Skip to main content
Log in

Interaction of anionic tin clusters Snn, n = 7 − 75 with electrons – polyanion production and cluster decay

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Size-selected monoanionic tin clusters Snn, n = 7 − 75, are stored simultaneously with electrons in a Penning trap to produce poly-anionic clusters by electron attachment. In addition to doubly and triply charged clusters with the size of the precursors, fragments such as Snn−7, Snn−10 or Snn−15 are observed in the lower size range (n ≲ 50). The latter come along with the clusters Sn10 and Sn15, probably due to fission of doubly charged clusters as in the case of the group-14 neighbor-element lead [König et al., Phys. Rev. Lett. 120, 163001 (2018)]. Furthermore, prominent doubly charged products Sn2−n−15 seem to be produced by break-off of neutral decamers, a feature not yet observed for any other dianionic cluster. In addition, while almost no monomer evaporation is observed for singly charged clusters, this process does occur for doubly charged ones.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Shvartsburg, M.F. Jarrold, Phys. Rev. A 60, 1235 (1999)

    Article  ADS  Google Scholar 

  2. L.F. Cui, L.M. Wang, L.S. Wang, J. Chem. Phys. 126, 064505 (2007)

    Article  ADS  Google Scholar 

  3. G. Ganteför, M. Gausa, K.H. Meiwes-Broer, H.O. Lutz, Z. Phys. D: At. Mol. Clusters 12, 405 (1989)

    Article  Google Scholar 

  4. V.D. Moravec, S.A. Klopcic, C.C. Jarrold, J. Chem. Phys. 110, 5079 (1999)

    Article  ADS  Google Scholar 

  5. Y. Negishi, H. Kawamata, A. Nakajima, K. Kaya, J. Electron Spectrosc. Relat. Phenom. 106, 117 (2000)

    Article  Google Scholar 

  6. S. Yoshida, K. Fuke, J. Chem. Phys. 111, 3880 (1999)

    Article  ADS  Google Scholar 

  7. J.M. Hunter, J.L. Fye, M.F. Jarrold, J.E. Bower, Phys. Rev. Lett. 73, 2063 (1994)

    Article  ADS  Google Scholar 

  8. M.F. Jarrold, J.E. Bower, J. Phys. Chem. 92, 5702 (1988)

    Article  Google Scholar 

  9. J.R. Heath, Y. Liu, S.C. O’Brien, Q.L. Zhang, R.F. Curl, F.K. Tittel, R.E. Smalley, J. Chem. Phys. 83, 5520 (1985)

    Article  ADS  Google Scholar 

  10. P. Ferrari, E. Janssens, P. Lievens, K. Hansen, J. Chem. Phys. 143, 224313 (2015)

    Article  ADS  Google Scholar 

  11. R. Kelting, R. Otterstätter, P. Weis, N. Drebov, R. Ahlrichs, M.M. Kappes, J. Chem. Phys. 134, 024311 (2011)

    Article  ADS  Google Scholar 

  12. S. König, F. Martinez, L. Schweikhard, M. Wolfram, J. Phys. Chem. C 121, 10858 (2017)

    Article  Google Scholar 

  13. S. König, A. Jankowski, G. Marx, L. Schweikhard, M. Wolfram, Phys. Rev. Lett. 120, 163001 (2018)

    Article  ADS  Google Scholar 

  14. P.J. Brucat, L.S. Zheng, C.L. Pettiette, S. Yang, R.E. Smalley, J. Chem. Phys. 84, 3078 (1986)

    Article  ADS  Google Scholar 

  15. M. Vogel, A. Herlert, L. Schweikhard, J. Am. Soc. Mass. Spectrom. 14, 614 (2003)

    Article  Google Scholar 

  16. E. Oger, R. Kelting, P. Weis, A. Lechtken, D. Schooss, N.R.M. Crawford, R. Ahlrichs, M.M. Kappes, J. Chem. Phys. 130, 124305 (2009)

    Article  ADS  Google Scholar 

  17. A. Wiesel, N. Drebov, T. Rapps, R. Ahlrichs, U. Schwarz, R. Kelting, P. Weis, M.M. Kappes, D. Schooss, Phys. Chem. Chem. Phys. 14, 234 (2012)

    Article  Google Scholar 

  18. L. Schweikhard, S. Krückeberg, K. Lützenkirchen, C. Walther, Eur. Phys. J. D 9, 15 (1999)

    Article  ADS  Google Scholar 

  19. F. Martinez, G. Marx, L. Schweikhard, A. Vass, F. Ziegler, Eur. Phys. J. D 63, 255 (2011)

    Article  ADS  Google Scholar 

  20. F. Martinez, S. Bandelow, C. Breitenfeldt, G. Marx, L. Schweikhard, A. Vass, F. Wienholtz, Int. J. Mass Spectrom. 365, 266 (2014)

    Article  Google Scholar 

  21. H. Weidele, U. Frenzel, T. Leisner, D. Kreisle, Z. Phys. D: At. Mol. Clusters 20, 411 (1991)

    Article  Google Scholar 

  22. G. Savard, S. Becker, G. Bollen, H.J. Kluge, R. Moore, T. Otto, L. Schweikhard, H. Stolzenberg, U. Wiess, Phys. Lett. A 158, 247 (1991)

    Article  ADS  Google Scholar 

  23. A. Herlert, S. Krückeberg, L. Schweikhard, M. Vogel, C. Walther, Phys. Scr. T80, 200 (1999)

    Article  ADS  Google Scholar 

  24. L. Schweikhard, A. Herlert, G. Marx, AIP Conf. Proc. 692, 203 (2003)

    Article  ADS  Google Scholar 

  25. M.F. Jarrold, J.E. Bower, J.S. Kraus, J. Chem. Phys. 86, 3876 (1987)

    Article  ADS  Google Scholar 

  26. S. Krückeberg, L. Schweikhard, J. Ziegler, G. Dietrich, K. Lützenkirchen, C. Walther, J. Chem. Phys. 114, 2955 (2001)

    Article  ADS  Google Scholar 

  27. S. Krückeberg, G. Dietrich, K. Lützenkirchen, L. Schweikhard, C. Walther, J. Ziegler, Int. J. Mass Spectrom. Ion Process. 155, 141 (1996)

    Article  ADS  Google Scholar 

  28. S. Becker, G. Dietrich, H.U. Hasse, N. Klisch, H.J. Kluge, D. Kreisle, S. Krückeberg, M. Lindinger, K. Lützenkirchen, L. Schweikhard et al., Z. Phys. D: At. Mol. Clusters 30, 341 (1994)

    Article  Google Scholar 

  29. V.A. Spasov, Y. Shi, K.M. Ervin, Chem. Phys. 262, 75 (2000)

    Article  Google Scholar 

  30. S. König, S. Bandelow, L. Schweikhard, M. Wolfram, Int. J. Mass Spectrom. 421, 129 (2017)

    Article  Google Scholar 

  31. J.A. Alonso, Structure And Properties of Atomic Nanoclusters, 2nd edn. (Imperial College Press, 2011)

  32. F. Martinez, S. Bandelow, G. Marx, L. Schweikhard, A. Vass, J. Phys. Chem. C 119, 10949 (2015)

    Article  Google Scholar 

  33. A. Herlert, L. Schweikhard, Int. J. Mass Spectrom. 229, 19 (2003)

    Article  Google Scholar 

  34. H. Bateman et al., Proc. Camb. Philos. Soc. 15, 423 (1910)

    Google Scholar 

  35. Y. Tai, J. Murakami, C. Majumder, V. Kumar, H. Mizuseki, Y. Kawazoe, J. Chem. Phys. 117, 4317 (2002)

    Article  ADS  Google Scholar 

  36. A. Lechtken, N. Drebov, R. Ahlrichs, M.M. Kappes, D. Schooss, J. Chem. Phys. 132, 211102 (2010)

    Article  ADS  Google Scholar 

  37. H. Li, W. Chen, F. Wang, Q. Sun, Z.X. Guo, Y. Jia, Phys. Chem. Chem. Phys. 15, 1831 (2013)

    Article  Google Scholar 

  38. A. Herlert, L. Schweikhard, New J. Phys. 14, 055015 (2012)

    Article  ADS  Google Scholar 

  39. A.A. Shvartsburg, M.F. Jarrold, Phys. Rev. Lett. 85, 2530 (2000)

    Article  ADS  Google Scholar 

  40. K. Joshi, D.G. Kanhere, S.A. Blundell, Phys. Rev. B 66 155329 (2002)

    Article  ADS  Google Scholar 

  41. M. Wolfram, S. König, S. Bandelow, P. Fischer, A. Jankowski, G. Marx, L. Schweikhard, J. Phys. B: At. Mol. Opt. Phys. 51, 044005 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan König.

Additional information

Contribution to the Topical Issue “Atomic Cluster Collisions”, edited by Alexey Verkhovtsev, Andrey V. Solov’yov, Germán Rojas-Lorenzo, and Jesús Rubayo Soneira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

König, S., Wolfram, M., Bandelow, S. et al. Interaction of anionic tin clusters Snn, n = 7 − 75 with electrons – polyanion production and cluster decay. Eur. Phys. J. D 72, 153 (2018). https://doi.org/10.1140/epjd/e2018-90158-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90158-y

Navigation