direction has the highest average density of
0.098 electrons/a3

0 compared with the other two direc-
tions. This is consistent with the high electronic stop-
ping analyzed in Fig. 2 for both projectiles, since more
valence electrons are available to be excited in this path.
The average densities yield 0.040 and 0.047 electrons/a3

0
for 〈100〉 and 〈110〉, respectively. This has translated
into the relatively lower Se observed for both directions.
The relatively small difference in the average electronic
density for 〈100〉 and 〈110〉 directions also corresponds
to slight differences in Se.

3.3 Channeling and off-channeling trajectories

In Fig. 4, we compare our results for the 〈111〉 and off-
channel directions with SRIM database and experimen-
tal works. For v < 2.0 a.u., the 〈111〉 and off-channel
simulation results have similar stopping power values
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with less than 1% difference, as seen in Fig. 4a, which
is an indication of fewer geometric effects on the stop-
ping power. The two direction results compare well with
recent experimental results from Roth et al. [48] and
Tran et al. [50] for projectile velocities less than 1.5 a.u.
The maximum Se occurs at similar range in v for both
directions with 〈111〉 direction having the lowest stop-
ping power value. At higher projectile velocities, the off-
channel results show better agreement with the SRIM
database, with a gradual decrease in Se for v > 2.8
a.u. and a faster decrease in stopping values for 〈111〉
direction at the same velocities.

In Fig. 4b, there is an average of less than 10% dif-
ference between the 〈111〉 and off-channel simulation
results for velocities less than 1.5 a.u. At this lower
v, there is a slight overestimation and underestima-
tion of the SRIM results for the 〈111〉 and off-channel
directions, respectively; also, the 〈111〉 results are in
good agreement with Tran et al. [50] and Mikheev et
al. [49]. For velocities in the range 1.5–3.0 a.u., the off-
channel results agree well with SRIM results, except
near v = 3.5 a.u., where the 〈111〉 results agree better.

Geometric effects on the stopping power are signifi-
cant for the helium ions even for v < 1.0 a.u., an obser-
vation which is absent in the proton case where the two
direction (〈111〉 and off-channel) curves concur into a
single curve at v < 1.0 a.u.

3.4 Charge fluctuations on projectiles

One of the advantages of using first principles atom-
istic methods is that it provides a lot of detailed infor-
mation that can be used to contrast effective models.
In particular, by using TDDFT for the stopping prob-
lem, the a priori unknown effective charge of the pro-
jectile (excited by collisions with the host) is not a sim-
ulation parameter like in model methods, but it is a
natural outcome of the simulation. The main dynam-
ical quantities in this framework are the Kohn–Sham
orbitals (Eq. 1) and the total electronic density, which
make the work of finding the (a posteriori) projectile
charge a rather challenging task of postprocessing and
physical interpretation. The challenge is that atom’s
‘charge’ (or degree of ionization) is not well defined in
the general framework and a sensible determination of
it has to rely in separating particular bound and free
electrons in the vicinity of the ion (projectile or host
atom). In place of a complicated determination, we use
an approximate density-based analysis method, called
Bader analysis [67–70].

In Fig. 5, we show the electronic charge transfer val-
ues for the projectiles’ trajectory as a function pro-
jectile displacement for v = 0.5 a.u., 1.0 a.u. and
2.0 a.u. along the 〈100〉, 〈110〉 and 〈111〉 directions.
The top panels and the bottom panels depict the
charges on proton and helium projectiles, respectively.
The charges gained or lost by the projectiles in real
time are extracted from the time dependent electronic
density, n(r, t), using the Bader Charge Analysis pro-
gram [66]. The Bader analysis consists in assigning elec-

(a)

(b)

Fig. 4 Electronic stopping power versus velocity of H (top
panel) and He (bottom panel) projectile in bulk Ni along the
〈111〉 and off-channel directions as obtained from TDDFT
and compared with SRIM database [10] (black solid lines)
and recent experimental results ([48] (H), [50] (H and He)
and [49] (He)). The off-channel represents the average of
random directions of the projectile in the nickel lattice and
its data points are taken from Ref. [36]

tronic charge to each atom by dividing space by surfaces
defined by saddle points of the charge density. It is intu-
itively justified and practical in many molecular sys-
tems, although its application is extrapolated to time-
dependent problems and bulk systems. For example,
the assigned charge on a particular ion can be discon-
tinuous in time even if the density changes continuously
(saddle points can disappear and appear suddenly); we
see instances of this artifact in the analysis of our sim-
ulations of the H projectile in narrow channels. The
method is practical enough to draw conclusions about
relative changes in the nominal charges.

For the proton case, the initial charge value is nom-
inally 1.09 and there are smooth oscillations of the
projectile’s charge, except in the 〈111〉 direction for
which even at low velocities the projectile is completely
depleted of its electron when the projectile passes
through high density regions. High density regions can
be identified in Fig. 3. In general, higher velocity implies
more ionization regardless of other factors.

For the helium case, we obtained an initial electronic
charge of 2.09 that approximately corresponds to the
number of electrons on He. The smooth oscillation of
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Total charge on proton (a–c in the top panel) and helium ions (d–f) in the bottom panel) at different velocities
versus projectile distance along the 〈100〉, 〈110〉 and 〈111〉 directions, calculated from the instantaneous density by the
Bader method. The dotted, dashed and solid lines represent the velocities 0.5 a.u., 1.0 a.u. and 2.0 a.u., respectively. The
electronic charges are extracted using the Bader Charge Analysis program [66]. In one of the extreme cases, we observe
exactly zero charge for H projectile (proton) which is indicative of a total collapse of the atomic region as defined in Bader
analysis (no saddle points); qualitatively, this corresponds to absence of bound charges around the projectile

charges and charge accumulation for v ≤ 1.0 a.u. as
seen in the H case is observed here. A partial charge
depletion for v = 2.0 a.u. is seen here as well. For v =
0.5 a.u., we have observed the projectile regaining its
initial electronic charge around ∼ 16.0 a0 for 〈100〉 and
〈110〉 in Fig. 5d and e, respectively. In contrast to H, the
〈111〉 direction did not show complete electronic charge
depletion in Fig. 5f.

For both projectiles, we observed alternate neutral-
ization and re-ionization processes along their trajecto-
ries [51,71]. These differences in the electronic charge
of the projectiles in Fig. 5 for different velocities and
direction contribute to the change in electronic stop-
ping observed in Fig. 2. The simulations give ionization
cycles that are in the scale of atomic distances in the
lattice, rather than longer distances related to purely
atomic (to the projectile) processes such as Auger pro-
cesses, although the lack of self-interaction corrections
could be biasing this particular aspect of the results.
(See Ref. [58] for a study of the relation between charge
oscillation in a projectile and self-interaction effects
in binary atomic collisions within the same simulation
framework.)

3.5 Charge deficiency on host atoms in the 〈100〉
direction

In the same way as for the projectile, the charge analysis
can be applied to the (stationary) host atoms (Fig. 6).
Persistent charges in the host atoms lead to impul-
sive Coulomb-like forces that can impart radial momen-
tum [57]. The charge deficiency (relative to its initial
value) on a particular neighboring Ni atom due to the
incoming projectiles (H and He) is depicted in Fig. 6.
We choose an atom that is first neighbor to the trajec-
tory channel. Initially, the projectiles are ∼ 3.33 a0 from
the Ni atom shown in Fig. 6a. Using the Bader analysis,
the charges on the Ni atom are again extracted from
the time-dependent electronic charge density, except
that this time the ion center has a fixed position. As
the proton and helium get closer to the neighboring Ni
atom, the charges decrease gradually, indicating that
the particular atom is losing charge as the projectile
approaches. As the projectile passes the particular host
Ni atom (after x > 8 a0), its charge gradually stabilizes
due to less interaction with the projectile. Interestingly,
the cases above v > 1a0 do not recover to the initial
value for the duration of the simulation. Although out-
side the practical time-scales of this simulation frame-
work, a persistent charge could lead to large momentum
transfer, as discussed later.
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(a)

(b)

Fig. 6 Charge deficiency of a Ni host atom neighboring
the projectile trajectory (proton top panel, helium bottom
panel) along the trajectory (x = 0 marks the point of maxi-
mum approach). The electronic charges are extracted using
the Bader Charge Analysis program [66] on the valence
charge density (i.e., not including core density); therefore,
only relative changes associated with valence charge are
reported

Fig. 7 The ratio between the calculated electronic stop-
ping power for He and H ion as a function of the projectile
ion velocity for the 〈111〉 direction (red filled circle lines).
Reference value of 4 (horizontal dashed line) for the linear
response theory result (LRT) [47] for fully ionized projectile
ions (ZHe = 2 and ZH = 1)

3.6 Ratio of helium/hydrogen electronic stopping

To understand our Se results, we compared with linear
response theory (LRT) [47]. We evaluate linear response
stopping SL based on the RPA Lindhard dielectric func-
tion for a homogeneous electron gas for effective elec-
tronic density n [72] as:

SL(n, v) =
2Z2

1e2

πv2

∫ ∞

0

dk

k

∫ kv

0

ωdω	
(

1
εRPA(n, k, ω)

)

(6)

where Z1 is interpreted as the effective charge of the
projectile, v is the velocity of the projectile and εRPA is
a model of the dielectric function for the linear response
approximation (RPA) at frequency ω and momentum
transfer k. Regardless of the dielectric model, a char-
acteristic of linear response is that SL has a quadratic
dependence on the projectile ion charge SL ∝ Z2

1 , that
is, an exact ratio of 4 for fully ionized hydrogen and
helium. Therefore, deviations from this factor could be
used as proxy of nonlinear effects in nickel (including
bound charge effects).

The ratio of Se for helium ion to the Se for pro-
ton are depicted in Fig. 7 as a function of the projec-
tile velocity, and the results are compared with linear
response theory (LRT) [47] for full ionization and SRIM
[10]. The TDDFT ratio surpasses 4 for v ≥ 2.5 a.u,
which is beyond the maximum stopping for H. Their
ratio should eventually approach 4 again for even higher
velocities. Yost et al. [56] observed a similar trend
when they utilized the same theoretical approach to
study protons and α particles stopping in silicon car-
bide.

This is an indication that an ideal factor for 4 is
achieved as both the projectile becomes fully stripped
and the linear response approximation becomes more
accurate at large velocities. At lower velocities, for LRT
to correctly predict the maximum stopping, effective
ion charge models and additional higher-order Z need
to be incorporated [56,73,74].

3.7 Radial force

Figure 8 shows the non-adiabatic radial forces exerted
on a neighboring target atom by projectiles (H+ and
He) for a channeling trajectory, respectively. Initially,
the distance of the closest Ni target atom to the pro-
jectile is about ∼ 3.33 a0. For zero velocity (adiabatic
limit), a maximum force on a host atom is obtained
exactly when the projectile is closest. The magnitude
of this adiabatic force is higher for a He projectile. This
maximum value of the force is due to electronic excita-
tion [16,31,54] at the closest proximity of the projectile
to the target atom. As the projectile travels further
away, the force decays smoothly to zero (its original
value) for low velocities. (Note that the non-adiabatic
curves have been shifted for clarity.)

At higher velocities v > 0.7 a.u., there is persistent
oscillation in the forces’ curves, as the projectile passes
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(a)

(b)

Fig. 8 Radial force exerted on host atom (Ni atom closest
to the projectile’s channel 〈100〉 trajectory) for a H+ and for
b He, versus projectile position for different velocities. The
non-adiabatic curves have been shifted upwards for clearer
view. Notice how for v > 0.7 a.u. the maximum shifts rel-
ative to the position of maximum approach and, instead of
going back to zero, the forces remain oscillating even for
large distances

Fig. 9 Radial momentum transferred to host atom (Ni-
atom closest to projectile channel 〈100〉 trajectory) vs. pro-
jectile velocity

and the position of the maximum force with respect to
their low velocity (near-adiabatic) counterparts shifts.
These oscillations can be attributed to persistent plas-
monic charge oscillations in the electronic system [54].

3.8 Radial momentum

Although eventually the radial force returns to its orig-
inal value, the integral of the radial force in time does
not vanish and depends on the velocity. A net force
acting during a period of time produces a momen-
tum change. For forces that depend only on the posi-
tion (adiabatic forces), the momentum transfer simply
decays inversely proportional to the velocity of the per-
turbation (as the interaction time shortens). This is
the expected behavior for any classical potential for
projectile–ion interaction, in particular any binary col-
lision model [75] but deviations from it correspond here
to increasing electronic non-adiabatic effects.

Figure 9 shows the lateral momentum transfer that
the host atom incurs due to the non-adiabatic forces,
calculated Δp =

∫
F[x(t)] dt =

∫
F(x)dx/v, by the

projectile to the target atoms. This is the inverse of the
projectile velocity (1/v) multiplied by the time integral
of the force on the host atom over some specified projec-
tile distance (Fig. 8). At lower velocities, the adiabatic
approximation gives a good estimation of the momen-
tum transfer up to v = 0.2 a.u. and v = 0.15 a.u. for
proton and alpha projectiles, respectively. At this adi-
abatic limit, the momentum transfer is proportional to
the function k/v, where k is the integral over the adi-
abatic force curve as a function of projectile displace-
ment (see Fig. 8a, b, for v = 0). For higher velocities,
(v > 0.2 a.u.), there is a complete deviation from their
adiabatic counterparts. This is the point from which
considering electronic effects would affect the results of
models based purely on the molecular dynamics and
interatomic potentials (in atomic time-scales).

The momentum transfers are surprisingly propor-
tional (parallel curves in the log scale) for the pro-
ton and the He projectiles at different velocities; this
proportionality extends to the non-adiabatic regime of
momentum transfer. This points to a possible universal
behavior to the momentum imparted by a projectile of
arbitrary charge and across host materials (compare to
Fig. 4 in Ref. [54]).

4 Conclusion

In summary, we presented first-principles calculations
of electronic stopping power in nickel crystals for pro-
tons and helium particles in three different channel
directions using a real-time electron dynamics formal-
ism based on TDDFT. Our TDDFT results are com-
parable with SRIM database for most of the veloc-
ity range considered for the 〈111〉 and random direc-
tions.

We have learned that the electronic stopping is sen-
sitive to projectile direction with higher density regions
yielding the highest Se value due to stronger electron–
ion interaction. The lower density regions (most open
channels) showed the lowest stopping power.

We have observed a rapid charge oscillation on the
projectiles at narrower channels with a complete pro-
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jectile ionization (depletion of electrons) for hydrogen
in the 〈111〉 direction at regions during its trajectory
in the crystal. Complete charge depletion for He is not
achieved in any channel at any velocity studied, which
is attributed to the enhanced binding of the remaining
electron in the single ionized state of the projectile.

The non-adiabatic lateral momentum transfer turns
to follow an approximately proportionality pattern
between protons and alpha particles, both in the adia-
batic limit and in the non-adiabatic limit. This scaling
could help develop phenomenological models of non-
adiabatic forces of swift ions in solids [76]. Very similar
momentum transfer curve shapes were found for other
materials, hinting to a possible universal behavior [54].

While absolute values of stopping power can be
obtained by many methods, such as ab initio (this
work), semianalytic methods [77] or experiments [78],
it is clear that ab initio methods can access micro-
scopic quantities such as non-adiabatic forces, specific
ion charges and momentum transfer that are otherwise
out of the scope of other methods.
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