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Abstract. The relevance of Wigner Scattering theory and in particular of its K-matrix formulation is
stressed for all systems held together by Coulombic forces including not only atoms and molecules but also
clusters. Originally developed and formulated for nuclear scattering, Wigner’s theory is extremely general,
with application in many branches of physics. Atomic Physics often makes use of an apparently separate
formalism (MQDT) which is in fact a specialisation of Wigner’s theory. The advantage of the K-matrix
is that analytic expressions can be given for interactions between resonances in terms of a meromorphic
pole structure in the special case of asymptotically Coulombic potentials. By using the K-matrix, a num-
ber of novel effects (q-reversals, vanishing radiative and particle widths, vanishing fluctuations, etc.) are
understood as general phenomena.

1 Introduction

Spectral structures observed for atoms, molecules, and
clusters are usually analysed or simulated by using a
numerical approach. In atomic physics, for example, a
highly successful approach is multichannel quantum defect
theory (MQDT) [1]. Simulations by MQDT are capable
of reproducing very precisely the observed phenomena.
MQDT is not a separate theory for atomic and molecular
physics but represents a special case of Wigner scatter-
ing theory [2]. What specific simulations leave untouched,
however, is a clear conceptual framework within which to
understand a number of characteristic effects described in
the present paper. These effects appear quite commonly
when interacting resonances are involved and are there-
fore interesting to consider from a broader perspective. As
will be argued in the present paper, the Coulomb poten-
tial plays a very special role in this respect because of
its extraordinary properties in the K-matrix formulation
of Wigner’s theory. Furthermore, it is important for the
coherence of physics to understand how all the areas in
which scattering problems occur are related to each other
within a single theoretical scheme. It is argued here that
Wigner scattering theory achieves precisely this goal and
that the prospects to extend this theory to spectral struc-
tures in, for example, metallofullerenes and more complex
systems are also excellent.
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2 The scattering problem

The scattering problem occurs in many areas of science,
extending from nuclear and subnuclear physics [3] to con-
densed matter. A general scattering theory may therefore
be anticipated to apply to atoms, molecules, clusters, and
indeed even to biological species under appropriate con-
ditions of excitation. There are situations in the physics
of condensed matter to which a scattering model is also
relevant [4].

In scattering theory, a projectile is imagined to move
towards a target from a very remote past (t → −∞) and
also from a large distance, where projectile and target are
so far separated that the interaction between them tends
to zero. The initial wavefunction is thus the product of
the projectile wavepacket and one definite state (|a〉, say)
of the target.

At the opposite extreme of time (t → +∞), the inter-
action between projectile and target again tends to zero,
leaving the system in some other definite state (|b〉, say)
of the target. The states a and b are referred to as open
channels or continuum states, because target and projec-
tile are infinitely separated from each other.

In the presence of a transient interaction, represented
by an operator U(t1, t2), the so-called “closed” or discrete
bound states of the system become temporarily involved.

We write the scattering matrix S as

Sab = 〈b|U(∞,−∞)|a〉 (1)

where U is a unitary operator.
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In the scattering process, the probability flow is con-
served, i.e. such a scattering matrix must be unitary, which
has important consequences.

Although the formulation is extremely general, there is
one condition which must be satisfied. The system as a
whole must obey a “Schrödinger type” equation, together
with the usual asymptotic boundary conditions which
apply in quantum mechanics. The reason for referring to a
“Schrödinger type” equation is that, as Wigner himself has
stressed, this equation does not need to be solved explic-
itly for the theory to be developed and used. This fact
gives great freedom in the way of applying the method.

In numerical applications, to evaluate a scattering
matrix, it is convenient to introduce a Wigner sphere (of
radius r0) which must, for practical reasons, “contain” the
target. When dealing with short range forces, as in nuclear
physics with e.g. the Yukawa potential, “outside” is readily
defined. The sphere is simply chosen from the definition
of the effective range. For Coulombic forces, the choice
would have to be more subtle, except that we can choose
to contain within r0 all the complicated (and unknown)
many-body interactions and use a combination of the reg-
ular and irregular Coulombic functions outside r0, with
coefficients to be determined by matching them on the
sphere [5]. This approach (which allows a specific deriva-
tion of MQDT restricted to Coulombic systems) is not
used in the present paper.

The introduction of the Wigner sphere, which is a com-
mon feature of numerical methods, has a potential disad-
vantage in that one might suspect the result to be depen-
dent on the particular choice of r0. In principle, therefore,
one should check the numerical results by performing com-
putations with different choices of r0 and making sure that
the same result is obtained every time. Since this is a labo-
rious process, it is rarely followed through.

As we argue, following Lane [6] and others [7,8] it is not
actually necessary to introduce an interaction or Wigner
sphere at all, provided we stay within the analytic struc-
ture of the theory and consider only general laws by using
an appropriate scattering matrix.

The appropriate matrix is the K-matrix, we write

S = (1+ K)/(1−K) (2)

where K is then real and symmetric, yielding the essential
part of the cross-section as

σaa = 4K2
aa/(1 +K2

aa) (3)

for one open channel and

σab = 4K2
ab/|(1−Kaa)(1−Kbb) +K2

ab|2 (4)

for two open channels, etc.
Resonance maxima occur when K → ±∞, expressing

the unitary limit mentioned above, which forces SS†6 1.
The K-matrix is especially convenient. It turns out, as

Lane has shown [8] that the Coulomb potential is a very
special case (similar in some ways to the inverse square
law of force and Kepler’s laws in classical mechanics) in
that an analytic inversion of the K-matrix can be per-
formed specifically for this asymptotic law of force. This

unique property allows us to display and verify the general
algebraic structure of interacting resonances for this type
of potential.

Extending this reasoning, it follows that systems held
together by Coulombic forces allow Wigner scattering the-
ory to be tested in a way not accessible for other poten-
tials. In nuclear scattering, for example, such analytic
expressions are not available. Therefore, it is of particular
interest to study effects which can be displayed using the
analytic K-matrix theory but not otherwise for systems
held together by Coulombic potentials.

2.1 The meromorphic pole structure

As implied above, the K-matrix formulation of Wigner
scattering theory is in fact the most general, because it
does not depend on the introduction of a Wigner sphere.
The K-matrix is therefore referred to as external, i.e. it
does not depend on properties internal to the system.

Resonances appear as a sequence of what are called
meromorphic poles in the scattering cross-section. A mero-
morphic function may only have finite-order, isolated poles
and zeros and no essential singularities within its domain.
Meromorphic functions are single-valued and analytic in
all but possibly a discrete subset of their domain and,
near those singularities, tend to infinity as polynomials.
Each one of these poles corresponds to one and only one
physical resonance. Since the poles are singularities, their
general properties cannot be deduced numerically. That
is why analytic theory is the key to understanding their
behaviour and also why Coulombic scattering problems
provide a unique testing ground for Wigner’s theory.

2.2 Introducing phase shifts

It is convenient to express photoabsorption in terms of
phase shifts and to partition the shift into a part due to a
given resonance (∆0, say) and a part (δ, say) due to the
background continuum. Thus:

K = tan(δ + ∆0). (5)

The form of ∆0, the phase shift near an isolated resonance
is given e.g. by Landau and Lifshitz [9] as a simple pole:

tan ∆0 = Γ/(2(E0 − E)). (6)

Γ and E0 are the resonance width and energy respectively.
Combining equations (5) and (6) with (3), and writing
q = cot δ and ε= 2(E − E0)/Γ we have the well-known
Fano formula [10]:

σ(E) = |D|2(q + ε)2/(1 + ε2). (7)

There is no essential difference between the nuclear (Breit–
Wigner) and atomic (Beutler–Fano) cases. The physics is
the same.

The width Γ of the resonance is intrinsic (the lifetime of
the excited state) but the asymmetry parameter q depends
on δ and hence on the excitation path by which that state
is reached.
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2.3 The short-range well

In nuclear physics, it is known that, for low-energy scat-
tering from a short-range well, the bound and low-energy
scattering spectrum do not depend on the detailed shape
of the potential but only on its binding strength. This
arises whenever the de Broglie wavelength of the scattered
particle is comparable to the range of the well, so that the
inverse scattering problem cannot be solved and does not
allow the detailed shape of the well to be deduced from
the spectrum. One then resorts to effective range theory.
It turns out that all short range wells of the same bind-
ing strength are equivalent to deduce a general form for
parametrising ∆0. In particular, we can use the analytic
form of the phase shift for a spherical well with angular
momentum ` [11]. This yields an analytic formula in Bessel
functions for ∆0. If no background phase shift is present
or if it is so small that it can be neglected, the total cross
section is then:

σ(k) = (4π/k2)(2`+ 1) sin2 ∆0 (8)

where k is the wavevector inside the well. Thus, we
can deduce a general form for the profiles of giant res-
onances (they are neither Breit–Wigner nor Beutler–Fano
in shape): let j1 = j`, j2 = j`−1, j3 = j−`, j4 = j−`−1

be the spherical Bessel functions, then the resonant phase
shift of the giant resonance is:

tan ∆0 =
(zj1 (z′) j2 (z)− z′j1 (z) j2 (z′))
(zj1 (z′) j3 (z) + z′j4 (z) j2 (z′))

(9)

(where z = kα, z′ = k′α, α is the radius of the square well
and D is its depth so that Dα2 is its binding strength).
From (9), the resonance profile is readily obtained by using
(8) above and examples are shown in Figure 1 [12].

Giant resonances originated in nuclear physics (the liq-
uid drop model) and appear in many-particle problems,
even when the system is held together by Coulombic
forces. For example, they are a common feature in the
spectra of metallic clusters [13] held together by a Woods–
Saxon potential (a model potential which also originated
from the collective representation in nuclear physics).
They are also ubiquitous in the spectra of the fullerenes
and metallofullerenes [14].

Giant resonances in all these systems are characterised
by the fact that they exhaust all the available oscillator
strength allowed by the sum rule in a given channel. They
must therefore lie below a 1/k2 curve which is termed the
unitary limit in nuclear scattering, because it is imposed
by the unitarity of the S-matrix, discussed in Section 2
above. The unitary limit results from a fundamental
consideration (causality, or the conservation of the proba-
bility flow), so is a general property for all scattering prob-
lems, whatever the potential or the particles involved. It is
exemplified by the family of curves displayed in Figure 1.

2.4 Combining phase shifts

When many resonances occur in a Coulombic channel,
their phase shifts are additive. Thus, with N overlapping

Fig. 1. The evolution of “giant resonances” as a function of
binding strength for a short-range well. Note the unitary limit
set by the sum rule (shown as a dashed curve).

resonances, we have :

Kres = tan ∆0 =
N∑
n=1

(
Γn

2 (En − E)

)
≡
∑

, say (10)

whence

σ(E) = 4 sin2 δ

{(
1 + q

∑2
)/(

1 +
∑2

)}
. (11)

The summation over n of course involves only those reso-
nances which actually occur in the physical system. How-
ever, atomic physicists are accustomed to a convenient
replacement which is not a mathematically exact substi-
tution, viz: ∑

→ χ cotπ(ν + µ) ≡ χ cot θ (12)

where ν is an energy variable such that

E∞ − E = R/ν
2
. (13)

This replacement is almost equivalent to a change of vari-
ables, from Γn, En, E to χ, µ, ν, except that, by intro-
ducing a trigonometric function and the running index ν,
the “bottom” of the channel becomes undefined, so that
this replacement is not quite mathematically exact. How-
ever, for sufficiently large values of n, this substitution
conveniently reproduces the Rydberg recapitulation [15]
characteristic of Coulombic systems. Again, we see that
several familiar results of MQDT emerge without the need
to solve the Schrödinger equation explicitly or to introduce
an interaction sphere of radius r0.

By some algebra, one finds:

σ (θ) = |D|2 tan2 πν + 2Btanπν +B2

tan2 πν + 2Ctanπν +D2
(14)

https://www.epjd.epj.org
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with

B =
qχ+ tanπµ

1− qχ tanπµ

C =

(
1− χ2

)
tanπµ

1 + χ2tan2πµ

D2 =
χ2tan2πµ

1 + χ2tan2πµ
· (15)

Equation (14) is known in quantum defect theory as
the Dubau–Seaton formula [16–18]. It represents a full
Rydberg manifold of interacting resonances in a “flat”
continuum with three shape parameters B,C, and D of
which only B depends on q. One also finds that q = {1/χ}
tan π(β − µ), where B = tanπβ. The constant |D|2 is a
dipole operator.

2.5 General trends within a channel

Some general rules concern the trends of the parameters.
Thus:
– Γn scales as 1/(n − µ)3 for an asymptotically

Coulombic potential;
– one zero in the cross section occurs between each res-

onance;
– χ is necessarily negative for all E1 < E < E∞ since

χ =
1

cot2π (ν + µ)
2R
πν

N∑
n=1

(
Γn

2 (En − E)3

)
(16)

and Γn is necessarily positive.
Close to the unitary limit, where the cross section

rises to its allowed maximum, narrow resonances can only
appear in the form of q =0 “windows”.

For channels 1 and 2, we have

K =
(Σ1 + Σ2) + ξ (1− Σ1Σ2)
(1− Σ1Σ2)− ξ (Σ1 + Σ2)

(17)

in the notation introduced above for equation (11), with
ξ = (q1 + q2)/(q1q2 − 1).

Two dimensional QDT graphs for this case are not the
same as for a double sequence of bound states although
both may look the same topologically: for bound states,
avoided crossings tend to zero as the interaction strength
tends to zero. This is not the case for resonances, which
have intrinsic widths. This point is discussed and illus-
trated in reference [19].

The connecting equations from K-matrix to MQDT for-
mulations are (15) above for the constants B, C, and D
in (14). The constant µ is termed the quantum defect. For
q = 0, we have a sequence of symmetric “window” res-
onances (or antiresonances). Again, in (12), the tangent
replacement formula is not exact. It has no “bottom end”
i.e. there is no low energy bound as for the summation
over n which starts from the lowest resonance. Likewise,
there is no such thing as a “flat” continuum over the full
range of energies because, in reality, there is a threshold
at the “bottom” of any continuum.

2.6 Hybrid or complex systems

Hybrid systems, such as metallofullerenes, involve an inter-
play between a short-range potential as in Section 2.3
above and the Coulombic channels described of Section 2.4.
Often, the fullerene “cage” yields the “giant resonance” and
the endohedral atom provides Coulombic states, with the
excited electron either inside the cage or outside the sys-
tem. Conversely, any form of “cage” in a metallofullerene
produces so-called confine ment resonances [20], which can
overlap in energy with an atomic giant resonance. All such
cases can be handled by adding phase shifts in the same style
as above.

For example, we can couple a Rydberg series of fine
resonances Γn to a broad Giant resonance ΓG. This prob-
lem is treated in [21] by essentially the same formalism
as above. It is slightly more complex, depending on the
magnitude of the coupling strength, but in the weak cou-
pling limit, the essential result is that the combined cross
section is proportional to:

(D + d)2

(1 + d2)(1 + D2)
tan2πθ + 2B tanπθ +B2

tan2 πν + 2C tanπν +D2
(18)

where θ = π (ν + µ)

tan D =
ΓG

2 (EG − E)

tan ∆0 = χ cot θ and

d = tan δ,

δ being a background phase shift. Also:

B =
χ

D + d

C =
χD

1 + D2

D2 =
χ2

1 + D2
· (19)

We recognise the second factor in (18) as the Seaton–
Dubau formula of reference [18]. The first term depends
only on D and d, i.e. from (19), it contains only infor-
mation on the giant resonance and background phases.
When D is constant and d → 0, we simply recover the
Seaton–Dubau formula.

For the general case, however, the shape parameters
of the fine resonances Γn are no longer constant as in
the Dubau–Seaton problem. Their variation with energy
expresses the influence of the Giant resonance on the
Coulombic channel. This is readily related to the profile
index q of reference [22]:

q =
B − C

(D2 − C2)1/2
=

1− Dd
D + d

·

Thus, in the weak-coupling limit, the variation of q is
determined entirely by the giant resonance and back-
ground phase shifts. Note in particular that q = 0 when

https://www.epjd.epj.org
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D = 1/d which is also the condition for a maximum in the
first factor of expression (18), i.e. when

E = EG −
ΓG

2 cot δ
·

For small δ, this is detuned only slightly from EG, the
giant resonance energy. In general, q tends to zero at the
peak intensity of the giant resonance, because of the uni-
tary limit mentioned above. About this value, D and there-
fore also q change sign.

While the treatment just described is quite general,
there is an important limitation to this approach: it does
not allow for the possibility of relative movement of an
endohedral atom with respect to the confining cage, in
which case, of course, phase shifts are no longer simply
additive.

2.7 Novel effects from the K-matrix

I now turn to several novel effects which can only be well
understood by starting from the fully analytic approach
applied to Coulombic systems. These are (i) q-reversals,
(ii) vanishing widths, (iii) perturbative stabilisation, and
(iv) vanishing fluctuations. They are, however, quite gen-
eral and all the indications are that they will appear
in many scattering problems (experimental or numeri-
cal) and for many systems. Because they can only be
fully characterised in a Coulombic potential, the study of
Coulombic systems is particularly relevant to Wigner scat-
tering theory.

2.7.1 The q-reversal

As already mentioned, the symmetry of resonances can
flip over as a result of inter-channel interactions. This can
happen more than once. A q-reversal was first observed
in Nuclear Physics [23], where of course the potential
is non-Coulombic. It is termed the Robson effect. Some-
what later, but inde-pendently, it was observed in atomic
physics [24]. Additional characteristics associated with
this effect emerged more clearly after further experimental
examples had been uncovered. They confirm predictions
from Wigner’s theory.

When the q-reversal is due to a broad intruder state EG
which exhausts available oscillator strength within its own
channel, antiresonances are observed near the peak in the
cross section. This of course is simply a manifestation of
the unitary limit.

The existence of q-reversals immediately raises the ques-
tions: (a) just how many will appear in a given channel and
(b) should there always be a q-reversal when an intruder
state is present? Such questions can be answered by ana-
lytic theory and there are general theorems relating to the
maximum number of q-reversals (see e.g. Fig. 2).

2.7.2 Vanishing Widths

The vanishing width effect corresponds to the stabilisation
of an excited state against particle decay by the action of

Fig. 2. The picture shows the variation of the q-parameter in
a channel perturbed by a broad intruder state, as a function
of energy for different coupling strengths. At weak coupling,
there is just one reversal. As the strength increases, there can
be two. The second one is less stable and occurs only for a
limited range. At very high coupling, there are no q reversals
and the q is just that of the perturber.

a perturbation. Such stabilisation effects occur, not only
in particle, but also in radiative decay, in the case of the
half-scattering (photoabsorption) problem.

For a general set of levels, arbitrarily spaced, an exact
K-matrix inversion to obtain analytic expressions for the
cross section cannot be performed. For Coulombic states,
in the presence of both radiative decay to a channel γ and
particle decay to a channel a, both the interaction strength
Hn and the widths Γ1/2

n have the same variation with n.
Thus the coupling strength µa ≡ Γ1/2

na /Hn is independent
of n, which is why an exact result can be written down
for σ (E − EB), where EB stands for a general broad
perturber, in terms of the six real parameters EB , ΓBa,
ΓBγ , µa, µγ , and Kγγ . For the case where radiative widths
γ are very small and the background can be neglected, the
full result simplifies to:

σ (ε) =
(ε+ qΓB/2)2

(ε+ Σ)2 +
{(
µaΓ1/2

B + µ2
aε/2

)
Σ− Γ2

B

}2

where ε = (E − EB) is the detuning from the broad
intruder state B. The full expression, distinguishing

https://www.epjd.epj.org
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Fig. 3. Vanishing particle width in the 3d np series of Ca. The
effect occurs at n = 6.

Fig. 4. Vanishing radiative width in the principal series of Ba:
radiation is quenched close to the apparent zero of a Beutler–
Fano or Breit–Wigner resonance which is continuous across the
threshold.

radiative from particle widths, is given in reference [25]
and is significantly more complex.

Vanishing widths can occur either in the particle decay
(autoionisation) channel, as illustrated in Figure 3 [26]
or in the radiative channel (stabilisation against radiative
decay or enhanced lifetime) as shown in Figure 4 [27].

2.7.3 The fluctation operator

In Nuclear Physics, fluctuations are studied directly
through the variance

var σ ≡ 〈σ(E)2〉 − 〈σ(E)〉2

which constitutes an observable. Strictly, it is of fourth
order in elements of the S-matrix, but Moldauer’s theorem
states that fluctuations in total cross section for a given
entrance channel are only of second order:

var σa = 2{〈|Saa|2〉 − |〈Saa〉|2}.
Thus, the fluctuations themselves behave like a cross
section. In particular, they are continuous across a thresh-
old. We are familiar with the situation that fluctuations
often disappear at the threshold as n → ∞ (whence the
Gailitis averaging procedure [28]) but the interesting ques-
tion is whether they can also pass through zero at an
energy which does not coincide with any threshold.

Fig. 5. Example of vanishing fluctuations at an energy
removed from the limit of a Rydberg series. Such fluctuations
tend to occur at an energy close to a broad perturber.

2.7.4 Vanishing fluctuations

A novel effect predicted from Wigner’s theory is the dis-
appearance of fluctuations at an energy removed from
any threshold. In calculations with a single open chan-
nel, fluctuations vanish for a system of narrow resonances
Γn/Dn → 0 (where Dn is the level spacing). We find
Evf = EB −HnΓ1/2

B /Γ1/2
n in this case, which shows that

the vanishing point lies close to an intruder level ΓB .
For more than one open channel, the situation is more
complex.

An example of this kind is shown in Figure 5 [29]. It
occurs in the heavily mixed Rydberg system of levels con-
verging on the 6p1/2 threshold of Ba I.

3 Conclusion

Wigner’s scattering theory offers a unified theoretical
framework within which resonances can be described
and their interactions studied over scale sizes ranging
at least from Nuclear physics to clusters and even to
larger systems. It turns out that systems held together by
Coulombic forces play a very special role, in that the
K-matrix formulation of Wigner’s theory then leads to
an analytic representation of resonances in terms of mero-
morphic poles. Once this representation is identified, it
becomes possible to explore the full range of variation
of the parameters and to explore new effects the exis-
tence of which is not immediately apparent from numerical
simulations. Several such effects have been found in this
way. They are also present in other systems with differ-
ent potentials and can be searched for both in numerical
simulations and in experimental spectra.

For all these reasons, and also in the interest of the
unity of physics, the theory of resonances should be dis-
cussed in the general frame of Wigner scattering theory.
The method applies to all quantum mechanical systems
and to all potentials (short or long range).

The study of interacting meromorphic poles via such
characteristic effects as symmetry or q-reversals, unitary
limits, vanishing widths, vanishing fluctuations, and per-
haps further properties is a challenging new area.

The generality of scattering theory is ultimately an
expression of causality, as Wigner has emphasised [30].

https://www.epjd.epj.org
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Because of its generality, Wigner scattering theory is
extremely robust. For example, systems exist with both
giant resonances due to a short range part of the poten-
tial and overlapping resonances due to a Coulombic outer
range. They all turn out to obey general rules described
in the present paper.

Some general effects have been omitted from this paper,
as being less likely to occur in large systems, for exam-
ple those due to perturbation by an antiresonance and
the appearance of “universal crossing points” which are
more relevant in connection with atoms and with laser-
induced continuum structure [31]. Another omission from
the present report is the Wigner–Eisenbud time delay in
resonant coulomb scattering [32]. In this connection, we
note a recent theoretical investigation of the Wigner pho-
toemission time delay from endohedral anions A@C60 as
a function of increasing charge [33], which suggests that
this is also a promising direction of investigation.

Metallofullerenes whose Rydberg states can even strad-
dle the boundary between the inner and outer regions of
the fullerene are expected to provide especially interesting
examples. It may also prove possible to observe cases in
which narrow confinement resonances due to a molecular
cavity lie close to broad resonances of a confined atom.
As they pass “through” the broad resonance, at least one
q-reversal is to be expected in the weak coupling limit.

At the present time, it is not yet possible to trap such
large and complex systems and “freeze” them for study by
high resolution laser spectroscopy. However, such experi-
mental progress is likely in the future and, when it comes,
effects described in the present paper and their analysis
by K-matrix theory will become increasingly relevant.

The same K-matrix methods can also be extended to
study β-parameters observed by electron scattering. The
study of overlapping resonances [34] in this context is an
area to be developed, and is also accessible to analysis
by K-matrix theory. Lastly, I have omitted results for
multiphoton excitation, which allows resonances to be
“transported” in energy and embedded in other chan-
nels by strong laser fields. These are given in reference [25].
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