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Abstract Bardeen de-Sitter (BdS) black hole is a spheri-
cally symmetric solution of Einstein’s equation which is cou-
pled to nonlinear electromagnetic field in a way that one gets
aregular solution, devoid of any singularity at the origin. We
compute the quasinormal (QN) frequencies for BdS black
hole due to electromagnetic and gravitational perturbations.
We analyse the behaviour of both real and imaginary parts of
BdS QN frequencies by varying the black hole parameters
and compare frequencies with Reissner-Nordstrom de-Sitter
(RN-dS) black hole. Interestingly, we find that the response of
BdS and RN-dS black holes under electromagnetic and grav-
itational perturbations are different when the charge param-
eter is varied, which can be used to understand nonlinear
and linear electromagnetic fields in curved spacetime sepa-
rately. A study on the dynamics of perturbation as well as the
scattering from the BdS black holes using WKB approach is
performed. Greybody factors and their variations with black
hole parameters are investigated.

1 Introduction

It is very well known that general relativity is a theory which
is plagued with the appearance of singularities. The invari-
ant scalar curvature which necessarily tells about the grav-
itational field strength diverges at those spacetime singular-
ities. Gravitational singularities appear in general relativity
in the context of black holes. Black holes are objects which
have singularities at the origin hidden by the event horizons.
However, appearance of singularities in a theory means that
the theory breaks down at the point where the singularity
is present. Hence, the task of avoiding the singularities in
general theory of relativity is one of the most fundamental
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ones and a set of solutions known as “regular black holes”
play an important role in this context. As the name suggests,
when the black hole does not have a spacetime singularity
at the origin, it is termed as a “regular black hole”. Bardeen
[1] obtained the first solution of regular black holes with
non-singular geometry satisfying the weak energy condition.
The solutions is known as the Bardeen black hole in the lit-
erature. The solution Bardeen obtained was not a vacuum
solution rather gravity was modified by introducing some
form of matter. Therefore an energy momentum tensor was
introduced in the Einstein’s equation in order to achieve that
goal. The introduction of the energy momentum tensor was
done in an ad hoc manner and hence the Bardeen solution
lacked physical motivation. After a long time, Ay6n-Beato
and Garcia [2] showed that the energy momentum tensor
necessary to obtain regular black hole solution is essentially
the gravitational field of some magnetic monopole arising
out of a specific form of non-linear electrodynamics. Many
other solutions [3—13], motivating the avoidance of singu-
larity was proposed thereafter. Stability properties [14—16]
and quasinormal modes [17,18], thermodynamics [19] and
geodesic structure [20] of such regular black holes were stud-
ied in detail. On another front, Fernando [21] has recently
found out a de Sitter branch for the regular Bardeen black
hole and corresponding grey body factors for such a black
hole were calculated. The stability analysis and quasinormal
modes due to scalar and Fermionic perturbations were also
studied [22] for this background. The motivations for study-
ing regular black holes in de Sitter space comes from the fact
that our universe looks like asymptotically de Sitter at very
early and late times. Observational data also indicates that
our universe is going through a phase of accelerated expan-
sion [23-25], which, along with many other explanations also
indicates the existence of a positive cosmological constant.
Hence, the study of black holes and its various features in
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de Sitter space is by itself an increasingly demanding area
of research. In continuation of our earlier work [22], we will
study the gravitational and electromagnetic perturbations of
the regular Bardeen dS black hole in this paper.

The stability of a black hole spacetime is one of the most
intriguing questions that one can ask in general relativity:
the answer to the question of black hole stability under cer-
tain perturbation can answer many questions related to the
black hole itself. The study of black hole perturbations is an
active area of research and has immense effect on various
important properties of black holes [26-29]. Generally one
studies the evolution of a field (scalar, Fermionic, electro-
magnetic or gravitational) in a black hole background or in a
black hole-black hole collision process in order to under-
stand the stability of that particular black hole spacetime
under the specific field perturbation. It is well know that the
dynamical evolution of perturbations of a black hole back-
ground can be classified into three distinct stages, the first
stage consists of an initial outburst of wave which depends
completely on the initial perturbing field, the second one
consists of damped oscillations, known in the literature as
the quasinormal modes (QNM) whose frequencies are com-
plex numbers. The real part of these frequencies represent the
real oscillation frequency of the black hole under the pertur-
bation and the imaginary part represents damping. The final
stage is a power law tail behaviour at very late times. QN fre-
quencies not only provide us with the information about the
stability of the black hole spacetime, they are used to deter-
mine the black hole parameters (mass, charge and angular
momentum) too. Numerical simulations depicting formation
of a black holes in a gravitational collapses as well as that
of collision of two black holes exclusively show that irre-
spective of the nature of the perturbations, the black hole’s
response will be dominated by the QNMs [30]. One impor-
tant aspect of studying black hole stability is the fact that
equations governing the black hole perturbations in most of
the cases can be cast into a Schrodinger like equation. The
QNMs are solutions to that Schrodinger like wave equation
with complex frequencies for boundary conditions which are
completely ingoing at the horizon and purely outgoing at
asymptotic infinity (for the asymptotically flat or de Sitter
black holes). It is to be noted that apart from the fact that
the QN frequencies contain important information about the
black hole parameters, they were also of importance from
the point of view of AdS/CFT correspondence. It has been
found [31,32] that QNMs in AdS space time appear natu-
rally in the description of the dual conformal field theory
on the boundary. This observation has motivated the study
of QNMs towards asymptotically AdS black holes [33-35]
too. On another front, despite their classical in origin, QNMs
have been shown to provide glimpses to quantum nature of
black holes [36-38].
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A lot of work [39-49] has been done on QNMs of scalar,
electromagnetic, gravitational, Dirac perturbations, decay of
charged fields, asymptotic QNMs and signature of quantum
gravity etc in de Sitter space. However, the regular black holes
in de Sitter space is comparatively a less studied regime. In
this paper, we will try to fill up the gap in the literature by dis-
cussing the QNMs of the Bardeen de Sitter (henceforth BdS)
black hole due to electromagnetic and gravitational perturba-
tions. The plan of the paper is as follows: in the next section
we give a brief discussion on the BdS black hole. In Sect. 3
we present a discussion of WKB method for calculating the
QNMs along with a study of the Electromagnetic QNMs of
the BdS black holes. Section 4 deals with the Gravitational
quasinormal modes of the BdS black hole. In Sect. 5 we give
a comparative discussion about the dynamics of the perturba-
tions. Section 6 contains a discussion about the greybody fac-
tor and its variation with the black hole parameters. Finally,
in Sect. 7 we conclude the paper with a brief discussion on
future directions.

2 A brief discussion on BdS black hole

This section deals with a very brief introduction to the
Bardeen de Sitter (BdS) black hole following the works in
[21]. The authors of [21] has modified the works of [2] to
incorporate a positive cosmological constant in the action.
The action therefore looks like:

R —2A
167

1
S = /d4x¢fg< — Eﬁ(F)) (1)

In the above, R is the Ricci Scalar and [Z(F):%q2

—— \5/2
(2—‘12F> is a function of the field strength F of the
1++/29%F

non-linear electrodynamics. Here field strength(F') is defined
as F = YFMF,, where F,, = 2(V,A, — V,A,). The
parameter « in L(F) is related to the magnetic charge (g)
and the mass (M) of the space time as follows: o = ﬁ The
equations of motion from the above action comes out to be
[21]:

IL(F
Gw + Agpy =2 ( ) o — guvz(F)> P
0L(F) v}
Vﬂ< o >_o 3)
Y, (F') =0 @)

A static spherically symmetric solution for the above set of
equations exist [21]:
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gives the horizon. The BdS black hole there can have at most
three horizons corresponding to three real roots of the func-
tion f(r): the black hole inner(r;) and outer horizons(ry)
along with the cosmological horizon(r.). It is to be noted
that the BdS black hole is structurally similar to the Reissner-
Nordstrom-de Sitter (RNdS) or Born-Infeld de Sitter (BIdS)
black holes which also admits a possibility of three distinct
horizons as well as a single or degenerate horizons too (cor-
responding to extremal case). However, the event horizon is
much larger for RNdS black hole as compared to a BdS one
[21]. The non-singular structure of the BdS geometry can
be checked by direct calculation of the scalar curvatures R,
RwR™, Ruvio RMV 0 wwhich are finite everywhere as com-
pared to divergences at » = 0 in case of Einstein black holes
except the electromagnetic field invariant ' which is singular
atr =0 [21].

3 Electromagnetic perturbations and QNMs of the BdS
black hole

In this paper we focus our attention on the behaviour of
the dynamical response of the spherically symmetric regular
black hole in de Sitter space under electromagnetic and grav-
itational perturbations. In this section we will be discussing
the electromagnetic field perturbations of the BdS black hole
in order to study the behaviour of the QNMs in this back-
ground by varying a set of black hole parameters. Since our
system is an open one, the black hole, after a small pertur-
bation, relaxes to its equilibrium state by losing energy by
emitting electromagnetic or gravitational radiation, depend-
ing on the nature of the underlying perturbations.
Asdiscussed in Sect. 2, BdS background metric is given by
Eq. (5). Now we decompose 4-vector potential of the electro-
magnetic field in two parts. One is unperturbed background
potential (A, 1) and another is perturbed part (5A,,).

Ay =A,+84, (6)

In static and spherically symmetric background, ansatz for
unperturbed 4-vector potential of magnetically charged black
hole is given by

Ay = —qcos 06, ©)

Considering spherically symmetric BdS background, pertur-
bation in vector potential can be written as a superposition
of vector spherical harmonics, where Yy, (6, ¢) are standard
scalar spherical harmonics:

0

00 l
8All'axial = Z Z 37, ’
a

=0m=—rt | ao(t,r)g5 S

| —ao(t,r) sin@—agg’" ]
ar(t,r)Yem
az(f, r)Yém

Y,
a3(ts r)a_ém

e

Itis well known that, under the angular space inversion trans-
formation (0, ¢) — (w — 0, T + @), first part of the transfor-
mation changes sign as (— 1)1 termed as axial or odd part
and second part changes sign as (—1)® termed as polar or
even part. As § A, is decoupled under parity transformation,
we have only focused on the axial modes which is the first
part of perturbed potential. The Electromagnetic (EM) field
tensor is defined in terms of the general 4-vector potential as
follows:
Fuy=2(V, A, — V,Ay) (8)
and generalized Maxwell’s equations for nonlinear electro-
dynamics are represented by

Vo (LpF*) =0 ©)
where L = % . Considering only background field(A s

non vanishing terms of EM field tensor are Fyy = —Fpg =
¢ sin § and strength(F) of the EM field becomes 2¢2/r*.

Taking into account the perturbation part (§ A ;) along with
background 4-potential, non zero field tensor components are
as follows :

1 Qdag dYem

Frio = ——
sinf d0t 0J¢

dap 0Yem

Fy = —sing 220
= T o0

1 dag Y (10)

sinf dr d¢
dag Y
Fry = —sin@% agm

Fyp =sin6 (g + L€+ 1)aoYem)
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All non zero contravariant components of EM field tensor

are following:

03 Bds
- - RN-ds
02 |77
1
I
> 01 )
]
I ~ 2
! T T
0.0f 1 T T
]
]
]
—0.1H

T T

Ft@ - _ 1 @ 8Yem
fr2sin 9t 3¢
oo _ 1 dag Y
fr2sing ETREL
pro— 930 3¥m (1)
rZsiné or 03¢
o _ _ S 9ao 3Yem
r2sin@ or 96
Fo = (q + £ + DaoYem)

r4sinf
For the total 4-vector potential A, field strength (/') remains
same at zeroth-order but has components in first order, which
depends on all coordinates (¢, r, 6 and ¢). At each step of
our analysis, we have only considered 1st order terms in
perturbation to be in linear regime.

2g%  4qld + Dao(t, r)Yim

F (A, +84,)~ =+ o (12)

This is the crucial point to note in electromagnetic perturba-
tion for electrically and magnetically charged black holes
in nonlinear electrodynamics, where perturbation can not
alter field strength at first order approximation. We write
total field strength as F = F + §F where F (r) = 2¢%/r*
and §F(t,r,0,¢) = w. We expand Lr in
the vicinity of F using Taylor series upto first order term.

[,F%EF(F)%—;C PoF. HCI‘CL',FZZﬁ,EFFZdﬁF We
di;

also define L_/F“ = —r.
For any free index u, Eq. (9) becomes

d(LpFH) d(r’LpF*) 1 9 (sin0LpFM)
at P2 ar sin 6 36
3 (LpFHe
+ M =0 (13)

a9
For = 6 and ¢, Eq. (13) simplifies to
ad
ag  f (f Lr ao)

81‘2 E]:" ar
e +1 4g%L 7 7
+M (1 _ q__FF) ap =0 (14)

i’2 r4ﬁﬁ

To remove first order derivative term of ag (¢, r) from
Eq. (14), we use standard tortoise coordinate(r, ) transforma-
tion dry = f(r) and scale the variable ag(z, r) to W(t,r) =
W) Now @ represents solution of wave Eq. (15) with an

L
effective potential profile V (r)

PW(t, ) PW(t,ry)
at2 3r§

+ W (@, r)V(r) =0 (15)
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Fig. 1 Effective potential V for BdS and RN-dS black holes for ¢ =
0.40,¢ =2and A =0.01

e+ 1) (1

2, _
V(r)=f|: o L 5”)

r4L
_ - a(fzi’,)
2 i
FL2 =Lt
)
4£F-

(16)

The advantage of using the tortoise coordinate lies in the
fact that the range of the coordinate now extends between
—00 to 0o, whereas in the old radial coordinate r, the phys-
ically accessible region lies only between the black hole’s
outer horizon(r,) and the cosmological horizon(r.). Note
also that the potential V (r) — 0 as r, — Fo00. In [50], the
authors have also computed all field components and eventu-
ally calculated the potential for electromagnetic perturbation
in nonlinear electrodynamics. Apart from a few typographi-
cal errors in some of the equations (for example eqns. (36)-
(38)) in that paper, the final form of the potential matches
with ours in the flat space limit. In Fig. 1, we have examined
the nature of the axial potential V (r) with radial coordinate r
and compared BdS potential with Reissner-Nordstrom (RN-
dS) potential. For (RN-dS) black hole, £L(F') linearly depends
on field strength F* which means L F= = L; 77 = 0. Impor-
tantly, it is to be noted that the overall nature of both poten-
tials are the same, viz. (a) V() is positive definite between
the event and cosmological horizons, (b) V (r) has a single
maxima, which increases its height with increasing £. But
for a fixed set of parameters, height of the BdS potential is
larger than the RN-dS one which indicates BdS black hole
has smaller absorption coefficient than RN-dS black hole. As
already mentioned, our target in this work is to solve the wave
equation with proper boundary conditions for complex QN
frequencies using the sixth order WKB method developed in
[51]. It is already established in the literature that sixth order
WKB method is more accurate than the third order one and
the former in fact gives results coinciding with those obtained
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Fig. 2 Variation of Re @ and -Im w with multipole number ¢ for A = 0.003

from full numerical integration of the wave equation [51] for
low overtones, i.e. for modes with small imaginary parts, and
for all multipole numbers £ > 1. The sixth order formula for
a general black hole potential V (r) is given by

i(@ = V)

V=2V"(ro)

where V (r¢) is peak value of V (r), v’ (rg) = ‘57‘2/ lr=ry»> 10 18

1
Az—A3—A4—A5—A6=n+§ (17

the value of the radial coordinate corresponding to the max-
imum of the potential V(r) and n is the overtone number.
In general QN frequencies w take the form w = wg — iwy,
where, as mentioned earlier, the real part of w represents
actual field oscillation and imaginary part corresponds to
damping of the perturbation. In Eq. (17), A> and A3 are
given by [52]

1 1 v ( s 1)
AN=——— || — ||+~
V2V (rg) | 8\ V (r0) 4

vV
—— =2 ) 7+60p% (18)
288 \ V' (ro)

n+hH| s (v )
Az = 2 0 (77 + 188b%)

2V (ro) | 6912 \ V7 (ro)

1 V(3) 2v(4)
o (% (51 + 100b2)

m+H | 1 [ v
2V"(ro) | 2304 \ V" (ro)

3)y,05)
1 [vPv
+ ( o_0 )(19+28b2)

2
) (67 + 68b%)

288 \ (V" (r0))?

(6)
SR LR 7 ST (19)
288 \ V" (rp) '

In the above expression b = n + % VO(") = d"V/dr] at
r = rg and A4, A5 and Ag can be found in the Appendix
of [51]. The above method also works extremely well in the
eikonal limit of large ¢ corresponding to large quality factors.

In Fig. 2, the QNMs are plotted as a function of multipole
index £ for A = 0.003, charge ¢ = 0.4 and overtone number
n = 0. It is found that Re w increases linearly with ¢, while
magnitude of Im w initially increases rapidly with £ and later
on, it saturates.

Utilising the master Eq. (17), we have determined the
QNDMs for different set of parameters in this work. One can
define the quality factor (Q.F.) to look at the strength of the
field oscillation over damping as follows: Q.F. = %. It
is well known that the quality factor is essentially a dimen-
sionless parameter that describes how underdamped an oscil-
lator is. In Fig. 3, we have plotted the Q.F. versus the charge
g and cosmological constant A. It is easy to check that field
oscillation initially increases and finally decreases with ¢ for
£ =2 and n = 0 but it decreases throughout the variation of
A. This implies that the BdS black hole system becomes over-
damped with the increase of cosmological constant. Next, we
plot the variation of QN frequencies with respect to charge
q and cosmological constant A for different multipole num-
bers (£). Figure 4 specifically suggests the nature of QNMs
as a function of ¢. Here for BdS, Re w decreases constantly
with g but for RN-dS black hole (shown at the inset of the
plot), it increases rapidly for the same parameter space. For
Bds black hole, -Im w declines abruptly with increasing g.
On the contrary, it increases for RN-dS, which implies with
smaller charge, BdS black hole is more stable than RN-dS.
Whereas, Fig. 5 demonstrates linear decrement in both real
and imaginary part of QNMs with increasing A for all sets of
multipole numbers £=1 and 2. Nature of the response from
RN-dS black hole is same as BdS but its oscillation frequency
is much smaller than BdS black hole keeping the nature of
damping with respect to the parameters the same. Finally, in
Table 1, we have listed the numerical values of QN frequen-
cies which are obtained using sixth order WKB approach

@ Springer
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with the same values of the parameter

for the parameter A = 0.007 and ¢ = 0.57. As it is well
known that WKB method is accurate for n < £, we have tab-
ulated the QN frequencies considering this condition. Data of
Table 1 shows as £ increases both Re w and -Im w increase for
a fixed overtone number (). Another aspect of listed QNMs
is that real oscillation frequency and imaginary part of the
frequency representing damping are decreasing and increas-
ing respectively with increasing overtone number 7 for fixed
£ values. This behaviour of QN frequencies with n and ¢ is
same amongst all different types of perturbations: electro-
magnetic, gravitation, massless and massive scalar perturba-
tions [22]. It is worth mentioning here that by computing
inverse of the instability timescale which is associated with
the geodesic motion, it is possible to show that in the eikonal
limit, parameters of the circular null geodesics can determine
the QNMs of black holes in any dimensions [53]. This is a
very important and strong result since the parameters of null
geodesics can throw some light on the stability of a black
hole. It has also been shown to be independent of the field
equations. The only assumption which went into the consid-
eration of the authors of [53], is the fact that the black hole
spacetime is static, spherically symmetric and asymptotically
flat. However as a non-trivial example, they have discussed

@ Springer

non-asymptotically flat near extremal Schwarzschild de Sit-
ter black hole space time in this context. Therefore, the same
analysis can be applied for BdS black holes in the limit of near
extremal regime (Nariai or cold black holes) where either the
black hole horizon and the cosmological horizon coincides
or the inner and outer horizon merges.

4 Gravitational perturbations and QNMs of the BdS
black hole

It has to be mentioned here that generally there are two dif-
ferent categories of perturbations of black holes that are con-
sidered within the regime of general theory of relativity. In
the first method, one adds a test field in a black hole back-
ground and the system is studied by solving the dynamical
equation for the particular test field in the background of the
black hole. The second one is to perturb the metric itself and
in order to find the evolution equations, one linearises the
Einstein’s equations. This is the gravitational perturbation
and is the most important one amongst all types of perturba-
tions since the gravitational radiation is much stronger than
strength of any external fields decaying near the black hole.
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Table 1 Electromagnetic QN frequencies for the Bardeen de-Sitter

black hole spacetime as a function of ¢ and n for ¢ = 0.57 and
A =0.007
Multipole number Overtone QN frequencies
using 6th order WKB
=2 n=0 0.521390-0.084842i
n=1 0.507453-0.256951i
=3 n=0 0.753028-0.086184i
n=1 0.742394-0.2598721
n=2 0.721758-0.4375091
=4 n= 0.978881-0.0868781
n=1 0.970469-0.2614481
n=2 0.953945-0.4384531
n=3 0.929943-0.6194731
=5 n= 1.202785-0.087246i
n=1 1.195857-0.262286i
n=2 1.182170-0.438968i
n=3 1.162055-0.618374i
n=4 1.136057-0.801537i

It is also important because the metric perturbations gives us
tools to study about the gravitational stability of a black hole.
The investigation of black hole perturbations was first car-
ried out by Regge and Wheeler [54] for the odd parity type of
the spherical harmonics and was extended to the even parity
type by Zerilli [55]. A brief discussion about the calcula-
tions involved in gravitational perturbation is given in the
appendix.

The form of the potential due to gravitational perturbation
is given by

72

7/ . 2
V(r)=f|:£(£+1)+r(rf) +2(f —1)+2r (2£+A):|

(20)

0.10~
0.09 —— |=2
' -+ 1=3
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3
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0. 0.03 0.06
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A
0.20—— : : : :
Bds
0150 /77 ]
/ N\ — - RN-ds
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0.05} | S~
' = = = - —
0.00; |
]
~0.05LL ‘ ‘ ‘ ‘ ‘ ‘

Fig. 6 Variation of gravitational potential V in Regge—Wheeler gauge
with r for £ =2, A = 0.003 and ¢ = 0.40

where £ denotes lagrangian of the field and A is cosmological
constant.

In Fig. 6, we have shown the nature of the effective poten-
tial V for BdS black hole with fixed values of the parameters
A = 0.003, £ = 2 and ¢ = 0.2. For comparison between
black holes in linear and nonlinear electromagnetic field, we
have studied RN-dS and BdS black holes respectively. As
before, the value of the mass of the black hole is taken as
unity throughout this paper. Like the electromagnetic, here V
is also positive, finite which increases its height with increas-
ing £ and almost same spatial extent for both BdS and RN-dS
black hole. But height of the BdS potential is always larger
than RN-dS for which total absorption cross-section of BdS
black hole is always less than its counter part in linear electro-
magnetic field. With £ = 0, V has more than one extremum
which prevents us to apply the WKB approach. Therefore,
like electromagnetic perturbation, here also we will be con-
sidering £ # 0 modes. In Fig. 7, the QNMs are plotted as
a function of multipole index ¢ for A = 0.002, magnetic
charge ¢ = 0.2 and overtone number n = 0. It is found
that Re w increases linearly with ¢ while magnitude of Im
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o initially increases rapidly with £ and later on, it saturates
and becomes almost a constant. Although the behaviour of
the frequencies remains similar to those of electromagnetic
ones as we vary the multipole index, the rapidity with which
the imaginary parts of the frequency change with £ in case
of the gravitational perturbation is much higher than that of
the electromagnetic case.

To understand the strength of the gravitational perturba-
tion, we plot the quality factor (Q.F.) versus cosmological
constant A and magnetic charge ¢ in Fig. 8. It is clear from
the plot that field oscillation is almost same in a with variation
of A making a significant difference with it’s electromag-
netic counterpart for ¢ = 0.4. At the same time, variation of
Q.F. with magnetic charge(g) shows us a nonlinear increment
behaviour as we increase ¢ for a fixed value of A = 0.002.
Next, we plot QN frequencies of the BdS black hole for grav-
itational perturbation vs magnetic charge parameter (¢) and
cosmological constant (A) with different £ values. Figure 9
precisely suggests the nature of QNMs as a function of g.
For BdS, Re w follows non-linear relation with ¢ keeping
similarity with its linear electromagnetic counterpart (RN-
dS). However, the magnitude of Im w falls with increasing
magnetic charge ¢g. It clearly shows difference in nature of
dependence between BdS and RN-dS black hole. For the
same set of parameters, with increasing magnetic charge(q)
BdS black hole becomes unstable than RN-dS black hole.

Figure 10 shows Re w and |Im w| decreases steadily for
increasing A for ¢ = 0.4 in both BdS and RN-dS black
holes. Finally, In Table 2, we have listed the numerical val-
ues of QN frequencies with corresponding parameters con-
sidering n < {. Like electromagnetic class (see Table 1),
tabulated QNMs indicate that as £ increases both real and
modulus of imaginary w increase for a fixed overtone num-
ber (n). Another feature of listed QNMs is that oscillation
frequency and damping of perturbation are decreasing and
increasing respectively when we increase n keeping ¢ fixed.
This behaviour is same irrespective of the class of perturba-
tions.

@ Springer

5 Dynamics of perturbation

Our initial motivation was to study black hole stability under
an external perturbation. C. V. Vishveshwara was the first
person to realize that we may observe a solitary black hole
by observation of scattering of radiation from the black hole,
provided the black hole left its fingerprint on the scattered
wave [56]. Realising this, he started pelting the black hole
with Gaussian wave packets and found that the black hole
responds by ringing in a very unique decay mode: the low-
est damped one of the black hole QNMs. Following this,
here we will demonstrate a complete evolution picture of the
BdS space time from a single master equation [see Eq. (43)
discussed in the appendix]. This is a wave equation with a
schrodinger like form.

a2y 3%y
L T aVvy =0 21
a2 or? VY @h

We have used finite difference method to numerically inte-
grate this wave equation (21). As a boundary condition we
have Eq. (22) which describes asymptotic behaviour with
pure ingoing and outgoing waves at r, — Foo respectively.
We assume a solution of Eq. (21) with oscillatory factor e ~/*!
in time.

lim YT =1 (22)

re—>+00

To give the first external “kick” in the field we use two Gaus-
sian waves (23) and (24) as initial conditions for the second
order differential equation (21):

Y (e, 0) = ae 1 =7, (23)
al//(ar: 2 = et 24)

where o1 and o7 represents width of the Gaussian packet
and p denotes position of the peak of the curves. It is found
that broad Gaussian waves can not excite the background
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sufficiently to observe the dynamical features [57]. On the
other hand, using sharp localised packet, one can get max-
imum number of extrema in field oscillation. First we have
discretized the domain of integration (r, — ¢) plane by using

xi=xp+iAx, i=0,1,2,3... (25)

t]:‘]A[, ]20,1,2,3 (26)

Here x is same as r,. At and Ax are grid size of y axis
and x axis respectively. x¢ is a point on boundary of x axis.

N
i

|+ 1=2, A=0.002

ot
w

Quality Factor
[\
S

010 015 020 025 030 035 0.0

0.115

0.0935

0.110f
__0.105} 0.093

3
£ 0.100f

' 0.095

0.0905"\\\

0.085 : : : : :
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q
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0.0922

0.0920

—Im(w)

0.0918

0.0916} 0.092
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0.0006 0.0008 0.0010 0.0012 0.0014
A

To determine the perturbation v in advanced time, we use
Taylor theorem in Eq. (21) and get a discretized version of
it:

At? 5
Yr = E(I/fc_ZI/fE'i‘l/fA)"‘(z_At VE)YE—¥D, (27)

where, in general, F, C, E, A, D points are defined as :

Yr = Y tj+1), Yo = Vv (xit1,8), YVE = ¥(xi, 1)),
Ya=Yxi-1, 1), ¥p =¥ (xi, 1j-1), VE = V(xi, 1j).
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Table 2 The list of gravitational QNMs in the Bardeen de-Sitter black
hole space time as a function of £ and n for ¢ = 0.60 and A = 0.003

Multipole number Overtone QN frequencies
using 6th order
WKB
=3 n=0 0.679040-0.089022i
n=1 0.638172-0.274874i
n=2 0.357253-0.622339i
=4 n=0 0.891988-0.089235i
n=1 0.879436-0.271288i
0.779455-0.472025i
n=3 0.363485-0.966099i
=5 = 1.098212-0.092047i
1.057292-0.308499i
0.785209-0.807262i
n=3 0.487847-2.307081i
n=4 0.409467-4.815479i
4
3
~ F
52 °
A E [+
1 °
D
-4 -2 0 2 4

AX

Fig. 11 (x — t) plane for Integration scheme

With the initial conditions Eqs. (23) and (24), we also spec-
ify all values of Y att = Oand ¢t = At grid line of Fig. 11. To
determine the perturbation in one step advance (in time) at
the point F, we need to know value of the perturbation in four
neighbourhood points of F, which are represented by A, C, D
and E. By applying this procedure repeatedly, one can deter-
mine the dynamics of perturbation over a complete domain.
During this numerical integration scheme, one dimensional
version of Courant—Friedrichs—Lewy (CFL) condition is sat-
isfied which is a necessary condition for convergence of an
explicit finite difference method of a hyperbolic PDE. Other
parameters on which convergence depends are discussed in
[58].

In Fig. 12 we show the evolution of ¢ for two integral
spin (s = 1 and s = 2 representing electromagnetic and
gravitational perturbations respectively) perturbations with
different £ values. It is quiet evident from plots that one of
our motivations of studying stability feature of the scattered
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wave is fulfilled as it shows characteristic decay modes in
late time. On the same time Fig. 13 exhibits evolution of per-
turbation in log scale. It is clear from the applied numerical
scheme that to find late time dynamics of v, we need initial
conditions (23), (24) on more number of grid points. As our
integration domain is limited between finite values of —r,
and r, because of finite value of cosmological horizon r,, we
were unable to generate numerical values of ¥ at very late
time and therefore any power law tail is absent in the dynam-
ics. In real world, it is well known that A is very small, of
the order of 10732, Use of this small value of A in numerical
computation has its own challenges. So we choose a small,
finite value for A = 0.0005 here, which, of course is not as
small as the cosmological constant itself. To capture feature
of small value of cosmological constant, one can decrease A
and recalculate it further. Using Eq. (5), it is found that as A
— 0, r. — oo. Therefore numerically domain of integration
also becomes large enough and finally one can get very late
time dynamics.

Figure 14 is a power spectrum of Fourier transforma-
tion for the same perturbing wave of Fig. 12. Here we find
independently oscillation frequency of perturbing wave from
the frequency wq corresponding to maximum of |G (w) 2. In
s = 1 and s = 2 condition, maximum power containing fre-
quencies are 0.9617 = 0.1068 and 0.7479 £ 0.1068 respec-
tively. Scattered waves with these frequencies are dominant
in Fig. 12. Although there is no way to find specific over-
tone no(n) of oscillation from the variation of v but in late
time it is expected that system will oscillate in fundamental
mode [59]. By that time all higher modes will be damped out
because of their large damping factors in frequencies (Tables
1,2). With s = 1 and s = 2, oscillation frequencies (@)
from the WKB method are 1.0398 and 0.8151 for £ = 4
and n = 0 respectively. These oscillation frequencies are
in good agreement with frequencies obtained from Fourier
transformation technique.

6 Greybody factors and absorption coefficients
6.1 Nature of the greybody factor

In this subsection we will discuss Reflection coefficients
R(w) and Transmission coefficients 7T (w) for different
parameter spaces as well as in different type of perturbations.
In [21] coefficients for scalar type perturbation is discussed
for Bds black holes in detail. Here, in order to fill the gap in the
present literature, we will concentrate on the electromagnetic
and gravitational perturbation part for this black hole. The use
of WKB method to compute reflection and transmission coef-
ficients(greybody factors) are not new. It has already been
employed in various scenarios [60-63], which includes the
calculation of greybody factors of black holes in braneworld
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models, in the context of calculations of these coefficients for
wormholes. By another analytical approach which was orig-
inally proposed by Unruh [64], greybody factors can also be
calculated [65]. Here we have already seen that for boths = 1
and s = 2, finite potential barrier (Figs. 1, 6 ) exists between
cosmological horizon(r.) and event horizon(r;). Now, any
wave travelling past the cosmological horizon will face these
finite positive potential barriers as obstacles. Therefore some
part of the wave will be reflected back towards . and some

parts will be transmitted towards r,. Following [21], we can
represent them as

VU(ry) = T(w)e " ry — —00

Y (r) = e " + R(w)e'*; re —> +00

(28)
(29)
In general the reflection and transmission coefficients are
functions of oscillation frequency () of the wave. The reflec-

tion coefficient R(w) in the WKB approximation is defined
as,
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o1
R(@) = (1+e727%) 2, (30)
where « is given by

v
QZM_AZ_A& (31)

V=2V"(r0)

and expression for Ay, A3z can be found out from Egs. (18)
and (19) respectively. Conservation of probability requires:

IR@)* + T (@) =1 (32)
Finally, the greybody factor is defined as
ve =T (@) (33)

Depending on the frequency and height of the potential bar-
rier, there may be different cases which can arise: when
w? > V(rp), i.e. when a wave with frequency larger than the
height of the barrier comes, it will not be reflected by the bar-
rier classically. In this case, one should expect the reflection
coefficient to be close to zero, because the frequency of the
wave is large enough to cross the barrier. Therefore we expect
that under this conditions, |T'|? will be close to 1. When
w? < V(rp), i.e. square of the frequency is very small com-
pared to barrier height, wave will be reflected back from the
barrier and some part may be transmitted through the barrier
by tunnelling effect depending on the values of w and V (rg).
We should get exactly opposite behaviour of R(w) and T (w)
compared to previous case. In this case, the WKB method
does not have very high accuracy. When w? ~ V (rg), we
have to take help of numerical techniques to understand the
nature of R(w) and T (w). Here we can apply WKB approx-
imation method because of the small distance between the
turning points.

Figure 15 shows variation of |R(w)|*> with  for differ-
ent class of perturbations with different £ values. In electro-
magnetic perturbations, i.e.(s = 1), it is almost one for low
frequency and for high frequency it is close to zero. For a
fixed frequency, |R|? is larger for multipole number ¢ = 4
than £ = 3. It can be explained easily from the dependency
of effective potential V (r) on £. Gravitational perturbation
(s = 2) has also same nature and features like that of the
electromagnetic type (s = 1). On the contrary Fig. 16 shows
variation of |T(a))|2 with w for both (s = 1) and (s = 2)
type. Following Eq. (32), it shows exactly opposite nature to
Fig. 15 for both the limits.

Next we study the behaviour of | R (w)|* with by varying
black hole magnetic charge ¢ and keeping other parameters
fixed in Fig. 17. Larger g values decreases reflection coef-
ficient compared to smaller g values for s = 1. Although
for s = 2, response of |R(w)|? under different ¢ is much
larger than s = 1. In gravitational perturbation, for higher
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charge parameter, reflection coefficient is also larger which is
exactly opposite to electromagnetic perturbation. This nature
is prominent from the potential behaviour of different class of
perturbation under variation of charge parameter. Figure 18
shows | T (w) |2 with @ with the same parameter values.

Next we plot |R(w)|? vs @ by varying the cosmological
constant A in Fig. 19. For s = 1, response of |R(w)|? under
different ¢ is much larger than s = 2. With increasing A for
both s = 1 and s = 2, |R(w)|* value decreases. Therefore
in space time with larger cosmological constant, black holes
can less scatter the incoming waves. Figure 20 shows the
variation of |T (w)|> with w with the same set of parameter
values following Eq. (32).

6.2 Absorption cross-section

In this subsection we will discuss partial and total absorption
cross section in the context of electromagnetic and gravita-
tional perturbation for different parameter spaces in the BdS
background. Partial (o) and total absorption cross sections
(o) are defined respectively as:

720+ 1)
w?

20+ 1
o= " D m P, (39)
12

op = 1 Te ()2, (34)

In Fig. 21, variation of o are plotted with different ¢ and
A values where individual peak represents oy. For both s =
1 and s = 2, Total absorption cross sections have similar
feature.

Variation of o in Fig. 21 can be classified into three distinct
regions, the first region consists of a growing phase which is
the signature of increasing |7 (w)| with w. The second region
shows oscillations in o which comes considering different £
modes. In this particular example, we have added upto £ = §
modes to determine o. The last part is a power law fall-
off. The reason behind this fall-off is following: after certain
critical frequency (wyp), the transmission coefficient attains
maximum value to 1. Afterwards, with further increase in
w, 0 becomes proportional to a% irrespective of the type of
the perturbation or the values of the parameters of the black
hole space-time. The electromagnetic (s = 1) and the grav-
itational (s = 2) part shows two different branches which
merges on top of each other in the fall-off region. For a fixed
frequency, absorption cross section is always larger for grav-
itational perturbation w.r.t electromagnetic one.

7 Summary and conclusion

In this paper, we have focused on two most important types of
black hole perturbations: electromagnetic and gravitational,
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for a regular BdS black hole. We have used sixth order WKB
approximation method to compute the QN frequencies of the
BdS black hole under these perturbations and found out the
response of the black hole to these perturbations by varying
different parameters of the space-time. It is easy to see that
from one type to another type of perturbation, only the poten-
tial profile changes in the Schrodinger-like wave equations,
while keeping forms of all the relevant equations intact. We
studied how the frequencies vary as a function of multipole
number (£) as well as with the parameters like the cosmolog-

ical constant (A), magnetic charge (¢) and overtone number
(n). As the multipole number (¢) increases, both Re (w) and
-Im (w) increase for a fixed overtone number (7). The real
oscillation frequency and imaginary part of the frequency
representing damping are decreasing and increasing respec-
tively with increasing overtone number n for fixed ¢ values
for the axial EM perturbations. It was observed that the real
part of the QN frequency increases monotonically with the
multipole number whereas the imaginary part at the begin-
ning starts to increase but then it saturates after reaching
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for a certain £ value. While for the imaginary part of the
gravitational QN frequency, the frequency initially increases
and then falls down before finally saturation occurs. This
behaviour of imaginary part being constant with the variation
of multipole number is a common feature of both the elec-
tromagnetic as well as gravitational perturbations, although
the rapidity with which the imaginary part of the frequency
increases is more in the case of electromagnetic one as com-
pared with gravitational perturbations. We have also con-
ducted a study to find out the Q-factor of the BdS black hole
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system and found that through Q-factor one can differentiate
between electromagnetic and gravitational perturbation. The
Q-factor increases rapidly with charge g and falls down after a
critical value of the charge, while it decreases slightly with the
increase of A for electromagnetic perturbations. It increases
non-linearly with ¢ and decreases very slowly with A for
gravitational perturbation. In both the cases of electromag-
netic and gravitational perturbations, the negative imaginary
part shows similar behaviour with increasing g, namely, they
decrease with an increase in the magnetic charge. However,
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for the real part, although it decreases with charge for EM
perturbations, opposite behaviour is found for the gravita-
tional perturbations. In all these cases, we did a comparative
study with respect to the RN-dS background also and showed
the effect of non-linear electrodynamics on the nature of QN
frequencies when studied with respect to different param-
eters. We have further studied the dynamics of the pertur-
bations using a standardised numerical integration method.
Finally, we investigate the reflection and transmission coef-
ficients from the BdS black hole due to electromagnetic and
gravitational perturbations. In both the cases, behaviour of
the greybody factor were studied by varying the black hole
parameters. The total absorption cross section for different
multipole values (upto £ = 8) was studied.

For future directions, it would be interesting to study
whether isospectrality of the QN spectrum holds in BdS
spacetime or not. It is already known that both the axial and
polar perturbations (electromagnetic as well as gravitational)
gives rise to same QN frequencies. The well known exam-
ple being the Reissner-Nordstrom black hole arising out of
Einstein’s general theory of relativity coupled to Maxwell’s
electrodynamics. However, to our knowledge, no such works
in case of regular black holes in de Sitter space time exist.
It would therefore be interesting to study the isospectrality
of different types of perturbations in regular black holes in
de Sitter space. Another important area of study would be to
look at the circular null geodesics of the near extremal BdS
black holes and find out whether there can be any relation
between the Lyapunov exponents and the QNMs of the BdS
background. Finally we would like to mention that, although
many works have been done on the electromagnetic and grav-
itational perturbations of black holes in the regime of Ein-
stein’s general theory of relativity, not many examples are
present in the context of regular black holes. Particularly, the
stability and QN properties of regular black holes in de Sitter
universe remains a very less studied area in the literature so
far. We believe that this work will fill the gap.
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A Appendix: The gravitational perturbation

In this appendix we will briefly discuss about the gravita-
tional perturbation in general. The spherically symmetric,
static background metric is represented by 82u and the small
perturbation to the background metric is denoted by &, .
In order to perform the calculation to linearise the Einstein
equation, we follow |h,,| < 1. Then R, is evaluated from
82\; and R, + §Rpv from g, = 82\; + hy.

SRy, =0I%,,., —8I° (36)

LoV R

where

1
SFk/w = _gka(how;y, + hot;/.;v

> — pvia) (37)

Now using Regge—Wheeler gauge for Axial type perturba-
tion, the canonical form for the perturbation takes [27,54]

00 —ho(t, r) gy 2o ho(r, r) sin 6 22l

sinf d¢
o £ *O—hl(t,r)ﬁagg’ hl(t,r)sine%
o= )
1=0m=—¢ | % % 0 0
* % * 0

where, * marked components of the metric are determined by
symmetry property of /,,. Now we substitute the total met-
ric g,y to the left side of Eq. (38) and calculate right hand
side using Eq. (6). Here we have taken into account the per-
turbation in the energy—momentum tensor and get linearized
Einstein’s equation.

AL(F
Guv + Aguy =2 (a%) unFr — g,wc(F)) (38)
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We get coupled second order partial differential equations
from r¢, 0¢ and t¢ components of Einstein’s equation as
Egs. (39), (40) and (41) respectively. These equations are
generalised equations for evolution of axial gravitational per-
turbation in Regge—Wheeler gauge. They are derived without
any loss of generality.

hy  3*hy  203ho\  fh 5

(5~ G )+t (ke 2P0
+r (£ +r))) =0 (39)

dho ahif)

T =0 o
hy  3*hy  20hy ho 2

<ar2 _%_;W>—F<K+2r QL+ A)
+2f +r(f +(f))) =0 “h

Here K = (£ — 1)(£ + 2). Next, as a standard method, one
defines

J@hi(,r)
—

Q(r,r) = (42)

and after substituting % from Egs. (40) to (39), we get
the Schrodinger-like equation and the generalized effective
potential for the gravitational perturbation, which is denoted
by V.

Q@) 3201, 1)

912 ar2 + 0@, r)V(r)=0, (43)
where,
Y _ 2
viy—g| L DA () +2r(2f D) +22QL + A)

(44)

Here ' denotes derivative with respect to the radial coordinate
r. In [66], Egs. (39), (40) and (41) are derived for asymptot-
ically flat space time. They are same as our set of equations
and finally the effective potential due to gravitational pertur-
bation turns out to be also same as was found in Eq. (44) in
the limit A = 0. However, there is a difference in numerical
factor (coefficient of £) in the effective potential, which is
an artefact of the two different coefficients of £ in our (1)
compared to the one used in [66].
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