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Abstract We present a deep learning solution to the pre-
diction of particle production cross sections over a compli-
cated, high-dimensional parameter space. We demonstrate
the applicability by providing state-of-the-art predictions for
the production of charginos and neutralinos at the Large
Hadron Collider (LHC) at the next-to-leading order in the
phenomenological MSSM-19 and explicitly demonstrate the
performance for pp → χ̃+

1 χ̃−
1 , χ̃0

2 χ̃0
2 and χ̃0

2 χ̃±
1 as a proof

of concept which will be extended to all SUSY electroweak
pairs. We obtain errors that are lower than the uncertainty
from scale and parton distribution functions with mean abso-
lute percentage errors of well below 0.5 % allowing a safe
inference at the next-to-leading order with inference times
that improve the Monte Carlo integration procedures that
have been available so far by a factor ofO(107) fromO(min)

to O(μs) per evaluation.

1 Introduction

Dimensionality persists to be a curse for everyone that seeks
the needle in a complex haystack. Despite all the achieve-
ments from data science so far, physicists often resort to
simplified, lower-dimensional models to obtain a tractable
problem [4,6]. This strategy prevents the scientific commu-
nity from utilising all the available information to pin down
the laws of nature. To overcome this very general issue, we
investigate deep learning techniques as a potential solution

a e-mail: Sydney.Otten@ru.nl

motivated by the successful application of neural networks
to cross sections with a four-dimensional parameter space
[14]. We find positive results for cross sections that depend
on a 19-dimensional parameter space with highly complex
structures.

One of the most widely studied beyond the Standard
Model (BSM) theories remains supersymmetry (SUSY)
[20,25,31,32]. The ever increasing sophistication of exper-
imental analyses requires that theoretical tools match the
precision requirements set by experiments. One of the
key requirements is performing cross section calculations
of BSM processes at least at the next-to-leading order
(NLO) accuracy. This goal has been gradually reached
over many years, for particles produced both by strong
and weak interactions, and the current state-of-the-art cal-
culations also include resummed higher order corrections
[11,22]. Currently, for most applications it is possible and
sufficient to calculate the production cross section at the
next-to-leading-log approximation. However, such calcu-
lations are typically time consuming, e.g. it takes about
three minutes for the computer program Prospino [10]
to calculate the chargino pair production cross section,
pp → χ̃+

1 χ̃−
1 , at NLO. The computational time for

Resummino [23] is similar at NLO but taking into account
higher order corrections increases the time consumption 20-
fold.

Many applications, for example global scans of the multi-
dimensional parameter space of the Minimal Supersym-
metric Standard Model (MSSM), see e.g. [7–9,15,28,39],
demand a much faster method for the computation of NLO
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cross sections. In the case of strongly produced SUSY par-
ticles, this problem is addressed by the computer program
NNLLfast [12] that offers an approximation of relevant
cross sections within a fraction of a second at the next-to-
next-to-leading logarithmic accuracy.

In this paper we present a novel approach that enables a
fast approximation of cross sections in a high-dimensional
parameter space and as an example demonstrate the appli-
cability for chargino and neutralino1 production cross sec-
tions at NLO accuracy in the phenomenological MSSM-19
(pMSSM-19), where 19 denotes the number of model param-
eters. We employ a machine learning technique to approx-
imate the result from the cross sections calculated using
Prospino. While the task might appear straightforward,
there are several challenges that one has to solve to obtain
a tool that provides both speed and high accuracy. Firstly,
the cross sections span over up to 13 orders of magnitude,
depending on the electroweakino masses and couplings. Sec-
ondly, the electroweakino sector is parametrized by four inde-
pendent parameters in the SUSY Lagrangian and, in addi-
tion, the cross sections depend on the other SUSY parti-
cles, either at the tree-level (squarks) or at the loop level
(gluinos).

At the parton level, chargino and neutralino production
occurs via s-channel exchange of gauge bosons and t-channel
exchange of squarks. In case of the chargino production,
this includes γ and Z exchange in the s-channel and left-
handed (doublet) squark exchange in the t-channel. For neu-
tralino pair production we have contributions from the Z
boson exchange2 and both left- and right-handed squarks.
Finally, the associated production of a chargino and a neu-
tralino occurs via exchange of the W boson in s-channel and
left-handed squark exchange in the t-channel. At the loop
level, when one considers SUSY-QCD contributions (i.e. the
first order in the strong coupling αs) there appear contribu-
tions involving gluinos. In Fig. 1 we show sample diagrams
at the born and loop level. For more details see Ref. [10].
In the final step to calculate the production cross section in
proton-proton collisions, the partonic cross section has to be
convoluted with a parton distribution function (PDF) which
parametrizes proton in terms of its constituents: quarks and
gluons. Thus the final result cannot be given in the analytical
form.

For the actual calculation of the cross section one needs
to specify the final state particles and their physical masses,
masses of the virtual particles (squarks and gluinos) and the
mixing angles in the chargino and neutralino sectors. The

1 Charginos and neutralinos are supersymmetric partners of the Stan-
dard Model gauge and Higgs bosons. In the following we will use the
umbrella term “electroweakinos”.
2 At the loop level, photon exchange in the s-channel is also possible,
however this electroweak correction is not included in Prospino.
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Fig. 1 Sample Feynman diagrams of electroweakino production at the
tree level (upper row) and loop level (lower row)

Table 1 Summary of parameters required for each production process
of charginos and neutralinos

Param. pp →
χ̃+

1 χ̃−
1 χ̃0

2 χ̃0
2 χ̃±

1 χ̃0
2

Chargino mixing: U1i , V1i 4 – 4

Neutralino mixing: N2i – 4 4

Chargino mass: mχ̃+
1

1 – 1

Neutralino mass: mχ̃0
2

– 1 1

Doublet squark: mũL 2 2 2

Singlet squark: mũR,md̃R – 2 –

Gluino: mg̃ 1 1 1

Total 8 10 13

chargino mixing is parametrized by two 2 × 2 unitary matri-
ces U and V , while for the neutralino mixing it is a 4 × 4
unitary matrix N . For each process only one specific row of
the matrices is required, corresponding to the respective final
state particle. We summarize the number of required param-
eters for each process in Table 1. Note that in the following
we do not explicitly impose the unitarity condition, which
gives us a flexibility to extend the approach to other SUSY
models beyond MSSM.

Thus, we need to construct representations for compli-
cated functions whose effective parameter space that one has
to cover can have up to 13 dimensions. A temperature plot
showing the non-trivial K -factor landscape in only two of
these dimensions is shown in Fig. 2 for χ̃0

2 χ̃+
1 . Here, we

focus on the four most relevant processes at the LHC, i.e. the
production of chargino pairs, χ̃+

1 χ̃−
1 , neutralino pairs, χ̃0

2 χ̃0
2 ,

and associated production of a chargino and a neutralino,
χ̃0

2 χ̃±
1 . The approach that we present here can be extended

to other electroweak processes and models, e.g. the next-to-
MSSM scenarios [21].
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Fig. 2 A temperature plot for the K -factor in the wino scenario, pre-
dicted by a neural network, for χ̃0

2 χ̃+
1 in the mq̃/mg̃ plane, already

showing a non-trivial K -factor landscape for two free parameters. The
electroweakino masses are set to 400 GeV

2 Methodology

In order to develop a code that can predict values of an other-
wise computationally expensive function fast and reliably -
the cross section in our case - we take the following approach.
First we calculate values of the function at a large number
of points, 107 samples at the leading order (LO) and O(105)

samples at NLO. The points are sampled randomly in a high-
dimensional parameter space in given ranges. The data is then
used to train a customised artificial neural network (ANN),
which is adopting deep learning techniques, stacking and
an iterative ANN-based point selection procedure that picks
points from a labeled pool of samples. The properly trained
model is then able to provide accurate predictions of the cross
section at a given parameter point. The performance of the
resulting ANN is tested with 104 samples that the deep net-
work has never seen during training.

2.1 Data generation

The pMSSM-19 parameters are sampled with a flat prior
within the ranges given in Table 2, see also Ref. [2]. Since
sleptons do not affect the actual calculation of the cross
section at any stage they are assumed to be mass degen-
erate between left and right-handed states for the first and
second generations. These parameter sets are then passed
to SPheno 3.38˜ [36,37] to calculate the spectrum with
default settings. For further processing we accept the points
which have: no tachyonic degrees of freedom; the lightest
neutralino as the LSP; the first two generations of squarks
heavier than 500 GeV, cf. [1]; chargino χ̃±

1 heavier than
100 GeV, cf. [40]. They are then fed intoProspino 2.1˜,
which calculates the cross section using CTEQ6 parton dis-
tribution functions (PDFs) [33,38]. Note that even though the
scan is performed in terms of the soft SUSY breaking param-

Table 2 Variable input parameters of the ATLAS pMSSM scan and the
range over which these parameters are scanned

Parameter Description Scanned range

mL̃1
= mẼ1

1st/2nd gen. SU (2)

doublet/singlet soft breaking
slepton mass

[90 GeV, 4 TeV]

mL̃3
3rd gen. SU (2) doublet soft

breaking slepton mass
[90 GeV, 4 TeV]

mẼ3
3rd gen. SU (2) singlet soft

breaking slepton mass
[90 GeV, 4 TeV]

mQ̃1
1st/2nd gen. SU (2) doublet soft

breaking squark mass
[200 GeV, 4 TeV]

mŨ1
1st/2nd gen. SU (2) singlet soft

breaking squark mass
[200 GeV, 4 TeV]

mD̃1
1st/2nd gen. SU (2) singlet soft

breaking squark mass
[200 GeV, 4 TeV]

mQ̃3
3rd gen. SU (2) doublet soft

breaking squark mass
[100 GeV, 4 TeV]

mŨ3
3rd gen. SU (2) singlet soft

breaking squark mass
[100 GeV, 4 TeV]

mD̃3
3rd gen. SU (2) singlet soft

breaking squark mass
[100 GeV, 4 TeV]

At Stop trilinear coupling [−8 TeV, 8 TeV]
Ab Sbottom trilinear coupling [−4 TeV, 4 TeV]
Aτ Stau trilinear coupling [−4 TeV, 4 TeV]
|μ| Higgsino mass parameter [80 GeV, 4 TeV]
|M1| Bino mass parameter [0 TeV, 4 TeV]
|M2| Wino mass parameter [70 GeV, 4 TeV]
M3 Gluino mass parameter [200 GeV, 4 TeV]
MA Pseudoscalar Higgs mass [100 GeV, 4 TeV]
tan β Ratio of vacuum expectation

values
[1, 60]

eters, the actual input for the cross section calculations will
be defined via physical masses and mixing angles. Thus, the
relevant masses and mixing angles from the spectrum with
the corresponding LO cross section and/or K -factor are sys-
tematically collected so that they can be used to optimise
an ANN implementation as training and validation data. For
all LO cross sections, we have created 107 samples. For the
K -factors, the number of generated samples varies between
1–6 × 105, for reasons explained in the following.

The NLO cross section can be written as a product of the
K -factor and the LO cross section:

σNLO = K · σLO. (1)

Since most difficulties in the structure already appear at the
leading order and the K -factor is a slowly varying function
of the input parameters, we construct the NLO prediction by
multiplying the predictions of the LO and K -factor regres-
sors. This significantly decreases the computational cost by
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reducing the amount of necessary NLO data by two orders
of magnitude.

Because the starting point of the data generation is the
pMSSM-19 parameter space, we must cover it appropriately
and therefore we are confronted with the curse of dimen-
sionality. To tackle this, we manually restrict the parameter
space by excluding all cross sections that are not relevant. By
exploiting the fact that the number of events N at the LHC
is equal to the product of the integrated luminosity and the
cross section:

N = L int · σ, (2)

and assuming the final integrated luminosity of the LHC to be
L int = 3000 fb−1, we can derive a lower bound for the cross
section by demanding at least one event in the life-time of
the LHC. The resulting lower bound is σmin = 3.3 · 10−7 pb.

The generated data is then processed by a deep learning
pipeline that utilises the ANN-based point selection (NNPS)
and stacking, i.e. a manually implemented logical connection
of different, eventually specialised predictors for the same
task. Since we assume that most use-cases will run a spec-
trum calculator anyway and SPheno barely consumes com-
putational capacity, we only create a neural network repre-
sentation for the mapping from the masses and mixing angles
to the LO cross section and K -factor.

2.2 Optimising the representations

The deep learning techniques used here are employed via arti-
ficial neural networks implemented with Keras [19] and a
Tensorflow [3] backend that were trained on a GPU using
CUDA [34] and cuDNN [18]. The pre- and post-processing of
the input data together with the neural network architecture
and the machine learning model parameters form the tech-
nical realization of the deep learning representation of the
function σ = σ(pMSSM-19).

The input of the neural networks is taken from the
SPheno output and consists of the electroweakino and
squark masses for the LO cross sections, and gluino mass
for the K -factor, as well as the relevant chargino and neu-
tralino mixing matrix entries, and is preprocessed via the z-
score normalisation: the inputs xi are transformed into x ′

i =
xi−μ(x)
σsd(x) , where μ(x) and σsd(x) are the mean and standard

deviation of x . Whenever deemed useful, expert knowledge
was applied and high-level features were formed, e.g. for
the K -factor prediction, the mean of the squark masses was
used, which corresponds to the calculation method employed
in Prospino.

An ANN is a collection of artificial neurons, along whose
connections an input is propagated. During the propagation
the input is transformed depending on the network architec-
ture and the machine learning model parameter set θ charac-

terising the ANN. The output is an estimate of the function
value for the given input parameters. The set θ is initially
drawn from a random distribution and learned via updates
from a stochastic gradient descent-like optimisation algo-
rithm that minimises a loss function which measures the
deviation between model predictions and true (known) cross
sections. In our case, the loss function is the mean absolute
percentage error

MAPE = 1

N

N∑

i=0

∣∣∣∣
ytrue,i − ypred,i

ytrue,i

∣∣∣∣ , (3)

which is minimised. The chosen optimiser is ADAM [29]
with default parameters except a learning rate scheduling
with initial and final learning rates αi and α f combined with
EarlyStopping [13]. When an iteration has ended, i.e.
when either the pre-defined maximum number of epochs is
reached or EarlyStopping terminates the process, the
learning rate is divided by 2, the weights giving the best val-
idation loss so far are loaded into the architecture and the
optimisation continues until α f is reached.

Due to the high computational cost of hyperparameter
scans, i.e. many hours to days for a single hyperparam-
eter point and the fact that the hyperparameter space is
high-dimensional with a mixture of integer and continu-
ous dimensions, we choose a heuristic approach to deter-
mine the hyperparameters. For different processes of elec-
troweakino production we therefore adapt different tech-
niques to achieve MAPEs below 0.5 % and maximum errors
of below 10 %.

The σLO input is propagated through eight hidden layers
with 100 neurons each and the selu [30] activation func-
tion, while for the K -factors only 32 neurons per layer are
used. Note that the neural capacity of this network is low
when compared to state of the art deep learning architectures
[27]. However, an even lower capacity also delivered reason-
able predictions but the drawbacks were that (a) training took
much longer until its best performance was reached and (b)
the best performance itself was worse. We chose the archi-
tecture following the suggestions for self-normalizing neural
networks [30] that were specifically developed to obtain state
of the art neural network models for regression and classifi-
cation problems. One of its big advantages is that the self-
normalisation allows for gradients in the deeper layers that
have the same order of magnitude as in the first layers which
enables the ML model to learn more abstract features. The
inputs are labeled with the corresponding cross section, in
most cases pre-processed with a shifted logarithm such that
for the input xi its label is given by

y′
i = − min(log(σ )) + log(σi ) (4)

or for the K -factor divided by 2 or 4, depending on the
pair. The loss function is the MAPE for the K -factors and
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a modification thereof for the LO cross sections that takes
into account the pre-processing. In the default setup, the
MAPE would minimise the error on log(σ ) and it would
result in sub-optimal performance. Therefore, several custom
loss functions have been implemented that are constructed
such that the loss function explicitly minimises the MAPE
of the original values. The final data for the LO cross sec-
tions has been trained for 150 epochs and 7–10 iterations
with αi = 0.0008, a patience of 50 and a batch-size of 120.
For the K -factors we used larger batch-sizes of between 512
and 1024 and a larger number of epochs of up to 250 per
iteration. For χ̃+

1 χ̃−
1 and χ̃0

2 χ̃0
2 we take all of the randomly

generated samples and train deep networks for the LO and
the K -factors.

For χ̃0
2 χ̃±

1 we extend our setup to include NNPS because
of a recurring problem of outliers with large errors in prob-
lematic, often underpopulated, regions of the parameter
space even with 107 training samples. NNPS allowed us to
have a much better performance with only a fraction of the
random samples. The NNPS setup was as follows: the initial
training begins with 106 (χ̃0

2 χ̃+
1 ) or 1.5 ·106 (χ̃0

2 χ̃−
1 ) samples

and runs for a short amount of time, namely 40 epochs, 5 iter-
ations and a batch-size of 1000. The resulting neural network
is then evaluated on the pool of the remaining 9·106 samples.
The 105 or 1.5 · 105 samples for which the neural network
performed worst are iteratively added to the training set. This
is done 10 and 15 times respectively. The actively sampled
training set is then used for a more thorough training identical
to the procedure used for χ̃+

1 χ̃−
1 and χ̃0

2 χ̃0
2 . The evaluation of

these networks is then investigated and in both cases the per-
formance is further enhanced by training additional neural
networks that are specialised on a fraction of the target value
range. For a specialised network covering target values in
the range 0.001 and 0.2 pb for χ̃0

2 χ̃−
1 , we also z-score trans-

formed the target values without taking the logarithm. The
general and specialised networks are then stacked together
by using the general network to predict whether a point is pre-
dicted better by the specialised network: if that is the case,
the prediction of the specialised network is returned, if not,
the general network will return its prediction. The χ̃0

2 χ̃+
1 K -

factors have been treated similarly, while for the χ̃0
2 χ̃−

1 we
only used one neural network trained on random samples.

3 Results

In this section we present the accuracy of the tool, DeepXS,
including statistical measures of its performance. We also
discuss inference times and subtleties of its validity. The test-
ing of DeepXS was performed using 104 pMSSM-19 points
generated according to the same rules as the training samples.

Table 3 shows the performance of DeepXS for the cross
sections σNLO that are larger than the threshold σexp =

Table 3 Relative error bands and MAPE for the NLO predictions for
σNLO ≥ σexp = 6.6 · 10−5 pb

Pair MAPE 1σ 2σ 3σ

χ̃+
1 χ̃−

1 0.091 % 0.081 % 0.334 % 1.195 %

χ̃0
2 χ̃0

2 0.384 % 0.274 % 1.652 % 5.773 %

χ̃0
2 χ̃+

1 0.263 % 0.258 % 0.822 % 3.299 %

χ̃0
2 χ̃−

1 0.214 % 0.206 % 0.701 % 3.035 %

6.6 · 10−5 pb. This threshold corresponds to the integrated
luminosity 150 fb−1, which is the data collected thus far by
the LHC, and assuming 10 produced events. Therefore, for
current applications this threshold provides a very conserva-
tive estimate of the observable electroweakino production.
The entries for 1σ , 2σ and 3σ denote the maximum error for
68.27 %, 95.45 % and 99.73 % of the samples. We use the
intervals as defined for the normal distribution motivated by
the shape of the error distribution. However, we note that it
has fatter tails.

With all MAPEs being well below 0.5 % and a maximum
error of the 3σ bands of 5.773 %, the error of the cross sec-
tions clearly is sub-dominant relative to scale and PDF uncer-
tainty for a large majority of the presented cases. Figure 3
demonstrates a large density of points around an error of
10−4–10−2, which matches the precision of Vegas integra-
tion, 5 · 10−3, typically reported by Prospino. For χ̃+

1 χ̃−
1 ,

the maximum error on the 104 test samples is ≈ 3 % while
for the other pairs it is O(10 %). We note that this size of
uncertainty is otherwise expected to arise due to PDF and
scale variation which starts with 3–4 % for high cross sec-
tions and rises to O(10 %) for high masses. The largest error
is observed for two samples with an error of ≈ 10% for χ̃0

2 χ̃0
2

and χ̃0
2 χ̃+

1 .
The case of χ̃0

2 χ̃0
2 will be improved with NNPS in the

upcoming version of the tool. Note that the dimensionality of
χ̃0

2 χ̃±
1 , d = 11 at LO and d = 12 at NLO, is much higher than

for χ̃0
2 χ̃0

2 , with dimensionality 6 and 7 respectively. When
training χ̃0

2 χ̃±
1 on 107 random samples, the predictions were

much worse than they are currently for χ̃0
2 χ̃0

2 . We thus expect
that NNPS will further improve the χ̃0

2 χ̃0
2 to the same level

of precision we have achieved for the other pairs. That the
overall accuracy for χ̃0

2 χ̃−
1 is better than for χ̃0

2 χ̃+
1 is due to

the more thoroughly performed NNPS, which will thus be
the standard for future work.

Below the threshold of σexp, our predictions also have a
MAPE of below 1% with a maximum of 0.81 % for χ̃0

2 χ̃0
2 ,

lower values of ≈ 0.3 % for the mixed pairs and ≈ 0.1 %
for chargino pairs. Note however, that although errors above
10 % are more frequent for σ ≤ σexp, the PDF uncertainty is
typically also high in the corresponding region of the param-
eter space.
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Fig. 3 The true vs. predicted NLO cross sections with histograms of the relative error (top) and the true NLO cross section vs. the relative error
with confidence intervals (bottom), as defined in Sect. 3, for the test sample of 104 points

Figure 4 shows a comparison between the Prospino
calculation and the DeepXS prediction including the rel-
ative errors for σNLO and the K -factor for pp → χ̃0

2 χ̃−
1 .

We observe that the neural networks predict the complicated
cross section landscapes so well that the plots correspond-
ing to the predictions and the Prospino calculations are
indistinguishable by eye. Only the plot showing the relative
errors reveal a handful of slight deviations of no more than
O(10%), consistent with Fig. 3. The plots were created using
the same 10000 points as for Fig. 3.

DeepXS is interfaced to pySLHA [16] and can process
SLHA2 files [5]. Additionally, a possibility to feed in the
relevant parameters via .csv and .txt files has been imple-
mented. When providing SLHA files,DeepXS needed 72.3 s
to evaluate 104 samples or 7.23 ms per evaluation of χ̃+

1 χ̃−
1

at LO and NLO, already making DeepXSO(104) faster than
Prospino. When SLHA files are an input, DeepXS tests
if χ̃0

1 is the LSP, if the light chargino mass is above 100 GeV
and if the squark masses are above 500 GeV, and a warning
is given if any of these conditions is not fulfilled. When text
files with an array are provided, the inference of 107 χ̃+

1 χ̃−
1

predictions both at LO and NLO took 261.51 seconds on an
Intel i7-4790K CPU or ≈ 26 μs per evaluation, making it
≈ 6.9 million times faster than Prospino. When predict-
ing mixed pairs, each evaluation takes slightly longer due to
the stacking and the necessity to infer from more than two
neural networks. In all cases, warnings are given when the
predicted cross section is lower than σexp.

4 Conclusions

We presented a method that for the first time allows a fast and
highly accurate approximation of cross sections that depend
on a high-dimensional and complex parameter space. As
the first application, we developed a novel tool, DeepXS,
that enables a fast approximation of NLO cross sections
for pMSSM-19 electroweakinos. Beside the incorporation
of expert knowledge, it employs stacked artificial neural net-
works supplemented by ANN-based point selection tech-
niques to provide fast predictions based on the full NLO
calculation using Prospino. Compared to Prospino,
DeepXS is more than 4 and up to 7 orders of magnitude
faster, while ensuring an accuracy of 1 % for more than 95 %
of the test points. Training the neural networks takes O(h)

(≈ 1 for K-factors and ≈ 12 for the leading order). Note that
modifications of the underlying physics model do not imply
that one has to retrain starting from 0. Instead one can initial-
ize the new ML model with the older optimum and minimize
the loss function for the new case starting from there: in the
machine learning literature this is a well-known and stud-
ied technique called transfer learning [41]. Should the preci-
sion requirements for supersymmetric cross sections at NLO
evolve such that we need to eliminate the few remaining out-
liers with errors of O(10)% we can do so by creating a larger
pool of samples with an even more dedicated neural net-
work point selection procedure. Additionally we can make
use of ensemble techniques [26] to boost the performance
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Fig. 4 Prospino (top), DeepXS (middle) and relative error (bottom) (a) for σNLO in the 	m = |mχ̃0
2
−mχ̃−

1
| vs. mχ̃−

1
plane; (b) for the K -factor

in the mq̃ = 1
8

∑8
i=1 mq̃i vs. mg̃ plane for pp → χ̃0

2 χ̃−
1

and, although computationally very expensive, use Bayesian
techniques to optimize the hyperparameters of our neural
network models. To enable an uncertainty estimate for indi-
vidual points, future architectures to regress cross sections
should include Monte Carlo Dropout [24]: in each layer a
fixed fraction of the neurons is randomly deactivated during
training and inference. This procedure will lead to varying
predictions for a fixed input, allowing to obtain a distribution
with a mean and a standard deviation of the prediction per
point. As is shown in [24], this procedure converges towards
a Bayesian posterior, enabling a meaningful comparison of
the uncertainty of the prediction with the PDF uncertainty.
Until this exists, and although very conservative, one must

rely on the error maps presented in Fig. 3 to estimate an
uncertainty. The tool can be found in a GitHub repository
[35] including examples that show the NNPS sampling strat-
egy. Further development will include the completion of all
electroweakino pairs, extensions of the MSSM, an estimation
of scale and PDF uncertainties and a merge with BSM-AI
[17].
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