Skip to main content
Log in

Even numbered carbon clusters: cost-effective wavefunction-based method for calculation and automated location of most structural isomers

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

A Publisher Correction to this article was published on 16 October 2018

This article has been updated

Abstract

Using second-order Möller-Plesset perturbation-theoretic calculations with extrapolation of the energy from the lowest steps of the hierarchical staircase to the complete basis set limit, a wave function-based approach emerges that rivals density functional theory in accuracy and cost-effectiveness. Tested on a large set of reactions, the method is now applied to the carbon clusters. Combined with variable-scaling opposite spin theory, the results approximate couple-cluster quality at no additional cost. Jointly with a stimulated breakup of the molecule by choosing a (simple or composite) driving coordinate at an adequate level of theory, the approach still offers a near automated tool for locating structural isomers along the optimized reaction coordinate for stimulated evolution so obtained. Adaptations are also suggested.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 16 October 2018

    The figures were missing in the online version of the published article. This erratum provides the correct online file. The Publisher apologizes for the inconvenience.

  • 16 October 2018

    The figures were missing in the online version of the published article. This erratum provides the correct online file. The Publisher apologizes for the inconvenience.

  • 16 October 2018

    The figures were missing in the online version of the published article. This erratum provides the correct online file. The Publisher apologizes for the inconvenience.

  • 16 October 2018

    The figures were missing in the online version of the published article. This erratum provides the correct online file. The Publisher apologizes for the inconvenience.

References

  1. S. Arulmozhiraja, T. Ohno, J. Chem. Phys. 128, 114301 (2008)

    Article  ADS  Google Scholar 

  2. L. Belau, S.E. Wheeler, B.W. Ticknor, M. Ahmed, S.R. Leone, W.D. Allen, H.F. Schaefer III, M.A. Duncan, J. Am. Chem. Soc. 129, 10229 (2007)

    Article  Google Scholar 

  3. K.E. Yousaf, P.R. Taylor, Chem. Phys. 349, 58 (2008)

    Article  ADS  Google Scholar 

  4. N. Sakai, S. Yamamoto, Chem. Rev. 113, 8981 (2013)

    Article  Google Scholar 

  5. N.L.J. Cox, F. Patat, ApJ 565, A61 (2014)

    Google Scholar 

  6. T.W. Yen, S.K. Lai, J. Chem. Phys. 142, 084313 (2015)

    Article  ADS  Google Scholar 

  7. S.K. Lai, I. Setiyawati, T.W. Yen, Y.H. Tang, Theor. Chem. Acc. 136, 20 (2016)

    Article  Google Scholar 

  8. C.M.R. Rocha, A.J.C. Varandas, J. Chem. Phys. 144, 064309 (2016)

    Article  ADS  Google Scholar 

  9. A.J.C. Varandas, C.M.M. Rocha, Philos. Trans. Roy. Soc. A 376, 20170145 (2017)

    Article  ADS  Google Scholar 

  10. S. Shaik, D. Danovich, W. Wu, P. Su, H.S. Rzepa, P.C. Hiberty, Nat. Chem. 4, 195 (2012)

    Article  Google Scholar 

  11. W. Kohn, L. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  ADS  Google Scholar 

  12. R. Peverati, D.G. Truhlar, Phil. Trans. R. Soc. A 372, 20120476 (2014)

    Article  ADS  Google Scholar 

  13. N. Mardirossian, M. Head-Gordon, J. Chem. Theory Comput. 12, 4303 (2016)

    Article  Google Scholar 

  14. A.J.C. Varandas, M.M. González, L.A. Montero-Cabrera, J.M.G. de la Vega, Chem. Eur. J. 23, 9122 (2017)

    Article  Google Scholar 

  15. A.J.C. Varandas F.N.N. Pansini, J. Chem. Phys. 141, 224113 (2014)

    Article  ADS  Google Scholar 

  16. F.N.N. Pansini, A.C. Neto, A.J.C. Varandas, Theor. Chem. Acc. 135, 261 (2016)

    Article  Google Scholar 

  17. A.J.C. Varandas, Ann. Rev. Phys. Chem. 69, 7.1 (2018)

    Article  Google Scholar 

  18. S. Grimme, J. Comp. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  19. A. Ngandjong, J. Mezei, J. Mougenot, A. Michau, K. Hassouni, G. Lombardi, M. Seydou, F. Maurel, Comp. Theor. Chem. 1102, 105 (2017)

    Article  Google Scholar 

  20. S. Grimme, J. Chem. Phys. 118, 9095 (2006)

    Article  ADS  Google Scholar 

  21. A.J.C. Varandas, J. Chem. Phys. 133, 064104 (2010)

    Article  ADS  Google Scholar 

  22. J.N. Murrell, K.J. Laidler, J. Chem. Soc. Faraday Trans. 64, 371 (1968)

    Article  Google Scholar 

  23. S. Glasstone, K. Laidler, H. Eyring, The Theory of Rate Processes, (McGraw-Hill New York, 1941)

  24. S. Maeda, K. Morokuma, J. Chem. Theory Comput. 7, 2335 (2011)

    Article  Google Scholar 

  25. K. Ishida, K. Morokuma, A. Komornicki, J. Chem. Phys. 66, 2153 (1977)

    Article  ADS  Google Scholar 

  26. M.J.S. Dewar, S. Kirschner, J. Am. Chem. Soc. 93, 4290 (1971)

    Article  Google Scholar 

  27. A.J.C. Varandas, J. Phys. Chem. A 114, 8505 (2010)

    Article  Google Scholar 

  28. A.J.C. Varandas, Phys. Chem. Chem. Phys. 16, 16997 (2014)

    Article  Google Scholar 

  29. K. Bondensgard, F. Jensen, J. Chem. Phys. 104, 8025 (1996)

    Article  ADS  Google Scholar 

  30. W. Quapp, M. Hirsch, O. Imig, D. Heidrich, J. Comp. Chem. 19, 1087 (1998)

    Article  Google Scholar 

  31. K. Irikura, R. Johnson, J. Phys. Chem. A 104, 2191 (2000)

    Article  Google Scholar 

  32. E. Muller, A. de Meijere, H. Grubmuller, J. Chem. Phys. 116, 897 (2002)

    Article  ADS  Google Scholar 

  33. S. Maeda, S. Komagawa, M. Uchiyama, K. Morokuma, Angew. Chem. Int. Ed. 50, 644 (2011)

    Article  Google Scholar 

  34. D.J. Wales, J.P.K. Doye, J. Phys. Chem. A 101, 5111 (1997)

    Article  Google Scholar 

  35. S. Habershon, J. Chem. Theor. Comput. 12, 1786 (2016)

    Article  Google Scholar 

  36. L.-P. Wang, A. Titov, R. McGibbon, F. Liu, V.S. Pande, T.J. Martínez, Nat. Chem. 6, 1044 (2014)

    Article  Google Scholar 

  37. E. Martínez-Núñez, Phys. Chem. Chem. Phys. 17, 14912 (2015)

    Article  Google Scholar 

  38. E. Martínez-Núñez, J. Comput. Chem. 36, 222 (2015)

    Article  Google Scholar 

  39. J.A. Varela, S.A. Vázquez, E. Martínez-Núñez, Chem. Sci. 8, 3843 (2017)

    Article  Google Scholar 

  40. T. Helgaker, P. Jorgensen, J. Olsen, Molecular Electronic-Structure Theory (Wiley, Chichester, 2000)

  41. W. Klopper, Mol. Phys. 6, 481 (2001)

    Article  ADS  Google Scholar 

  42. D.W. Schwenke, J. Chem. Phys. 122, 014107 (2005)

    Article  ADS  Google Scholar 

  43. A.J.C. Varandas, J. Chem. Phys. 126, 244105 (2007)

    Article  ADS  Google Scholar 

  44. T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)

    Article  ADS  Google Scholar 

  45. T.H. Dunning Jr., K.A. Peterson, D.E. Woon, in Encyclopedia of Computational Chemistry, edited by P.V.R. Schleyer, N.L. Allinger, T. Clark, J. Gasteiger, P.A. Kolman, H.F. Schaefer III (Wiley, Chichester, 1998), p. 88

  46. E.A. Rohlfing, D.M. Cox, A. Kaldor, J. Chem. Phys. 81, 3322 (1984)

    Article  ADS  Google Scholar 

  47. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  48. M.Y. Hahn, E.C. Honea, A.J. Paguia, K.E. Schriver, A.M. Camarena, R.L. Whetten, Chem. Phys. Lett. 130, 12 (1986)

    Article  ADS  Google Scholar 

  49. E.A. Rohlfing, J. Chem. Phys. 93, 7851 (1990)

    Article  ADS  Google Scholar 

  50. T. Moriwaki, K. Kobayashi, M. Osaka, M. Ohara, H. Shiromaru, Y. Achiba, J. Chem. Phys. 107, 8927 (1997)

    Article  ADS  Google Scholar 

  51. Y.K. Choi, H.S. Im, K.K.W. Jung, Int. J. Mass Spectrom. 189, 115 (1999)

    Article  Google Scholar 

  52. M.E. Geusic, M.F. Jarrold, T.J. McIlrath, R.R. Freeman, W.L. Brown, J. Chem. Phys. 86, 3862 (1987)

    Article  ADS  Google Scholar 

  53. C.H. Bae, S.M. Park, J. Chem. Phys. 117, 5347 (2002)

    Article  ADS  Google Scholar 

  54. J.D. Watts, R.J. Bartlett, Chem. Phys. Lett. 190, 19 (1992)

    Article  ADS  Google Scholar 

  55. J. Hutter, H.P. Lüthi, J. Chem. Phys. 101, 2213 (1994)

    Article  ADS  Google Scholar 

  56. J.M.L. Martin, P.R. Taylor, J. Phys. Chem. 100, 6047 (1996)

    Article  Google Scholar 

  57. R.O. Jones, J. Chem. Phys. 110, 5189 (1999)

    Article  ADS  Google Scholar 

  58. Y. Shlyakhter, S. Sokolova, A. Lüchow, J.B. Anderson, J. Chem. Phys. 110, 10725 (1999)

    Article  ADS  Google Scholar 

  59. A. Karton, A. Tarnopolsky, J.M. Martin, Mol. Phys. 107, 977 (2009)

    Article  ADS  Google Scholar 

  60. N.A. Poklonski, S.V. Ratkevich, S.A. Vyrko, J. Phys. Chem. A 119, 9133 (2015)

    Article  Google Scholar 

  61. C. Mauney, M.B. Nardelli, D. Lazzati, ApJ 800, 30 (2015)

    Article  ADS  Google Scholar 

  62. T.H. Dunning, K.A. Peterson, A.K. Wilson, J. Chem. Phys. 114, 9244 (2001)

    Article  ADS  Google Scholar 

  63. A.J.C. Varandas, J. Chem. Chem. A 117, 7393 (2013)

    Google Scholar 

  64. W. Weltner Jr., R.J.V. Zee, Chem. Rev. 89, 1713 (1989)

    Article  Google Scholar 

  65. A.V. Orden, R.J. Saykally, Chem. Rev. 98, 2313 (1998)

    Article  Google Scholar 

  66. G. Monninger, M. Forderer, P. Gurtler, S. Kalhofer, S. Petersen, L. Nemes, P.G. Szalay, W. Kratschmer, J. Phys. Chem. A 106, 5779 (2002)

    Article  Google Scholar 

  67. J.D. Presilla-Marquez, J. Harper, J.A. Sheehy, P.G. Carrick, C.W. Larson, Chem. Phys. Lett. 300, 719 (1999)

    Article  ADS  Google Scholar 

  68. L. Lapinski, M. Vala, Chem. Phys. Lett. 300, 195 (1999)

    Article  ADS  Google Scholar 

  69. A.E. Boguslavskiy, J.P. Maier, Phys. Chem. Chem. Phys. 9, 127 (2007)

    Article  Google Scholar 

  70. N.G. Gotts, G. von Helden, M.T. Bowers, Int. J. Mass Spectrometry Ion Process. 149/150, 217 (1995)

    Article  ADS  Google Scholar 

  71. D. Sharapa, A. Hirsch, B. Meyer, T. Clark, Chem. Phys. Chem. 16, 2165 (2015)

    Article  Google Scholar 

  72. V. Parasuk, J. Almlöf, Theor. Chim. Acta. 83, 227 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António J. C. Varandas.

Additional information

Contribution to the Topical Issue “Atomic Cluster Collisions”, edited by Alexey Verkhovtsev, Andrey V. Solov’yov, Germán Rojas-Lorenzo, and Jesús Rubayo Soneira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varandas, A.J.C. Even numbered carbon clusters: cost-effective wavefunction-based method for calculation and automated location of most structural isomers. Eur. Phys. J. D 72, 134 (2018). https://doi.org/10.1140/epjd/e2018-90145-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90145-4

Navigation