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Abstract We studied herein the mass and the radius of
brown dwarfs predicted by beyond Horndeski (BH) and
Eddington-inspired Born-Infeld (EiBI) gravity theories by
numerically solving the modified non-relativistic hydrostatic
equations of both theories. We used a recent compilation of
brown dwarf masses and radii obtained from Ref. Bayliss
et al. (Astrophys J 153:1, 2016) to constrain the free parame-
ter of both theories. We obtain the range of the corresponding
parameters with 1σ and 5σ confidence by using chi-squared
analysis. Furthermore, the minimum chi-squared values can
be reached for the cases of κ = 0.17 × 102 m5 kg−1 s−2

and γ = −0.1207 for EiBI and BH theories, respectively.
The corresponding parameter values with the minimum chi-
squared values are relatively small; therefore, they cannot
significantly change the brown dwarf mass limits determined
from the equivalence of nuclear and photosphere luminosi-
ties for the pp (hydrogen burning) and pp+pd (deuterium
burning) reactions.

1 Introduction

Einstein’s Theory of General Relativity (GR) is one of the
most successful theories in physics. This theory has passed all
precision tests in a medium-energy scale, and has a substan-
tial conceptual foundation. However, this theory is still not
perfect. In a low-energy scale, additional ingredients, such
as dark matter and a nonzero cosmological constant (dark
energy) should be introduced to fit with a variety of astro-
physical observations of galaxies and clusters as well as with
the cosmic acceleration of the universe. These ingredients
raise two additional questions related to the cosmological
constant and coincidence problems. In a high-energy scale,
GR as a classical theory, also yields a singularity, which is
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slightly unpleasant for some people. Therefore, until now,
much interest has been observed in the study of alternative
or modified theories of GR (Please see the reports of a recent
review in modified gravity theories [2–7] and the references
therein). After passing very stringent sets of some commonly
accepted fundamental physical requirements, BH and EiBI
theories can now be classified as plausible alternatives or
modified gravity theories in the context of strong gravitation
field tests (Please see details, in Ref. [2].). The EiBI and a
broad class of BH theories of the G3 type yield modifications
of the Newtonian hydrostatic equilibrium equations. These
modifications affect the properties of non-relativistic stars,
such as white dwarfs (WDs), main sequences, and brown
dwarfs (BDs). We need to note some recent works concern-
ing the BH and EiBI theories and their applications in astro-
nomical and cosmology objects. For BH theory, they can
be found in Refs. [8–18] while those for EiBI theory, can
be found in Refs. [19–29]). We also need to note that the
recent review of the cosmological test of modified gravities
has been discussed in Refs. [30,31], while the discussion
about cosmological constraint on Horndeski gravity in the
light of GW170817 can be found in Ref. [32].

BDs were theoretically predicted for the first time in 1963
by Kumar [33] and Hayashi and Nakano [34]. BDs are known
as faint self-gravitating bodies. A BD generally has a suffi-
ciently low mass, and its radius is almost independent to the
mass. However, the BD elemental composition is substan-
tially uniform. A BD’s core is composed of hydrogen, helium,
and other chemical compositions, and its body is mainly sup-
ported by a repulsive force from degenerate electrons with
respect to gravitational collapse. However, detailed struc-
ture of the atmosphere and the surface luminosity of BDs is
quite complex (Please see a recent review of the BD theory
in [35–37] and the references therein.). A BD was detected
for the first time more than 30 years later after its predic-
tion. Since then hundreds of BDs have been observed (Please

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7560-3&domain=pdf
http://orcid.org/0000-0002-1493-5013
mailto:anto.sulaksono@sci.ui.ac.id


1030 Page 2 of 10 Eur. Phys. J. C (2019) 79 :1030

see details in Ref. [38] and the references therein.). Much
progress has recently been made and reported from the obser-
vation investigations (Please see Ref. [1] and the references
therein.). For example, the most precise masses and radii
of BDs (LHS 6343A and LHS6343C) have been reported
in [39,40] ( i.e., BD with a mass of 62.7 ± 2.4MJup and a
corresponding radius of 0.833 ± 0.021RJup and BD with a
mass of 62.1 ± 1.2MJup and a radius of 0.782 ± 0.013RJup

(M� = 103MJup and R� = 9.735RJup)). Note that, these
results depended on the calculated mass with a precision
of 1.9% and on the calculated radius with an accuracy of
1.4% [1,39,40]. One crucial challenge is to distinguish BDs
and very low-mass stars (VLMs) from their maximum mass
because from the BD models, the features are degenerate with
their age, radius, and metallicity [41]. The maximum mass
of BDs is known as the hydrogen-burning limit maximum
mass (MMHB), where the corresponding mass is approxi-
mately ∼ 0.08M�. The MMHB shows the limit where the
collapse will not occur as far as the star’s surface luminosity
is still supplied by nuclear fusion. The precise value of the
MMHB depends, but not significantly, on the corresponding
elemental composition. A recent study using analytical mod-
els within GR theory [42] has shown an acceptable MMHB
in the range of 0.064 − 0.087M�. BD Kepler-503b has also
recently reported to sit right at the hydrogen-burning limit
mass, straddling the boundary between BDs and VLMs [43].
Another study [44] reported that objects that behave exactly
like BDs are evidence, with their masses exceeding MMHB.
These objects, which are termed “overmassive BDs,” form
a continuous sequence with traditional BDs in any property,
such as mass, effective temperature, radius, and luminos-
ity. Similar to the MMHB limit, a distinction between the
planetary-mass objects below and the BDs above is also
needed. The corresponding minumum mass limit of a BD is
known as the deuterium-burning limit mass (MMDB). The
MMDB value is generally ∼ 0.013M�. The MMDB strongly
depends on the elemental composition, such as helium abun-
dance, the initial deuterium abundance, and model metal-
licity. Even though the MMDB value is ∼ 0.013M� for
most BDs, models ranging from zero metallicity to more than
three times of solar metallicity have recently been reported
to have a corresponding MMDB ranging from ∼ 0.011 to
∼ 0.016M� [45]. Moreover, note that a recent study on deu-
terium burning in objects forming through the core accretion
scenario has shown that the value of the MMDB (0.013M�)
does not change much when none of the corresponding inves-
tigated parameters was able to change this mass limit by more
than 0.0008M�. Furthermore, the luminosity of hot and cold
stars caused by hydrogen burning becomes comparable only
after ∼ 200 Myr [46].

Studies on WDs within modified gravity theories, includ-
ing the EiBI and BH theories have been done by many
authors (please see Refs. [12,18,29,47,48] for examples).

Constraining the parameters of several modified gravity the-
ories, such as the EiBI, BH, scalar-tensor-vector gravity,
f(R), and forth-order gravity theories, WD masses and radii
data from observations have also been used and reported in
Refs. [12,18,29,48]. These studies, used chi-squared analy-
sis to determine the allowed region of parameter space with
its corresponding confidence. This analysis is very robust
determining the acceptable parameter of the modified gravity
theories from the observation data of WD properties. How-
ever, such study has not been done before for the case of BDs
because of the limited masses and radii data. Therefore, it is
interesting to know how robust the BD properties from the
masses and radii observation data in extracting the accept-
able parameter of modified gravity theories. Sakstein [10,16]
recently studied the impact of modified gravity within BH
theory on the MMHB. He found that the MMHB increases
when the free parameter γ value of BH theory increases. He
stated that the MMHB of BDs has the potential to provide
an extremely stringent limit to constraint the γ value of BH
theory.

The present study constrains the parameter of the EiBI and
BH theories using the current masses and radii observation
data of BDs [1]. We also use Chi-squared analysis to deter-
mine the allowed region of parameter space of both theories
and the acceptable parameters with their confidences. The
obtained free parameters are used to calculate the mass lim-
its determined from the equivalence of nuclear and photon
sphere luminosities for the pp (hydrogen burning) and pp+pd
(deuterium burning) reactions predicted by the EiBI and HB
theories and compared to the ones of GR. The results can be
used to study the impact of both modified gravity theories to
the BD mass limits from hydrogen and deuterium burning.

Section 2, briefly discusses the BD equation of states
(EOS), which is the modified hydrostatic equilibrium equa-
tion of both theories presented. We also discuss the chi-
squared analysis on BDs and the EOS profile of both theo-
ries. Section 3 presents the hydrogen and deuterium-burning
mass. Finally, Sect. 4 provides the conclusions.

2 BDs in the EiBI and BH theories

We need to solve a modified hydrostatic equilibrium equation
to calculate the mass and radius of non-relativistic stars, such
as BDs, within a modified gravity theory. However, the EOS
of stars as input for the hydrostatic equilibrium equation is
still similar to that used for Newtonian. We discuss herein the
EOS of BDs and the modification of the hydrostatic equilib-
rium equations within the EiBI and BH theories, chi-squared
test of the mass and radius, and the corresponding EOS pro-
files of a BD.
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2.1 Equation of states

The density of BDs is estimated between the range of
103 kg/m3 and 106 kg/m3 [48]. BDs preserve their lives
from gravitational collapse mostly from the contribution of
a repulsive Fermi pressure from degenerate electrons. The
corresponding Fermi pressure in a non-relativistic limit is
presented as follows:

PF = α

∫ ∞

0

ε3/2dε

1 + eβ(ε−μ)
, (1)

where α = (2/3)[4π(2me)
3/2/(2π h̄)3], β = (kBT )−1, and

ε and μ are energy density and chemical potential of elec-
trons. KB and T are the Boltzmann constant and temperature,
respectively. The PF integral equation can be analytically
solved and compactly expressed using dilogaritmic Li2 and
trilogaritmic Li3 functions. The result is as follows:

PF = 2
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We define the degeneracy parameter ψ for simplification.
This parameter can link the central density and the central
temperature of a BD and make the expression of the EOS in
a polytropic form, then ψ is defined as:

ψ ≡ kBT

μF
= 2me

h̄2

(
mHμe

3π2ρ

)2/3

kBT, (3)

where μF is the Fermi electron energy in the degeneracy
limit, μe = 1.143, 1

μe
= X + Y

2 ; X and Y are mass frac-
tions from hydrogen and helium, respectively. me and mH

are the electron and hydrogen masses, respectively. Param-
eter ψ is a function of temperature and density. The BDs
interior consisted of hydrogen and helium hence the total
pressure has the combination effects of electrons and ions,
where Pion = κρT

μ1mH
and μ1 is the average molecular mass

for the hydrogen and helium mixture. The explicit expression
for the total pressure P = PF + Pion can be written as:
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with now α is 5μe
2μ1

. Equation (4) can now be recast into a
polytropic form as:

P = KρΓ , (5)

where Γ = 1+ 1
n with n = 3/2. K takes the following form:

K = (3π2)2/3h̄2

5mem
5/3
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5/3
e

(1 + Υ + αψ). (6)

The term Υ is defined herein as:
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We use the polytropic expression of the EOS to convert the
form of the hydrostatic equilibrium equation from a gradient
of the pressure form into a gradient of the density form.

2.2 BH and EiBI gravity theories

BH theory is a modified gravity theory containing the screen-
ing mechanism if R << rV . rV is the Vainshtein radius and
R is the radius of the corresponding astrophysical body. In
other words rV defined as the transition between the screened
and unscreened regimes inside astrophysical bodies (Please
see the discussion of the Vainshtein mechanism in Ref. [14]
and the references therein.). The action of BH theory is pre-
sented as [14]:

S =
∫ √−gM2

pl

(
R

2
+ X + L4

Λ4

)
d4x + SM . (8)

Mpl = (8πGN )−1 is the Planck mass, R is the Ricci scalar,
and g is a metric determinant. X = − 1

2∂aφ∂bφ and L4 =
X [(�φ2) − φabφ

ab] − (φaφbφab�φ − φaφabφcφ
cb), while

Λ is the cosmological constant. Note that φ is a scalar field,
φa=∇aφ, and φab=∇a∇bφ. If φ(r, t) ≡ φ0(t) + π(r, t) and
use the Newtonian form of Friedmann–Robertson–Walker
(FRW) space-time metric.
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ds2 = −[1 + 2Φ(r, t)]dt2 + a(t)[1 − 2Ψ (r, t)]δi j dxi dx j ,

(9)

with r2 = δi j x i x j and Φ(r, t) as well as Ψ (r, t) are time
dependent gravitation potentials, the non-relativistic limit of
the static gravitation potential Φ(r) of BH theory derived
from Eq. (8) yields a modified Poisson equation. Note that
the BH dimensionless parameter is defined as γ = ε2Λ4 with

ε= φ̇0
Λ4 . The expression of the corresponding modified Poisson

equation of BH theory is presented as [16]:

∇2Φ(r) = 4πGNρ(r) + γ

4
GN

d3M(r)

dr3 . (10)

Please see the detail derivation in Ref. [14]. We can extract
the radial acceleration from the Poisson equation in Eq. (10)
to obtain the Euler equation. From the Euler equation, we
can obtain the hydrostatic equilibrium equation represented
as:

dρ(r)

dr
=

−
[
GN M(r)

r2 + 2πγGNrρ(r)
]
ρ(r)

KΓρ(r)Γ −1 + γGNπr2ρ(r)
. (11)

The EiBI theory of gravity belongs to one type of Born-
Infeld gravity modification introduced by Banados and Fer-
reira [19], who used the auxiliary field approach. This theory
can regularize the gravitational dynamics, leading to non-
singular cosmologies, and predict regular black hole space-
time without resorting to quantum gravity. The EiBI action
is presented as [19]:

S = 1

8πGNκ

∫
d4x(

√|gab + κRab(Γ )|
−λ

√−g) + Sm(gab, χm), (12)

where |.| denotes a determinant. Here κ is a free parame-
ter of the EiBI theory. Sm(gab, χm) is the matter action, χm

denotes the matter field, gab is a metric tensor and Rab is
the symmetric part of the Ricci tensor, while λ is related
to the cosmological constant, Λ = (λ−1)

κ
so that we can

obtain the asymptotically flat solutions when λ = 1. The
EiBI modified Poisson equation is obtained as follows from
the non-relativistic limit of the EiBI field equation [19,20]:

∇2Φ(r) = 4πGNρ(r) + κ

4
∇2ρ(r). (13)

Similar to that of BH theory, we can easily arrive to the hydro-
static equilibrium equation:

dρ(r)

dr
= −GNM(r)

r2 ρ(r)
1

KΓρ(r)Γ −1 + κ
4 ρ(r)

. (14)

The gradients of the mass of both theories are the same in
the non-relativistic limit:

dm(r)

dr
= 4πr2ρ(r). (15)

Together with Eq. (11) for BH theory or Eq. (14) for EiBI
theory and using Eq. (5) as input, Eq. (15) can be numerically
solved using the fourth-order Runge-Kutta method. We used
herein M(≈ 0) ≈ 0, ρ(≈ 0) = ρc and ρ(R) ≈ 0 as the the
boundary conditions.

The upper panel of Fig. 1 shows the mass-radius relation
of the BDs for the current epoch predicted by BH theory,
while the top panel of Fig. 2 depicts that for EiBI theory.
The corresponding figures also illustrate those predicted by
Newtonian and the observation data taken from Ref. [1] for
comparison. The γ parameter can be positive or negative for
BH theory. For γ > 0, the gravity correction term in the
hydrostatic equation plays a role as an additional repulsive
force. Meanwhile, for γ < 0, it plays a position as another
additional attractive force. As a result, the mass and radius
relation is modified because of the role of γ , where for the
fixed mass value, the radius is increased or decreased by
increasing or decreasing the γ value. This situation is also
applicable to EiBI theory, where the role of the dimension-
less parameter γ in BH is replaced by the role of parameter
κ . However, the trend of the mass changes with respect to
the radii of both theories because the functional form of the
gravity correction of both theories is different. Note that for
the mass-radius data taken from the observation [1], three
points have rather a large error bar.

2.3 Chi-squared analysis and mass-radius relation

In this section, we determine whether or not the appropriate
parameter values of the BH and EiBI theories which are the
masses and the radii predictions, are compatible with the
12 observational masses and radii of BD data in Ref. [1]
using chi-squared analysis. We selected one point from our
theoretical mass and radius relation results of each theory
with a variety of parameter values that have smaller deviation
to the mass and radius observational data point of Ref. [1]. For
each theory, we also collected all masses and radii having a
small deviation together with the corresponding data from the
observation. Subsequently, we used the following equation
to calculate the chi-square (Δχ2

i ) of each BD:

Δχ2
i = [Mth(Rth) − Mi ]2

σ 2
M,i

+ (Rth − Ri )
2

σ 2
R,i

, (16)

where Mth is the mass from the theoretical calculation point
with a small deviation to Mi , which is the mass of the corre-
sponding observational of the i th BD. Rth is the theoretical
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radius, and Ri is the radius of observational i th BD. σ 2
M,i and

σ 2
R,i are the corresponding mass and radius standard devia-

tions, respectively. We then summed up the results of Eq.
(16) for all 12 BDs using the following equation:

χ2 =
N∑
i=1

Δχ2
i . (17)

To this end, we obtained the chi-squared result in every free
parameter of the used modified gravity theories shown in
the lower panels of Figs. 1 and 2 for the BH and EiBI
theories, respectively. Figure 2 shows that for the EiBI
model, the chi-squared limits of the corresponding param-
eter were in the range of −2.375 ≤ κρA ≤ 1.266 or
(−1.51 × 102 ≤ κ ≤ 0.81 × 102) m5kg−1s−2 for the 1σ

confidence level and −2.5 ≤ κρA ≤ 1.822 or (−1.59 ×
102 ≤ κ ≤ 1.16 × 102) m5kg−1s−2 for the 5σ confidence
level. The minimum of the chi-square was κρA = 0.274
or κ = 0.17 × 102 m5kg−1s−2, which was quite close to
that of Newtonian. Figure 1 also depicts that the chi-squared
limits of the γ parameter for BH theory were in the range
of −0.565 ≤ γ ≤ 0.234 for the 1σ confidence level and
−0.6 ≤ γ ≤ 0.391 for the 5σ confidence level. This theory
showed two minimums but the true minimum of the chi-
square was for γ = −0.12072. This result was also quite
close to that of Newtonian. However, note that the three data
points taken from Baylisset al. [1] had quite a large error
bar in radius. If in the future we have more data points with
the values of the average error bar smaller than the one used
herein, we will have a better prediction of γ and κ based on
the BD properties.

For comparison for EiBI theory, we need to note that the
authors of Ref. [29] obtained from WDs mass and radius
constraints, a quite close κ range to the ones of BDs i.e.,
(−16.0 × 102 < κ < 0.35 × 102) m5 kg−1 s−2 for the 1σ

confidence level. From neutron stars properties, it is reported
by the authors of Ref. [21]that κ � 10−3 m5 kg−1 s−2 and
using the recent maximum mass constraints, it is reported
a more restricted κ constraint i.e., (2.7 × 10−4 < κ <

0.35 × 10−4) m5 kg−1 s−2 [24]. This leads to the fact that
constraints from NS are tighter than those of WD and BD.
While stellar equilibrium and solar constraints lead to |κ| �
3 × 105 m5 kg−1 s−2 [26]. |κ| � 6 × 108 m5 kg−1 s−2 con-
straint comes from primordial nucleosynthesis [23]. It is also
reported recently that in EiBI theory, the speed of gravita-
tion waves in matter deviates to c. Therefore, from the time
delay in the arrival gravitation wave signals at Earth-based
detectors, can be estimated that |κ| � 1011 m5 kg−1 s−2,
while from time delay between the signals of GW170817
and GRB170817A in a background FRW universe |κ| �
1027 m5kg−1s−2 [28]. Therefore, based on the variety pre-
dictions of free parameter of EiBI theory κ , we might suspect

that the values of κ could depend on the compactness of the
corresponding stellar and cosmological objects and compact
objects provide tighter constraint than those of cosmological
objects.

For the case of BH theory, several works [10,12–14,16]
have assessed the behavior of less compact stars using a non-
relativistic form of BH theory. They have found the corre-
sponding γ constraint is −0.51 < γ < 0.027 at red-shift
zero. γ = −0.51 lower limit comes from the consistency
of the lowest mass of WD with Chandrasekhar mass [12],
while γ = 0.027 upper limit comes from the minimum mass
for hydrogen burning [10,16] (Please see also the discus-
sion of this γ constraint range in Ref. [17]). The constraints
from BDs with 1σ confidence is quite compatible with this γ

constraint range. Furthermore, using the most recent, com-
plete, and independent measurements of masses and radii of
WDs as well as using a realistic EOS of WD, the authors of
Ref. [18] has found tighter constraint than that of the upper
limit from Hydrogen burning, i.e., γ < 0.14. Furthermore,
the analysis of weak lensing and X-ray profiles of 58 galaxy
clusters with an averaged red-shift of 0.33 have done by the
authors of Ref. [17] obtain the constraint γ = −0.110.93−0.67.
It is interesting to observe that the true minimum of the chi-
square obtained in our result is quite compatible with this
galaxy cluster constraint. Note that γ is related to the param-
eters appearing in the effective field theory (EFT) of dark
energy. The EFT parameters characterize the linear cosmol-
ogy of BH theory. Therefore, γ constrain deviation from GR
on cosmological scale [17]. We also need to note that in the
case of neutron stars, the authors of Ref. [8] have found that
the configuration with γ � −0.05 predict reasonable maxi-
mum masses M ∼ 3 M� and radii R � 14 km.

2.4 Brown dwarf profiles

For completeness, we also provide herein the contour plots
of the EOS profiles (ρ-T-P plots) for a certain ρc in the range
of 104−106 kg/m3 [37] in Fig. 3 as predicted by the BH and
EiBI theories using the γ and κ values with the minimum of
the chi-square. The results of Newtonian were also given for
comparison. The patterns of the results of the EiBI, and BH
theories and Newtonian are quite similar because we used
quite small values of γ for BH and κ for EiBI. The profiles
will look more different if we used relatively large values of
γ and κ .

3 Brown dwarf limiting masses

One must clearly determine the mass boundaries of WDs to
determine the mass range where the WDs exist. The max-
imum and minimum masses of WDs can be used to differ-
entiate BDs from other stars or planets. BDs maintain their
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Fig. 1 The upper and lower panels show the mass-radius relation of
the BD calculations for the current epoch based on BH theory with
a variety of γ values and the corresponding chi-square per d.o.f vs γ

relation. The corresponding observation data of [1] with the associated
error bars are also given. Here, d.o. f = 22. The shaded area with the
blue region contours shows 1 to 5σ confidence levels

shapes with respect to gravitational collapse using the pres-
sure degeneracy of electrons and the role of any other ions.
The core burning of hydrogen and helium significantly acts
to determine the nuclear luminosity. The nuclear luminosity
limit needs to be equal to the photosphere luminosity to pre-
vent balance. The requirement is LN = Le. In this section,
we want to know how further modifying the gravity will shift
the limiting masses of BDs.

3.1 Nuclear burning luminosity

The primary reaction to differentiating BD and VLS is
p + p → d + e+ + νe. The next important reaction is
p + d → 3He + γ . One can always parameterize the
thermonuclear rates to power laws in T and ρ. This parame-
terization is valid only for a narrow range in T and ρ, but is
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Fig. 2 The upper and lower panels show the mass-radius relation of
the BD calculations for the current epoch based on EiBI theory with a
variety of κρA values and the corresponding chi-square per d.o.f vs γ

relation. The corresponding observation data of [1] with the associated
error bars are also given. Here, d.o. f = 22. The shaded area with the
blue region contours shows 1 to 5σ confidence levels. ρA = ρ� × 1012

quite good in providing a clear indication of the sensitivities
of the energy generation rates. If we set,

εN = εc

(
T

Tc

)s(
ρ

ρc

)u−1

(18)

with s = 6.31, u = 2.28, and εc = εpp for hydrogen burn-
ing (Please see details in [10]) and εc = εpp + εpd for deu-
terium burning (e.g., discussed in [44]). The detailed process
explains that the energy generation rates depend on T and ρ

[37]. We use the following expression of the energy genera-
tion rates taken from Refs. [37,44]:

εpp = 2.5 × 106(ρX2/T 2/3
6 )e−33.8/T 1/3

6 ergg−1s−1 (19)
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Fig. 3 Profile of the BD predicted by BH, and EiBI theories for a
certain ρc using the γ and κ values with the minimum of the chi-square.
The figures show the distribution of the temperature, energy density, and
pressure of each gravity theory

εpd = 1.4 × 1024(ρXD/T 2/3
6 )e−37.2/T 1/3

6 ergg−1s−1, (20)

where T6 is defined as T/(106K ). Deuterium is produced
by the weak interaction in the p–p reaction. The two reac-
tions mentioned in the earlier section are accountable for the
deuterium chain production. The equilibrium value for deu-

10-8

10-6

10-4

10-2

L(
L

)

0.045 0.06 0.075 0.09
M(M )

Deut ron-Burni ngStar
Brown-Dwarf Star
Hydrogen-Burning Star

GR
EiBI A = 0.274
BH = -0.12072

Deuterium Burning GR
Deuterium Burning EiBI A = 0.274
Deuterium Burning BH = -0.12072
Hydrogen Burning GR
Hydrogen Burning EiBI A = 0.274
Hydrogen Burning BH = -0.12072
Photosphere Luminosity
Deuterium Burning Luminosity
Hydrogen Burning Luminosity

Fig. 4 Nuclear and photosphere luminosities are utilized to categorize
the BD area predicted by the BH and EiBI theories using κρA = 0.274
and γ = −0.1207. Those of GR with their corresponding hydrogen-
and deuterium-limiting mass boundaries are provided for comparison

terium production is presented as [44]:

Deq = 1.79 × 10−18Xe3.4/T 1/3
6

Qpd

Qpp
, (21)

where Qpd = 5.494 MeV and Qpp = 1.442−0.262 MeV =
1.18 MeV. The p-p reaction also shows that the average neu-
trino energy lost is 0.262 MeV [36].

3.2 Luminosity of hydrogen and deuterium burning

We can obtain the nuclear luminosity as follows:

LN =
∫ R

0
εNdm, (22)

This becomes the following when we substitute the gradient
mass into Eq. (22)

dLN

dr
= 4πεcr

2ρ(r)εc

(
T

Tc

)s(
ρ

ρc

)u−1

(23)

with T/Tc = (ρ/ρc)
2/3. This equation will be solved

together with other differential equations to obtain LN . Note
that we use LN (r ≈ 0) ≈ 0 as an initial boundary [49].

3.3 Photosphere luminosity

When comparing the star radius, the surface can be really
thin. The surface gravity g = GM/r2. We will use the
approximation from dM/dr = 2M/r and d2M/dr2 =
2M/r2 [10] to find the modified surface gravity gef f from
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-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Fig. 5 MMHB and M (DB limit) as a function of the γ parameter of
BH theory

the BH and EiBI gravity theories. Accordingly, gef f in BH
theory is given as follows:

geff = GM

R2

(
1 + γ

4

)
. (24)

Meanwhile in the EiBI theory gef f is obtain as:

geff = GM

R2

(
1 − 1

2π

κ

4

1

GR2

)
(25)

We used the ideal gas law Pe = ρekBTe
μmH

, where the mean
molecular mass μ = 0.593 and we can obtain the follow-
ing equation using the polytropic EOS to find the effective
temperature in the surface

T 1.42
e = 1.8 × 106

[
2

3

geff μ mH

kRkB

]0.42

ψ1.545, (26)

0.03

0.06

0.09

0.12

0.15

M
(M

)

-2 -1 0 1 2 3

A

HB at minimum 2-value EiBI Model
HB GR
DB at minimum 2-value EiBI Model
DB GR
1 parameter limit
5 parameter limit

0.06

0.075

0.09

0.105

0.12

R
(R

)

-2 -1 0 1 2 3

A

Fig. 6 MMHB and M (DB limit) as a function of the κρA parameter
of EiBI theory

with kR = 10−2cm2/g. With this effective temperature in
hand we can calculate the photo sphere luminosity as follows:

Le = 4πR2σT 4
e . (27)

Figure 4 shows the nuclear and photo sphere luminosi-
ties as a function of the BD mass predicted by the BH and
EiBI theories using κ and γ with the minimum chi-squared
values. Those of GR with their corresponding hydrogen-
and deuterium-limiting mass boundaries were also given
for comparison. Figure 4 further illustrates that for those of
GR, our hydrogen-limiting mass result was compatible with
the known standard MMHB value. However, our deuterium-
burning limit mass (M (DB limit)) results were larger than
those of the standard MMDB value. Therefore, the calcu-
lation of M (DB limit) using this procedure only roughly
approximates the MMDB. A further refined calculation, such
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as a more realistic EOS, and a better approximation for LN

and Le are needed to reproduce a correct MMDB value.
By using κ and γ with the minimum chi-squared values,
we found that the corresponding hydrogen- and deuterium-
burning limits were not significantly changed. However, for
EiBI theory, the range slightly shifted to a larger mass. In
contrast, for BH, it slightly shifted to a smaller mass. Fig-
ure 5 shows the masses and the radii of the hydrogen- and
deuterium-burning mass limits predicted by BH theory as a
function of parameter γ . For that of hydrogen-burning, our
mass and radius results were compatible to those obtained
in Ref. [10]. the radii and the masses of hydrogen- and
deuterium-burning limits increased with the increasing γ .
Figure 6 shows those of EiBI theory. A similar trend was also
evidenced from Fig. 6, wherein the radii of the hydrogen- and
deuterium-burning mass limits increased with the increasing
κ . The impact of the contribution of the corresponding mod-
ified gravity terms more significantly appeared in BH theory
than in EiBI theory for the case of κ and γ with the minimum
chi-squared values. Figures 5 and 6 also show the impacts of
the maximum and minimum γ and κ values with the 1σ and
5σ confidences in the masses and the radii of the hydrogen-
and deuterium-burning mass limits. The maximum allowed
parameter κ value (the one within 1σ confidence) of EiBI
had a more significant effect on the masses of the hydrogen-
and deuterium-burning limits compared to the correspond-
ing γ value of BH. For BH, 0.071 ≤ MMHB/M� ≤
0.08, and 0.042 ≤ M(DB limit)/M� ≤ 0.049, while
for EiBI, 0.052 ≤ MMHB/M� ≤ 0.09, and 0.038 ≤
M(DB limit)/M� ≤ 0.045. The situation was reversed for
the corresponding radius. The maximum allowed γ value of
BH had a more significant impact compared to that the corre-
sponding κ of EiBI. For BH, 0.074 ≤ RMMHB/R� ≤ 0.1 and
0.06 ≤ RM(DB limit)/R� ≤ 0.08, while for EiBI, 0.088 ≤
RMMHB/R� ≤ 0.098 and 0.072 ≤ RM(DB limit)/R� ≤
0.078.

4 Conclusion

Using compact and less-compact stars to study the modi-
fied gravity theory is important. In this way we can check
the possible deviation signature of the standard gravity the-
ory and the dependency of the corresponding free param-
eter of modified gravity theories with the compactness of
the stellar and cosmological objects. We studied herein the
mass and the radius of BDs as a representation of less-
compact stars predicted by BH and EiBI gravity theories
by numerically solving the modified hydrostatic equations
predicted by both theories. We used the most recent com-
pilation of BD masses and radii obtained from Ref. [1] to
constrain the free parameter of the BH and EiBI theories
using a minimum chi-squared analysis. We found that for

EiBI theory, the chi-squared limit κ parameter is in the range
of (−1.51 × 102 ≤ κ ≤ 0.81 × 102) m5kg−1s−2 for the 1σ

confidence level and in the range of (−1.59 × 102 ≤ κ ≤
1.16 × 102) m5kg−1s−2 for the 5σ confidence level. Mean-
while for BH theory, the chi-squared limit γ parameter is in
the range of −0.565 ≤ γ ≤ 0.234 for the 1σ confidence
level and in the range of −0.6 ≤ γ ≤ 0.391 for the 5σ

confidence level, while κ = 0.17 × 102 m5kg−1s−2 for the
EiBI and γ =-0.1207 for the BH theories can yield minimum
chi-squared values. The value of κ and γ parameters with
minimal χ2 were relatively small. Therefore, they cannot sig-
nificantly provide effects to increase or decrease the MMHB
and MMDB limits of a BD. We also obtained the hydro-
gen and approximate deuterium mass limits by calculating
the BD nuclear and surface luminosity using εc = εpp for
hydrogen burning and εc = εpp +εpd for deuterium-burning
reactions. Also, we have found that the EiBI free parameter
κ constraint from BDs is tighter than that from cosmological
objects, while the BH free parameter γ constraint from BDs
is compatible with the one from cosmological objects.
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