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Abstract Quasinormal modes of Dirac field in the back-
ground of a non-Schwarzschild black holes in theories
with higher curvature corrections are investigated in this
paper. With the help of the semi-analytic WKB approx-
imation and further using of Padé approximants as pre-
scribed in Matyjasek and Opala (Phys Rev D 96(2):024011.
arXiv:1704.00361 [gr-qc], 2017) we consider quasinormal
modes of a test massless Dirac field in the Einstein–Dilaton–
Gauss–Bonnet (EdGB) and Einstein–Weyl (EW) theories.
Even though the effective potential for one of the chirali-
ties has a negative gap we show that the Dirac field is stable
in both theories. We find the dependence of the modes on
the new dimensionless parameter p (related to the coupling
constant in each theory) for different values of the angu-
lar parameter � and show that the frequencies tend to linear
dependence on p. The allowed deviations of qausinormal
modes from their Schwarzschild limit are one order larger
for the Einstein–Weyl theory than for the Einstein–Dilaton–
Gauss–Bonnet one, achieving the order of tens of percents. In
addition, we test the Hod conjecture which suggests the upper
bound for the imaginary part of the frequency of the longest
lived quasinormal modes by the Hawking temperature mul-
tiplied by a factor. We show that in both non-Schwarzschild
metrics the Dirac field obeys the above conjecture for the
whole range of black-hole parameters.

1 Introduction

Recently, the interest in studying new alternative theories of
gravity has been increasing see, for instance [2–5]. In spite
of its efficiency, the unmodified general theory of relativity
is not able to answer some fundamental questions. Some of
the most important problems are the construction of non-
contradictory quantum gravity, the singularity problem, the
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problems of dark matter and dark energy. The problem of the
construction of non-contradictory quantum gravity is con-
nected with the non-renormalizability of General Relativity.
This can usually be solved by adding the higher order terms in
curvature to the theory [6]. In this paper, we will consider two
different approaches: the first approach is related to adding of
the Gauss Bonnet term coupled to a dilaton [7–9], while the
second theory consists of the Weyl term [10–12] added to the
Einstein action. Both theories are inspired by the low energy
limit of string theory [13,14], which contain quadratic cor-
rections in curvature, but the Gauss–Bonnet term alone leads
to the full divergence and does not contribute to the equa-
tions of motions, so that there remaining only two options
for adding higher curvature corrections: either coupling of
the Gauss–Bonnet term to other fields or choosing essentially
non-Gauss-Bonnet quadratic corrections. Thus, here we will
consider example of the both options.

The Lagrangian of the Einstein–Dilaton–Gauss–Bonnet
gravity is:

LEdGB = 1

2
R − 1

4
∂μφ∂μφ

+ α′

8g2 e
φ

(
Rμνρσ R

μνρσ −4RμνR
μν+R2

)
, (1)

where α′ is the Regge slope, g is the gauge coupling con-
stant and φ is the dilaton field function. Black holes in the
Einstein–Dilaton–Gauss–Bonnet gravity has been recently
investigated in number of papers [9,15–23].

For the Einstein–Weyl gravity the Lagrangian can be writ-
ten as follows:

LEW = √−g(γ R − αCμνρσC
μνρσ + βR2), (2)

where α, β and γ are coupling constants, Cμνρσ is the Weyl
tensor. For spherically symmetric and asymptotically flat
solutions we can choose γ = 1 and β = 0 [24,25], so that
the only new coupling constant is α. The condition R = 0
is evidently satisfied in this case, so that the Schwarzschild
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solution is also the solution of the above theory. The static
spherically symmetric and asymptotically flat black holes in
the Einstein–Weyl theory represent the generic class of black
hole solutions in the quadratic theories of gravity if no other
matter fields are added. They have been recently studied in
[26–29].

Recently black holes in the both theories have been exten-
sively studied. In particular, quasinormal modes were found
for test scalar and electromagnetic fields [23,27]. Although
quasinormal modes of a Dirac field around black holes in
the Einstein gravity were studied in detail in a number of
papers (see [30–34] and reference therein), to the best of our
knowledge there are no works devoted to Dirac quasinormal
modes in theories with higher curvature corrections. When
considering the neutrino field, the special attention must be
paid to the presence of a negative region of a potential curve
with negative chirality. The positive definite effective poten-
tial guarantees dynamical stability of perturbations, that is,
absence of unboundedly growing modes. For the one of the
chiralities of Dirac field in the Schwarzschild background
the negative gap does not lead to the instability because the
other chirality provides positive definite potential and the
both chiralities are proved to be iso-spectral. However, the
iso-spectrality has never been proved for the considered non-
Einsteinian theories, so that the instability cannot be excluded
a priori. Because of this, it would be interesting to study the
quasinormal spectrum of the Dirac field in the above non-
Einsteinian theories of gravity and see whether there is an
instability. After all, the test of stability is extremely impor-
tant for higher curvature corrected theories because of the
so called eikonal instability which occurs in a abroad class
of theories with various higher curvature corrections, space-
time dimensions and asymptotics [35–40], and not only for
gravitational, but also for test fields [41].

We will analyze values of modes at the low angular param-
eter � and in the eikonal regime. We will find dependencies of
the complex frequency on the new dimensionless parameter
p (related to the coupling constant in each theory). In addi-
tion, we will compare quasinormal modes of both theories
between each other and with modes of other fields in each
theory. In addition here we will test the quasinormal modes
of Dirac field in the above two theories as to the Hod’s con-
jecture [42] who claims that there must always be a minimal
mode whose damping rate is limited by the Hawking tem-
perature multiplied by some factor.

This work is organized as follows. In Sect. 2 we introduce a
metric and a general wave equation and consider the effective
potential for the Dirac field for a spherically symmetric black
hole. For this case we prove that the Dirac perturbations are
linearly stable in both theories. In Sect. 3, the basic principles
of the WKB method are briefly considered, an analytical
approximation in the eikonal regime is analysed Sect. 3.1, the
quasinormal modes for test massless Dirac field are found,

a comparative analysis is made for the our result with the
results for other fields in these theories of gravity Sect. 3.2.
In Sect. 3.3 we will check the Hod’s conjecture for the Dirac
field in Einstein–Dilaton–Gauss–Bonnet and Einstein–Weyl
gravities.

2 Black hole metric and analytics for the wave equation

In the general case the metric for a spherically symmetric
black hole can be written in the form:

ds2 = −eμ(r)dt2 + eν(r)dr2 + r2(sin2 θdφ2 + dθ2), (3)

where eμ(r) and eν(r) are the metric coefficients. The explicit
expression for the metric coefficients were obtained numeri-
cally in [43] for Einstein–Dilaton–Gauss–Bonnet gravity and
in [24,25] for Einstein-Weyl gravity. The approximate ana-
lytical expressions (which will be used here) were obtained in
[44] for the Einstein–Dilaton–Gauss–Bonnet metric, in [45]
for the Einstein–Weyl metric. They are also written down in
Appendixs A, B.

We parameterize the both black-hole solutions in theories
(1, 2) via the following dimensionless parameter p up to the
rescaling:

pEdGB ≡ 6e2φ0 = 6α′2
g4r4

0

e2(φ0−φ∞)

(Einstein − −Dilaton − −Gauss − −Bonnet)

(4a)

pEW = r0√
2α

(Einstein − −Weyl). (4b)

For convenience we fix radius of the black-hole event
horizon to be r0 = 1. For all p the Schwarzschild met-
ric is the exact solution of the Einstein–Weyl equations
as well, but only at some minimal nonzero pmin , in addi-
tion to the Schwarzschild solution, there appears the non-
Schwarzschild branch which describes the asymptotically
flat black hole, whose mass is decreasing, when p grows.
The approximate maximal and minimal values of p are:

pmin,EdGB ≥ 0, pmax,EdGB ≤ 0.97, (5a)

pmin,EW ≈ 1054/1203 ≈ 0.876, pmax,EW ≈ 1.14. (5b)

The general covariant Dirac equation has the form [46]:

γ α

(
∂

∂xα
− �α

)

 = 0, (6)

where γ α are noncommutative gamma matrices and �α are
spin connections in the tetrad formalism. We separate of
angular variables in Eq. (6) and rewrite the wave equation
in the following general master form in terms of the “tortoise
coordinate” r∗ [46]:

d2


dr2∗
+ (ω2 − V (r))
 = 0, dr∗ =

√
eν(r)−μ(r)dr. (7)
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(a) (b)

Fig. 1 The effective potential V (r) for the EdGB gravity for � = 1; the blue line corresponds to p = 0, the red line corresponds to p = 0.5 and
the green line is p = 0.97: a V−(r); b V+(r)

(a) (b)

Fig. 2 The effective potential V (r) for the EW gravity for � = 1; the blue line corresponds to p = 0.876, the red line corresponds to p = 0.9816
and the green line is p = 1.14: a V−(r); b V+(r)

The effective potentials of test Dirac (s = ±1/2) field in
the general background (3) can be written as follows:

V±(r) = k

r

(
eμ(r)k

r
∓ eμ(r)

√
eν(r)

r
±

√
eμ(r)−ν(r)(

√
eμ(r))′

)
,

(8)

where the prime designates the differentiation with respect
to the “tortoise coordinate” r∗.

In the both cases for the “plus” (“minus”) potential of
the Dirac field k = � + 1 (k = �). As can be seen
from Figs. 1a, 2a the potential V−(r) has a negative gap
near the event horizon. The same behavior is appropriate
to the potential V−(r) in the Schwarzschild case. However,
as it was shown earlier for black holes for which both met-
ric coefficients are equal (like for the Schwarzschild case
eμ(r) = e−ν(r) [47,48]), the potentials of opposite chirali-
ties can be transformed into each another with help of the
Darboux transformation. This means that from both poten-
tials we get the same quasinormal spectrum. It allows us

to ignore the negative gap of the “minus” potential an and
talk about overall stability for the Schwarzschild case. When
both metric coefficients are not the same anymore, to the
best of our knowledge the iso-spectrality of both chiralities
was not shown. Here we can see that the following replace-
ments:


+ = q

(
W + d

dr∗

)

−, W =

√
eμ(r), q = const;

(9)

provides the Darboux transformation of equations (7, 9)
for transition between “minus” (given by V−(r) and “plus”
(V+(r)) perturbations. As the potential for one of the chi-
ralities is positive definite, this immediately guarantees the
stability of the Dirac field for the other chirality in both
considered theories. Therefore, here we will compute quasi-
normal modes only for one V+(r) of the two potentials,
implying that the other produce the same quasinormal spec-
trum.
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3 Quasinormal modes of massless Dirac field for
Einstein–Dilaton–Gauss–Bonnet and Einstein–Weyl
gravities

For finding quasinormal modes, it is necessary to solve the
spectral problem with the appropriate boundary conditions:
for a functions 
 there are only incoming waves at the hori-
zon (r∗ → −∞) and only the outgoing waves at the infinity
(r∗ → +∞). Quite effectively this problem can be solved
using the WKB-method [1,49–53]. The advantages of this
method over numerical methods is the ability to obtain low-
lying quasinormal modes with sufficient accuracy automat-
ically for a broad class of effective potentials, and, thereby,
not to tailor the method for each case. The method gives good
accuracy when n ≤ �, where n = 0, 1, 2, . . . is a overtone
number. The general formula for the m-order of the WKB
approach can be written in form:

i(ω2 − V0)√
−2V ′′

0

−
m∑
i=2

�i = n + 1

2
. (10)

Here, the �i are the correction term of the i-th order and �i

depend on the value of the potentials V (r) and its derivative
at the maximum, V0 is a value of V (r) in rmax and V ′′

0 is
a second derivative in rmax . But the WKB series converges
only asymptotically, there is no strict criterium for evaluation
of an error. The higher accuracy of the WKB approach can
be achieved the averaging of the Padé approximation [1].
We will use the fourth-order of the WKB approximation and
apply further Padé expansion of the order which provides the
best accuracy in the Schwarzschild limit [1,52].

3.1 An analytical approximation in the eikonal regime

In the regime of high multipole numbers � (eikonal regime)
it is sufficient to use the first order WKB formula:

ω =
√
V0 − i

(
n + 1

2

)√
−2V ′′

0 . (11)

When the multipole numbers � is high the behavior of test
fields of different spin obey the same law in the dominant
order and the expression for ω for the Dirac field will be iden-
tical to the formulas for other spin. For Einstein–Dilaton–
Gauss–Bonnet case it was found for electromagnetic field
[23] for small 1/�:

ωEdGB = 2

3
√

3r0

((
� + 1

2

)
(1 − 0.065p)

−i

(
n + 1

2

)
(1 − 0.094p)

)
+ O(p2, �−1),

(12a)

rmax = 3r0

2
+ 0, 055r0 p + O(p2, �−1), (12b)

where rmax is the position of peak of the effective potential.
For the Einstein–Weyl gravity the values of ω was found

in [45] for small 1/�, where t = 1054−1203p is a deviations
from the Schwarzschild branch:

ωEW = 2

3
√

3r0

((
� + 1

2

)
(1 − 0.001308t)

−i

(
n + 1

2

)
(1 − 0.002743t)

)
+ O(t2, �−1),

(13a)

rmax = 3r0

2
(1 + 0.000393t) + O(t2, �−2). (13b)

when p = 0 in the formula (12a) and t = 0 in (13a) these
formulas go over into the well-known eikonal formula for
the Schwarzschild black hole. A general approach to find-
ing eikonal quasinormal modes for static asymptotically flat
and spherically symmetric black holes has been recently sug-
gested in [54]. It is worthwhile mentioning that the real and
imaginary parts of the above eikonal formulas for test fields
will coincide with the oscillation frequency and the Lya-
punov exponents of the null geodesics in the background
of the Einstein–Dilaton–Gauss–Bonnet and Einstein–Weyl
black holes [55]. However, this is not expected for the gravi-
tational or other non-test (non-minimally coupled) fields [56–
58].

3.2 Quasinormal modes for low �

For obtaining accurate values of quasinormal modes at low
numbers � we will use the fourth-order of the WKB approx-
imation (10) and apply further Padé expansion of the order.
In the Figs. 3, 4 we construct the real (oscillation frequency)
and imaginary (damping rate of oscillation) parts of the fre-
quency ω on the values of the parameter p for various mul-
tipole numbers �. As can be seen, the function ω(p) tends to
be linear for all cases. This behavior is also characteristic of
other test fields that were previously considered [23], [27].
Comparing Figs. 3, 4, we can see that the deviations from
Schwarzschild branch by the Weyl correction are much larger
than the Einstein–Dilaton–Gauss–Bonnet gravity. For the
Einstein–Dilaton–Gauss–Bonnet case values of the modes
are decreasing when increasing the dimensionless parameter
p. On the contrary, for Weyl case we see, that the oscillation
frequency and the damping rate of oscillations are increasing
with increasing p. This also follows from the form of curves
for potentials Figs. 1, 2. With an increase the dimensionless
parameter p for the Einstein–Dilaton–Gauss–Bonnet gravity,
the height of the potential barrier decreases, which is on the
favor of lower bound states. For the Einstein–Weyl gravity,
the maximum of potential V (r) increases with increasing p.
It means, that with increasing p the corresponding frequen-
cies are higher.
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(a) (b) (c)

Fig. 3 The fundamental quasinormal mode of EdGB (n = 0) for the Dirac field (s = 1/2), blue line is real part of frequency, red line is imaginary
part; positive values for the real part and negative values for the imaginary part: a � = 1; b � = 2; c � = 3

(a) (b) (c)

Fig. 4 The fundamental quasinormal mode of EW (n = 0) for the Dirac field (s = 1/2), blue line is real part of frequency, red line is imaginary
part; positive values for the real part and negative values for the imaginary part: a � = 1; b � = 2; c � = 3

Approximate calculation formulas for the complex fre-
quency were found from the obtained data for different values
�. For Einstein–Dilaton–Gauss–Bonnet it is (14):

Re(ωs=0.5,�=1) ≈ 0.444 − 0.089p,

Im(ωs=0.5,�=1) ≈ −0.284 + 0.100p; (14a)

Re(ωs=0.5,�=2) ≈ 0.927 − 0.189p,

Im(ωs=0.5,�=2) ≈ −0.269 + 0.086p; (14b)

Re(ωs=0.5,�=3) ≈ 1.399 − 0.285p,

Im(ωs=0.5,�=3) ≈ −0.266 + 0.083p. (14c)

Accordingly, for Einstein–Weyl � = 1, � = 2, � = 3, we
have (15):

Re(ωs=0.5,�=1) ≈ 0.011 + 0.407p,

Im(ωs=0.5,�=1) ≈ 0.515 − 0.803p; (15a)

Re(ωs=0.5,�=2) ≈ −0.227 + 1.128p,

Im(ωs=0.5,�=2) ≈ 0.499 − 0.783p; (15b)

Re(ωs=0.5,�=3) ≈ −0.407 + 1.776p,

Im(ωs=0.5,�=3) ≈ 0.496 − 0.780p. (15c)

Approximate dependencies for parts of the complex fre-
quency in p were obtained in formulas (14) and (15) for low
�. For all options, we have a reasonable linear approximation,
which is clearly visible in Figs. 3 and 4.

3.3 The checking of Hod’s conjecture

In work [42], Hod put forward the statement for damping rate
of the fundamental oscillation. In other words in the spectrum
of quasinormal modes there always must exist a frequency
whose absolute value of the imaginary part is smaller than
π times Hawking temperature of the black hole. According
to this statement, for asymptotically flat black holes as well
as for nonasymptotically flat ones, the following inequality
holds:

|Im(ω)| ≤ πTH , (16)

where TH is the Hawking temperature. The Hawking temper-
ature TH for Einstein–Dilaton–Gauss–Bonnet and Einstein–
Weyl gravities can be written in the next form:

TH = 1

4π

√
deμ(r)

dr

de−ν(r)

dr

∣∣∣∣
r=r0

. (17)

From the Fig. 5 it can be seen that for the whole interval
of values of parameter p for the Einstein–Dilaton–Gauss–
Bonnet and Einstein–Weyl metrics |Im(ω)|

πTH
≤ 1. It means, that

for the Hod’s conjecture also holds for the cases considered.
The non-monotonic behavior on Fig. 5 for the Einstein–

Weyl theory occurs for p ≈ 1.06, which coincides with the
region where the parameters a3 and a4 of the approximate
parameterized solution (eq. 16 of [45]) diverge keeping the
appropriate ratios of the coefficients finite. Apparently this
particular behavior requires much higher precision of numer-
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(a) (b)

Fig. 5 The dependencies of |Im(ω)|
πTH

on p: a EdGB; b EW

ical operations in order to achieve smooth monotonic behav-
ior on Fig. 5. Since, anyway, the deviation from the mono-
tonic behavior consists only in a one-two percents, the ratio of
the damping rate to the normalized temperature is definitely
considerably less than one, so that the Hod’s conjecture given
by (16) is evidently safe.

4 Conclusions

In this work we considered test massless Dirac field in
Einstein–Dilaton–Gauss–Bonnet and Einstein–Weyl gravi-
ties. It was shown that although the potential V−(r) of the
Dirac field has a negative gap near the event horizon, we
have proved that the Dirac field is stable in both considered
theories. This is possible because of the stability of the sec-
ond potential V+(r) and the iso-spectrality of both potentials.
Quasinormal modes were obtained for both metrics for differ-
ent values of the angular parameter �. The dependence of the
complex frequency on the new parameter p was constructed.
The Einstein–Weyl gravity allows for much stronger devia-
tions form the Schwarzschild geometry. Therefore, quasinor-
mal modes of Einstein–Weyl black hole are more different
from the Schwazrschild case than those of Einstein–Dilaton–
Gauss–Bonnet black hole, achieving the effect of tens of
percents. In the last part of this work we shown, that the
Hod’s conjecture holds for Einstein–Dilaton–Gauss–Bonnet
and Einstein–Weyl gravities for the Dirac field.

In the future, it would be interesting to investigate the
Dirac field including the massive term and check the possi-
bility of the existence of the arbitrarily long-lived quasinor-
mal modes, called quasiresonances [59], for this case. In [60]
it has recently been shown that the quasiresonances exist for
the massive Dirac field in the Einstein theory, but no such
study was performed in the higher curvature corrected the-

ories. Our approach could also be extended to the case of
Einstein–Gauss–Bonnet black holes with other types of cou-
pling of the scalar field [61–63] as well as to scalarized black
holes for whose metrics analytical approximations are known
[64].
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Appendix A: Analytical form of the metric functions of
Einstein–Dilaton–Gauss–Bonnet metric

The analytical approximations for the metric functions eμ(r)

and eν(r) have the forms:
eμ(r) = [(r−r0)(11528(−338485+167871p+937132p2

−1091895p3+325377p4)r4+8(263522875

+497564855p−2160940683p2+1833700801p3

−382791763p4−54635232p5+3579147p6)r3r0

−124488(−1+p)2 p(−1310+1551p−514p2

+33p3)r2r2
0 +p(283646440−1112933120p

+1868830098p2−1478746401p3+470844780p4

−32741280p5)rr3
0 +1441p(−234080+345600p

−85004p2−36868p3+11115p4)r4
0 )]/[11528(−1+p)
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×(−5+3p)r4((−67697−74741p+108459p2)r

+(36575+121424p−124020p2)r0)], (A1a)

eν(r) = [2882(−1+p)(−5+3p)r2((−67697−74741p

+108459p2)r+(36575+121424p

−124020p2)r0)(18(−297882+533046p

−262075p2+24795p3)r2+18(223782

−348366p+110455p2+16245p3)rr0

−95p(−3640+8312p−6075p2

+1404p3)r2
0 )2]/[81(13−9p)2(r−r0)((22914

−25140p+2755p2)r+(−17214+14880pn

+1805p2)r0)
2(11528(−338485+167871p+937132p2

−1091895p3+325377p4)r4+8(263522875

+497564855p−2160940683p2+1833700801p3

−382791763p4−54635232p5+3579147p6)r3r0

−124488(−1+p)2 p(−1310+1551p−514p2

+33p3)r2r2
0 +p(283646440−1112933120p

+1868830098p2−1478746401p3+470844780p4

−32741280p5)rr3
0 +1441p(−234080+345600p

−85004p2−36868p3+11115p4)r4
0 )]. (A1b)

5 Appendix B: Analytical form of the metric functions
of Einstein–Weyl metric

The metric coefficients are determined as follows:

eμ(r) =
(

1 − r0

r

)
A(r), eν(r) = B(r)2

(
1 − r0

r

)
A(r)

, (B1)

where

A(r) =
[

152124199161(873828p4−199143783p3

+806771764p2−1202612078p+604749333)r4

+78279(1336094371764p6−300842119184823p5

+393815823540843p4+2680050514097926p3

−9501392159249689p2+10978748485369369p

−4249747766121792)r3r0−70372821

×(1486200636p6+180905642811p5

+417682197141p4−1208134566031p3

−324990706209p2+3382539200269p

−2557857695019)r2r2
0 −(104588131327314156p6

−23549620247668759617p5

−435688050031083222417p4

+2389090517292988952355p3

−3731827099716921879958p2

+2186684376605688462974p

−389142952738481370396)rr3
0

+31(3373810687977876p6

+410672271594465801p5

−14105000476530678231p4

+51431640078486304191p3

−71532183052581307042p2

+43250367615320791700p

−9476049523901501640)r4
0

]

/

[
152124199161r2

(
(873828p4−199143783p3

+806771764p2−1202612078p+604749333)r2

−2(873828p4−47583171p3+386036980p2

−678598463p+341153481)rr0

+899(972p4+115659p3−38596p2

−1127284p+1101579)r2
0

)]
, (B2a)

B(r) =
[

464405(3251230164p3−14548777134p2

+20865434326p+23094914865)r3

−464405(6502460328p3−52856543928p2

+100077612184p−32132674695)r2r0

−(1244571650887908p3+17950319416564777p2

−53210739821255918p+5097428297648940)rr2
0

+635371(4335198168p3−42352710803p2

+90235778452p−49464019740)r3
0

]

/

[
464405r

(
(3251230164p3−14548777134p2

+20865434326p+23094914865)r2

−(6502460328p3−52856543928p2

+100077612184p−32132674695)rr0

+6(541871694p3−6384627799p2

+13202029643p+2626009760)r2
0

)]
. (B2b)
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