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Abstract. The high-order harmonic generation in finite topological nanoribbons is investigated using a
tight-binding approximation. The narrow, two-dimensional ribbons consist of hexagonal structures. A
topological phase transition is defined by a sudden change of the topological invariant. In the bulk, this
kind of phase transition might occur if an existing band gap closes and reopens again. Through the bulk-
boundary correspondence, this is related to the emergence of topologically protected edge states in the
respective finite systems. For the finite ribbons studied in this work, the variation of the tight-binding
parameters leads to the emergence of two edge states after the closing of the band gap. The energies of
those edge states as functions of the tight-binding parameters display crossings and avoided crossings,
which influence the high-harmonic spectra.

1 Introduction

Topological insulators are a special kind of solid-state
material that is an electrical insulator in its bulk but
conducting on its edges or surfaces. The edge or surface
states are protected against perturbations [1]. The first
realization of a topological insulator in the experiment
was reported by König et al. in 2007 [2] using HgTe
quantum wells. Topological insulators might play a big
role in the development of quantum computers [1,3].

Recent studies show that the topological phase of a
solid can have a huge influence on the generation of
high-order harmonic radiation. In fact, the topological
phase might affect the harmonic yield by several orders
of magnitude [4–6], flip the helicity of the emitted pho-
tons [7–9] or introduce circular dichroism [10]. In three-
dimensional topological insulators, the harmonic yield
of bulk and surface states show a different dependency
on the ellipticity of the laser field [11].

It is known that the high-harmonic generation (HHG)
in solids in general carries information about the
static and dynamic properties of the solid [12–17]. In
this work, we investigate two-dimensional, hexagonal
nanoribbons that are narrow, i.e., the ribbons are much
longer in one of the two dimensions. The systems are
described using a tight-binding approximation where
hopping between nearest neighbors are allowed, thus
describing graphene ribbons. The HHG in graphene was
studied previously, for example in Refs. [18–21]. Adding
an alternating on-site potential because of different
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atomic elements such as in hexagonal boron nitride (h-
BN), for instance, the sublattice symmetry is broken.
HHG in h-BN has been studied as well, e.g., in Refs.
[22–24]. The dependence of HHG on the on-site poten-
tial for hexagonal ribbons was studied in [25,26].

With a broken time-reversal symmetry, the system
might become topologically non-trivial. This can be
achieved by including a complex hopping between next-
nearest neighbors as in the Haldane-model [27]. The
Haldane-model in the context of HHG was studied in
Refs. [7,8,10].

In this paper, we examine how the edge states of Hal-
dane nanoribbons influence the emission of high-order
harmonics. Topological nanoribbons were studied with-
out an external field in Ref. [28]. Although edge states
are only present in finite systems, the bulk-boundary
correspondence [29] tells that a non-vanishing differ-
ence between the topological invariants of the bands
for the bulk imply the presence of edge states in the
respective finite system. The question then is which
topological effects in HHG spectra are due to bulk
already and which require the explicit presence of edge
states. An example system where the explicit presence
of edge states is necessary to see any topological effect
in HHG spectra is the one-dimensional Su-Schrieffer-
Heeger chain [9]. In 2D systems such as the Haldane
model, on the other hand, one can observe helicity flips
already for bulk only [7,9].

The outline of the paper is as follows. In Sec. 2, we
summarize the theoretical methods used in this work.
In Sec. 3.1, the properties of the static system are
explained, with a focus on the edge states. The HHG
of Haldane nanoribbons is discussed in Sec. 3.2. If not

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjd/s10053-021-00201-9&domain=pdf
http://orcid.org/0000-0001-6813-576X
mailto:christoph.juerss@uni-rostock.de
mailto:dieter.bauer@uni-rostock.de


190 Page 2 of 8 Eur. Phys. J. D (2021) 75 :190

A
B

Fig. 1 Sketch of a nanoribbon with zigzag edges compris-
ing eight hexagons. The circles indicate the atomic sites. The
on-site potential on sites with an unfilled circle is given by
M (sublattice A), and for the filled circles, it is given by −M
(sublattice site B). Lines (without arrow) indicate the hop-
ping between nearest neighbors (amplitude t1). The arrows
indicate the next-nearest neighbor hopping with amplitude
it2 in the direction of the arrow (and −it2 in the opposite
direction). We label the lower left edge site ‘1’ and the upper
right edge site‘2’

stated otherwise, atomic units (a.u., � = |e| = me =
4πε0 = 1) are used throughout this paper.

2 Theory

The systems that are investigated in this work are
hexagonal ribbons with zigzag edges as shown in Fig. 1.
The simulated ribbons consist of 30 hexagons though
(not only eight, as shown in Fig. 1). A tight-binding
approximation is used. The circles in Fig. 1 indicate
the sites with an on-site potential M (−M) for the
unfilled (filled) circles, corresponding to the two sub-
lattice sites A (unfilled) and B (filled). Lines without
arrows indicate hopping between the nearest neighbor-
ing sites with an amplitude t1 ∈ R. The arrows indicate
a complex next-nearest neighbor hopping with ampli-
tude it2 (with t2 ∈ R) along the arrows (and −it2 in the
opposite direction). The complex next-nearest neighbor
hopping breaks the time-reversal symmetry, making the
system topologically nontrivial for sufficiently large t2
[27]. In this work, we will vary t2.

Note, the hopping parameter t2 cannot be influenced
in a solid and is given by the system itself. However, the
topological phase might be controlled by the complex
phase of the hopping amplitude (here fixed to eiϕt2 = i)
or by the sub-cycle structure of non-resonant external
fields [30]. Topological phase transitions are easier to
control on synthetic platforms like waveguides [31] or
cold atoms [32] but there is no HHG in these topological
systems.

2.1 Static system

The theoretical description of the topological ribbons is
almost the same as in Ref. [8], with the difference that
periodic boundary conditions were assumed there. As
a consequence, the hopping elements from the left to
the right edge of the ribbon are missing in the present
work.

The Hamiltonian describing the electrons on the rib-
bon reads in tight-binding approximation

Ĥ0 = t1
∑

<i,j>

(|j〉 〈i| + h.c.) + i t2
∑

�i,j�
(|j〉 〈i| − h.c.)

+ M

(
∑

i∈A

|i〉 〈i| −
∑

i∈B

|i〉 〈i|
)

(1)

where the sums
∑

<i,j> and
∑

�i,j� run over all near-
est and next-nearest neighboring sites i, j, respectively.
The sum

∑
i∈A (

∑
i∈B) include all sites on sublattice

site A (B). The state |i〉 denotes the atomic orbital at
site i. A general state reads

|ψ〉 =
N∑

i=1

gi |i〉 , (2)

where N is the number of sites in the system.
The time-independent Schrödinger equation

Ĥ0 |ψl〉 = El |ψl〉 (3)

is solved to obtain the eigenstates |ψl〉 with their respec-
tive energies El. The number of eigenstates is given by
the number of sites N , i.e., l = 0, 1, 2, ..., N − 1. The
labeling is such that the energies of the states increase
with l, i.e., E0 ≤ E1 ≤ E2 ≤ ... ≤ EN−1. Equation (3)
is solved numerically by diagonalization of the Hamil-
tonian (1).

The distance between nearest neighbors is set to
a = 2.68 a.u.� 1.42 Å and the hopping between them
to t1 = −0.1 a.u.� −2.7 eV, the parameters for
graphene [33]. The on-site potential M and the next-
nearest neighbor hopping amplitude t2 are varied in this
work.

2.2 Coupling to an external field

The ribbons are coupled to an external field via velocity
gauge, which translates to the Peierls substitution [34]
in tight-binding approximation. The gauge-invariant
coupling of general tight-binding systems to external
fields was derived in Ref. [35].

The laser pulses are described by a vector potential
of the form

A(t) = A0 sin2

(
ω0t

2n0

)
sin(ω0t)ex, (4)

for times 0 ≤ t ≤ 2πn0/ω0 (and zero otherwise). It
is linearly polarized along the ribbon, that is, in x-
direction. The number of cycles in the laser pulse is
chosen n0 = 5, the amplitude of the vector poten-
tial A0 = 0.05 (intensity � 5 × 109 Wcm−2), and the
angular frequency is ω0 = 7.5 · 10−3 (i.e., wavelength
λ0 = 6.1µm).
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We assume that all states with an energy smaller
than E = 0 are occupied. Due to the symmetry of the
energy spectrum, these are half of the states. Hence,
|Ψl(t)〉 with l = 0, 1, 2, ..., N/2 − 1 are propagated in
time, starting from |Ψl(t = 0)〉 = |ψl〉.

The total current is given by

J(t) =
N/2−1∑

l=0

〈
Ψ l(t)

∣∣ ĵ(t)
∣∣Ψ l(t)

〉
, (5)

where the current operator is given by [36]

ĵ(t) = −i
∑

i,j

(ri − rj) |i〉 〈i| Ĥ(t) |j〉 〈j| , (6)

with the positions ri,j of sites i, j. The time-dependent
Hamiltonian reads

〈i| Ĥ(t) |j〉 = 〈i| Ĥ0 |j〉 e−i(ri−rj)·A(t). (7)

Harmonic spectra are calculated from the two compo-
nents of the current (5) via a Fourier transformation,

P‖,⊥(ω) =
∫ +∞

−∞
J̇x,y(t) e−iωtdt. (8)

Here, ‖ and ⊥ denote the polarization direction of
the emitted light with respect to the incoming field:
parallel (x-direction) and perpendicular (y-direction),
respectively. In the code, the Fourier transformation is
approximated by the fast Fourier transformation. The
functions

∣∣P‖,⊥(ω)
∣∣2 are proportional to the intensity

of the emitted light [37–39] polarized in the respective
direction. The phase difference

Δφ = arg
(
P‖(ω)P ∗

⊥(ω)
)

(9)

indicates the helicity of the emitted photons.

3 Results

3.1 Static system

The number of atoms and eigenstates for the 30-
hexagon long ribbons is N = 122. In Fig. 2, the energies
of all states as function of the next-nearest neighbor
hopping amplitude t2 are shown for M = 0 (Fig. 2a)
and M = 0.01 (Fig. 2b). For M = 0 (Fig. 2a), a band
gap opens as t2 increases so that the fully occupied
valence band with E < 0 and the empty conduction
band with E > 0 become well-separated. In the mid-
dle of the gap, two states appear around an energy of
E = 0. One of this state is occupied, the other one not.
For the system with an on-site potential of M = 0.01
(Fig. 2b), there is already a band gap for t2 = 0 but
without states in the middle. First, this band gap closes

(a)

(b)

Fig. 2 Energies of the system for a M = 0 and b M = 0.01
as function of t2. The insets show the evolution of the two
states in a tiny energy interval around E = 0

with increasing t2 before it opens up again for larger
values. This band gap closure is an indication for a
topological phase transition. In fact, in the middle of
the band gap two states appear when the band gap
opens up again. We will call those two states edge states
because their probability density is located on the edges
of the chain, as shown in Fig. 4. We define the energy
difference ΔEgap as the energy difference between the
valence band and the lowest edge state energy.

The insets in Figs. 2a,b are magnifications and show
the tiny energies of both edge states between 0.05 ≤
t2 ≤ 0.01. Their difference is defined as ΔEedge. Sur-
prisingly, the energies of these states do not just mono-
tonically converge to E = 0. For M = 0, they cross six
times in the interval shown before their energies sep-
arate for larger t2. For the finite on-site potential in
Fig. 2b, the crossings turn into avoided crossings.

In Fig. 3, the energy difference between the edge
states ΔEedge is shown for different M as function of t2.
It shows the crossings for M = 0 and that these cross-
ings become avoided crossings for larger M . As the on-
site potential increases further, the avoided crossings
tend to smooth out. For M = 0.01 and M = 0.02,
there are mainly two local minima. The energy differ-
ence ΔEedge decreases with t2 up to a local minimum at
around t2 = 0.059 for M = 0.01. The slope of ΔEedge
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Fig. 3 Energy difference between the edge states as func-
tion of t2 on a logarithmic scale for different on-site poten-
tials M

Fig. 4 Wave function of the highest occupied state (lowest
state of the two edge states) for M = 0 and different t2.
The size of the circles indicates the probability density. The
phase of the wave function is indicated by the color of the
circles

(a)

(b)

Fig. 5 Phase of the wave function of the initially highest
occupied state (Ψ60) and the lowest unoccupied state (Ψ61)
on site 2 (see Fig. 1) of the ribbon as function of t2 for an on-
site potential M = 0 (a) and M = 0.01 (b). The differences
of the energies of both states ΔEedge on a logarithmic scale
from Fig. 3 are included in gray to show that phase jumps
occur at (avoided) crossings

following this local minimum is quite shallow, rendering
it a flat local minimum. A much more localized mini-
mum occurs at t2 = 0.088. Both minima are shifted
toward larger t2 as M increases. The other crossings
cannot be observed anymore as the on-site potential
becomes larger.

In Fig. 4, the wave function ψ60 of the state within
the band gap with the smaller energy is shown. This
is the highest, initially occupied state. The size of the
sketched circles at the lattice site scales with the prob-
ability density there. The phase of the wave function is
indicated by the color of the circles. For ease of com-
parison, we use a phase convention for the initial states
for which the phase at site 1 is zero (see Fig. 1). The

wave functions are given for different t2 but fixed on-
site potential M = 0. For t2 = 0 the probability density
is equally located on the upper and lower edge. With
increasing t2, the electron probability moves toward the
left and right edges. The same happens for the lowest
unoccupied state ψ61, whose phase is different but prob-
ability density is the same (not shown). Because of the
dominant location of the electron at the edges, we call
these two states edge states. Clearly, for a system peri-
odic in x-direction, these kind of states are absent due
to the absence of left and right edges.

Crossings of the energies between both edge states
occur at t2 = 0.053 and t2 = 0.055. For t2 = 0.05, one
can see a certain symmetry of the highest occupied state
in Fig. 4. The phases of the wave function at the four
leftmost sites, reading from top to bottom, is identical
to the phases at the four rightmost sites but reading
from bottom to top. The electron is mainly located on
those eight sites. The wave function is symmetric under
rotation by 180◦ about an axis perpendicular to the xy-
plane of the ribbon and through its center. For t2 =
0.054, the energies of both edge states have crossed so
that the occupied state should now have the properties
of the (for lower t2) unoccupied one, and the other way
around. Indeed, the phases of the wave function on the
right edge of state ψ60 are now different. The state is
not symmetric anymore under rotations by 180◦. The
phases at the four rightmost sites reading, from bottom
to top, is identical to the phase at the four leftmost
sites, read from top to bottom, plus π. This is indeed
the symmetry of the other edge state. The next crossing
appears at t2 = 0.055. The symmetry of the highest
occupied state for t2 = 0.057 is now identical to the
state for t2 = 0.05, indicating that another crossing
occurred.

In order to identify the exchange of the edge states,
it is sufficient to look at the phases at, e.g., site 2 (see
Fig. 1). In Fig. 5, the phase at this site for both edge
states ψ60 and ψ61 is shown as function of t2. In Fig. 5a,
the phases for M = 0 are shown. The phases are con-
stant for small t2. For the highest occupied state ψ60,
the phase is ϕ = 0 and ϕ = π for the lowest unoc-
cupied state ψ61. At each crossing, the phases of both
states change to the value of the other state, indicat-
ing that the properties of both states are exchanged
each time their energies cross. In order to remind for
which t2 crossings occur, the energy difference ΔEedge

from Fig. 3 is sketched in gray. In Fig. 5b, the same
is plotted for an on-site potential of M = 0.01. From
a local minimum at t2 = 0.0058, both phases increase
up to t2 = 0.088 where ΔEedge assumes a minimum.
(Note that we plot phases modulo 2π within the inter-
val [−π, π) so that phases exceeding π reenter at −π.)
In a narrow neighborhood around this value of t2, both
phases change by about π in a continuous manner,
which is characteristic of an avoided crossing. The prop-
erties of the two edge states also exchange in this case
so that the previously highest occupied state becomes
the previously lowest unoccupied state and the other
way around.
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(a) (b) (c)

Fig. 6 High-order harmonic spectrum in a parallel and b perpendicular direction to the polarization of the external field,
and c the corresponding phase difference between both components as a contour plot as function of t2. The on-site potential
is M = 0.0. The white line ΔEgap is the gap between the valence band and the lowest edge state

(a) (b)

(c) (d)

Fig. 7 Harmonic yield for both polarization directions a, c) and phase difference b, d for harmonic order 5 as function of
t2. For a, b, the on-site potential is M = 0, for c, d M = 0.01. The energy difference ΔEedge is included in gray to ease the
interpretation of the results (extra y-axis for ΔEedge suppressed)

3.2 High-harmonic generation

Figure 6 shows harmonic spectra in parallel (Fig. 6a)
and perpendicular (Fig. 6b) polarization direction to
the polarization of the incoming field for M = 0 as func-
tion of t2. In Fig. 6c, the phase difference (9) between
both components is shown. Just to avoid confusion, in
the previous sections, we discussed phases of electronic
edge states ϕ, and now we examine the phases of the
emitted harmonic radiation Δφ. The goal is to under-
stand how both are related.

We only show the spectra for the parameter space
where the properties of the edge states matter. For
more details at other parameters, in particular higher
harmonic orders, we refer to Ref. [8]. The harmonics
of interest are below energy ΔEgap, which is defined
by the highest state of the valence band and the low-
est edge state (see Fig.2). The harmonic yield in this
region decreases exponentially with harmonic order due

to the destructive interference of intraband harmonics
[4]. However, odd harmonics can still be observed up to
order 9 or 11, depending on t2. At certain t2, the har-
monic yield drops drastically for harmonics 5 till 9. This
can be seen as a yellow horizontal traces in Figs. 6a,b.
In the phase plot, several flips of the phase from blue to
red color (flip by ±π) can be observed. For a fixed har-
monic order (5 till 9), the phase difference flips several
times as t2 increases.

In Fig. 7, the harmonic yield in both polarization
directions for harmonic order 5 is shown for M = 0
(Fig. 7a) and M = 0.01 (Fig. 7c) as function of t2. The
respective phase differences (9) are shown in Fig. 7b
(M = 0) and Fig. 7d (M = 0.01). The energy difference
of the edge states ΔEedge is included (with an extra y-
axis suppressed, as only the behavior as function of t2
is relevant).

In Fig. 7a, one can see a decreased harmonic yield in
parallel polarization direction that occurs exactly at the
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points where ΔEedge is minimal (crossing of the edge
states). There is an exception for the first two local
minima of ΔEedge where no significant decrease in the
harmonic yield is observed. The minima of the yield
in the perpendicular direction are located between two
crossings (again with an exception between the first two
crossings). In the phase difference (Fig. 7b), a phase flip
from Δφ = π/2 to Δφ = −π/2 can be observed for the
last four crossings. The phase flips back to Δφ = π/2
between two crossing points. The back-flip of the phase
is located at about the local minima of the yield in
perpendicular polarization direction. Interestingly, the
phase difference is Δφ = π/2 before the first cross-
ing and becomes Δφ = −π/2 after the last crossing
point. Further, we note that the harmonic yield in par-
allel polarization direction is related to ΔEedge for suf-
ficiently large t2 (t2 > 0.055).

In Figs. 7c and 7d, the harmonic yield and the phase
difference is shown for M = 0.01. The harmonic yield
in parallel polarization direction drops again drastically
at the local minimum of ΔEedge at t2 = 0.088. This is
the point where the energies of the edge states have
an avoided crossing. The harmonic yield in perpendic-
ular direction drops at the same value but not as much
as the yield in parallel direction. Before the first local
minimum of ΔEedge, the phase difference is fluctuat-
ing around vales Δφ = π/2. At the first local mini-
mum at t2 = 0.059, a phase flip to Δφ = −π/2 can
be observed but the phase flips back to Δφ = π/2 for a
slightly larger t2. At the point of the avoided crossing at
t2 = 0.088, the phase flips permanently to Δφ = −π/2.

The two graphs of the phase difference Figs. 7b,d
show that the (avoided) crossings of the edge state ener-
gies cause a phase flip by π. Between two crossings, the
phase flips back slightly after the first of the two cross-
ings. Comparing the phases for small and large t2, the
phase changes from Δφ = π/2 (small t2) to Δφ = −π/2
(large t2).

The phase flips at the crossing points can be under-
stood by the edge states. The properties of the initially
occupied and unoccupied edge state exchange at each
crossing point (and the avoided crossing at t2 = 0.088
for M = 0.01). Therefore, the occupied edge state sud-
denly has the symmetry of the unoccupied state and the
other way around. This affects the yield and the helicity
of the emitted harmonics, as just demonstrated.

In the parameter regime where the phase flips occur,
the harmonic yield for both polarization directions dif-
fers several orders of magnitude for fixed t2. This means
that despite Δφ = ±π/2, the ellipticity of the emit-
ted harmonics is close to zero, i.e., the harmonics are
almost linearly polarized. Nevertheless, the helicity flips
discussed in this work should be measurable experimen-
tally by interferometric means.

4 Summary and outlook

The edge states in the simulated finite, topological
nanoribbons show a specific behavior as the tight-

binding parameters are varied. The two edge states do
not converge to the same energy but show crossings
and avoided crossings. These crossings have a signifi-
cant influence on the harmonic generation process. The
phase difference between the two polarization compo-
nents of the emitted light for certain harmonic orders
change where the edge state energies cross (or have an
avoided crossing). We find that the yield of low-order
harmonics polarized parallel to the polarization of the
incoming field is related to the energy difference of the
edge states.

Certainly, our model studies presented in this work
are highly idealized and simplified, as is the original
Haldane model for the corresponding bulk. However,
tailorable anomalous Hall systems are available (see,
e.g., [40] and references therein), and a more realis-
tic theoretical description of HHG in such systems is
worthwhile to pursue in future work.

Acknowledgements H.J. acknowledges financial support
by the doctoral fellowship program of the University of Ros-
tock.

Author contributions

H.J. performed the numerical simulations, analyzed the
results, and wrote the manuscript. D.B. provided criti-
cal feedback, supported the analysis of the results, and
improved the final version of the manuscript.

Funding Open Access funding enabled and organized by
Projekt DEAL.

Data availibility This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The
data that support the findings of this study are available on
request from the author H.J.]

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to
the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this arti-
cle are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. M.Z. Hasan, C.L. Kane, Colloquium: Topological insu-
lators. Rev. Mod. Phys. 82, 3045–3067 (2010)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. D (2021) 75 :190 Page 7 of 8 190

2. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buh-
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F. Légaré, C.R. McDonald, T. Brabec, D.D. Klug,
P.B. Corkum, All-optical reconstruction of crystal band
structure. Phys. Rev. Lett. 115, 193603 (2015)

13. M. Hohenleutner, F. Langer, O. Schubert, M. Knorr,
U. Huttner, S.W. Koch, M. Kira, R. Huber, Real-
time observation of interfering crystal electrons in high-
harmonic generation. Nature 523, 572–575 (2015)

14. T.T. Luu, M. Garg, S.Y. Kruchinin, A. Moulet, M.T.
Hassan, E. Goulielmakis, Extreme ultraviolet high-
harmonic spectroscopy of solids. Nature 521, 498–502
(2015)

15. G. Vampa, T. Brabec, Merge of high harmonic gen-
eration from gases and solids and its implications for
attosecond science. J. Phys. B: At. Mol. Opt. Phys. 50,
083001 (2017)

16. Y.S. You, Y. Yin, Y. Wu, A. Chew, X. Ren, F. Zhuang,
S. Gholam-Mirzaei, M. Chini, Z. Chang, S. Ghimire,
High-harmonic generation in amorphous solids. Nat.
Commun. 8, 724 (2017)

17. M. Baudisch, A. Marini, J.D. Cox, T. Zhu, F. Silva,
S. Teichmann, M. Massicotte, F. Koppens, L.S. Levi-
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