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Abstract We study behaviour of ionized region of a Kep-
lerian disk orbiting a Schwarzschild black hole immersed
in an asymptotically uniform magnetic field. In dependence
on the magnetic parameter 3, and inclination angle 6 of the
disk plane with respect to the magnetic field direction, the
charged particles of the ionized disk can enter three regimes:
(1) regular oscillatory motion, (2) destruction due to cap-
ture by the magnetized black hole, (3) chaotic regime of the
motion. In order to study transition between the regular and
chaotic type of the charged particle motion, we generate time
series of the solution of equations of motion under various
conditions, and study them by non-linear (box counting, cor-
relation dimension, Lyapunov exponent, recurrence analy-
sis, machine learning) methods of chaos determination. We
demonstrate that the machine learning method appears to be
the most efficient in determining the chaotic region of the
6 — r space. We show that the chaotic character of the ion-
ized particle motion increases with the inclination angle. For
the inclination angles 6 ~ 0 whole the ionized internal part
of the Keplerian disk is captured by the black hole.
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1 Introduction

It is well known that the test particle motion in the field of
Kerr black holes is fully regular [1]. The same is true for both
charged and uncharged particles moving in the field of Kerr—
Newman black holes with an internal electromagnetic field
related to their electric or tidal charge [2—4]. The regularity
holds also for Kerr-Newman-de Sitter black holes [5], even
if they are dyonic, i.e., carrying both electric and magnetic
charges [6]. The situation changes radically for black holes
immersed in an external electromagnetic field since the test
charged particle motion takes generally chaotic character [7,
8].

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-6961-7&domain=pdf
mailto:panis.r@gmail.com

479 Page 2 of 21

Eur. Phys. J. C (2019) 79:479

Most of the observed black hole candidates have an accre-
tion disk constituted from conducting plasma which dynam-
ics can generate a magnetic field external to the black hole.
Another possibility is represented by an external galactic
magnetic field that can be amplified by the black hole strong
gravity. Such magnetic fields satisfy the test field approxima-
tion condition, having thus negligible effect on the spacetime
structure and the motion of neutral particles, however, for par-
ticle with large specific charge the electromagnetic Lorentz
force is relevant and leads generally to the chaotic motion of
charged particles [9-11].

The exact shape and structure of the magnetic fields
around compact objects is still under examination, but the
uniform magnetic field assumption introduced by Wald [12]
can be used as first simple approximation to more complex
fields. The charged test particle motion in such an asymp-
totically uniform configuration has been already studied in
a large variety of papers that give significant insight into
the astrophysical processes in vicinity of magnetized black
holes [8,9,13-26]. In the present paper, we examine chaotic
charged test particle dynamics around a Schwarzschild black
hole immersed in an external uniform magnetic field, result-
ing under special initial condition of ionized Keplerian accre-
tion disk.

The matter forming an electrically neutral (Keplerian)
accretion disk orbiting such a magnetized black hole can get
ionized (e.g. by an irradiation), and start to feel the external
magnetic field. Under the influence of the magnetic field, the
original purely circular motion of the electrically neutral mat-
ter has to be transformed into one of the following regimes
of the motion of created charged particles: (1) regular oscil-
latory motion possibly reflecting the high-frequency X-ray
quasiperiodic oscillations observed in microquasars [11], (2)
destruction of the ionized region of the disk due to the radial
infall into the black hole, (3) chaotic motion governing trans-
formation of the Keplerian disk into thick toroidal structure,
in combination with creation of winds (or relativistic jets for
the case of rotating black holes [8]), see Fig. 1.

We explore charged particle destiny for a variety of initial
conditions, namely the electromagnetic interaction intensity
parameter reflecting intensity of the magnetic field and the
specific charge of the particle 13, initial position of the particle
given by the radius r, and the inclination angle of the disk
to the magnetic field lines 6. We concentrate our attention
on the transition between the regular and chaotic character
of the motion of the resulting charged particle dynamics in
dependence on the initial conditions, namely for fixed values
of the electromagnetic interaction parameter 3, we determine
the distribution of the regular and chaotic states in the plane
6 — r of the initial conditions; the measure of the chaos is
also reflected.

The equations of charged particle motion around mag-
netized black holes are characterized generally as a system
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demonstrating deterministic chaos — its determination is not
trivial and demands application of non-linear methods as the
box-counting on one side, or the machine learning on the
other.

Observations/measurements of a (physical or general)
quantity in time produce sequences of numbers, and hence
time sequence (series) analysis is important tool in almost
every corner of current science. Non-linear systems can pro-
duce time series with very complex behaviour that are on the
first sight similar to the series of random numbers. Non-linear
deterministic systems can demonstrate chaotic behaviour
that is only apparently random behaviour. The deterministic
chaos is hard to distinguish from random noise in observed
data, especially when the degree of freedom of the generating
non-linear system is high.

Very well established linear tools, like Fourier anal-
ysis, can easily distinguish between regular and random
sequences of numbers, but they fail to distinguish between
a deterministic-chaos sequence and a random sequence, giv-
ing flat (constant) power spectral density in both cases. An
observer using the Fourier analysis for analysis of chaotic
data could make wrong conclusion and claim the data are
completely random with no information inside. If we would
like to extract any information from chaotic time series, the
non-linear tools of detection should be used. In the present
paper, we test behaviour of real-number sequences using non-
linear tools — namely, the box-counting, correlation dimen-
sion, Lyapunov exponent, recurrence quantification analy-
sis (RQA) and machine learning. These non-linear tools are
shortly presented in Appendix, and tested using the simple
case of toy model based on the simple logistic map for reg-
ular/chaotic sequence generation. All codes of the methods
presented in this article are written in the Wolfram Math-
ematica 11, since the Mathematica software provides the
high-level programming language with already implemented
subroutines (functions) for machine learning. The sequences
of the tested regular/chaotic data are generated by the solu-
tion of the motion equations of the charged particle motion
with various initial conditions.

Combination of deterministic chaos and random noise
in real measured data, i.e. small signal to noise ratio, can
bring new problems to the task of distinguishing between
chaos/noise. In our study such a problem is avoided, as we
test the non-linear methods of detecting the deterministic
chaos on time series of regular/chaotic data generated the-
oretically by the solution of the equations of the charged
particle motion.

The present paper can be considered as a preliminary study
where we test the non-linear chaos detecting methods on
system which can be controlled and where the dynamics is
known. In future we plan to use such methods to study the
timing signals (photon number time dependence) related to
the quasiperiodic oscillations observed in the microquasar
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Fig. 1 Examples of regular (upper row) and chaotic (lower row)
charged particle trajectories in the field of a magnetized Schwarzschild
black hole. On the left and central figures in the row, the trajectories
has been plotted, while the figures on the right represent the time series

sources [27]. The non-linear test of the observed microquasar
timing data has been already applied in different context [28—
31].

Throughout the paper, we use the spacetime signature
(=, +, +, +), and the system of geometric units in which
G = 1 = c. Greek indices are taken to run from O to 3.

2 Charged particle motion around magnetized
Schwarzschild black holes

The line element of the Schwarzschild black hole space-
time with mass M reads

ds? = — f(rdi® + £~ (r)dr? 4 r2(d6? + sin? 0dg?), (1)

where the so called lapse function f () takes the form

2M
fr)y=1- - )

Hereafter, we put for simplicity M = 1, i.e. we use dimen-
sionless radial coordinate r (and time coordinate 7).

of the radial coordinate r (7). The non-linear chaos detecting methods
introduced in the Appendix have been applied on such sequences of the
length 10%, and the results are plotted in the Figs. 5, 6 and 7

We assume an asymptotically uniform magnetic field hav-
ing strength B at the spatial infinity (i.e. at large distances
from the black hole). The magnetic field lines are oriented
perpendicularly to the equatorial plane of the black hole
spacetime. The only non-zero covariant component of the
potential of the electromagnetic field takes the form [32]

B B
Ap =7 8pp = Erzsinze. 3)

The Hamiltonian governing the test (non-radiating) charg-

ed particle motion can be written in the form [32]

Hy = L8 A Ag) + = m? 4
p=78 (Ta — qAa) (g — q ,s)+§m, 4)

where the kinetic four-momentum p* = mu* isrelated to the
generalized (canonical) four-momentum 7 # by the relation

nht = p" +qAr, )
that satisfy the Hamilton equations presented in the form

dxh H dm IH
==, A 6)
d¢ om,  d¢ dxh
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Fig. 2 Schematic figure of accretion disk around black hole immersed
into uniform magnetic field with magnetic field vector B aligned with
z axis. Neutral accretion disk plane is inclined to the z axis by 6y €
(0, 7 /2) angle and disk inclination to equatorial plane is 7w /2 — 6. The
accretion disk is created by neutral particles orbiting the black hole
along circular orbits with various radii ro. For spherically symmetric
Schwarzschild BHs, the presented set up of aligned magnetic field with
z axis and disk inclined to equatorial plane is equivalent to the disk in
the equatorial plane with the magnetic field being inclined to the z axis

The affine parameter ¢ is related to the proper time t of the
particle by the relation { = t/m.

Due to the symmetries of the Schwarzschild spacetime
(1) and the asymptotically uniform magnetic field (3), one
can easily find the conserved quantities of the particle
motion — the energy and the axial angular momentum that
can be expressed as

dr
E=—-m= mf(r)d—, @)
T
. d¢ qB
L= =mr’sin?0 ([ — + — ). 8
7y = mr” sin (dr+2m> ®)

The dynamical equations for the charged particle motion
in the Cartesian coordinates can be found using the coordi-
nate transformations

x =rcos(¢p)sin(@), y = rsin(¢) sin(f), z = r cos(@). (9)

Introducing for convenience the specific constants of the
motion, energy &, axial angular momentum £, and the mag-
netic parameter B governing the intensity of the electromag-
netic interaction, by the relations [9,23]

E L
E=—, L=—, B

m m

_4B
T om’

one can rewrite the Hamiltonian (4) in the form

(10)

1 m? 2
oy v =] an

H=Lfe0p?+ 508+
= — r — -

2
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where Vi (r, 0; L, B) denotes the effective potential gov-
erning the turning points of the radial and latitudinal motion,
given by the relation

2
Ver (. 0) = £() {1 + (L _ Brsin@) ] RNGES
rsinf

The terms in the parentheses corresponds to the central
force potential given by the specific angular momentum L,
and electromagnetic potential energy specified by the mag-
netic parameter B.

The effective potential (12) demonstrates clear symmetry
(L, B) < (—L, —B) that allows to distinguish in the follow-
ing only two situations corresponding to the minus configu-
ration (L > 0, B < 0) where the magnetic parameter and the
axial angular momentum have opposite signs and the Lorentz
force is attracting the charged particle to the z-axis towards
the black hole, and to the plus configuration (L > 0, B > 0)
where magnetic parameter and the axial angular momentum
have the same signs and the Lorentz force is repulsive, acting
outward the black hole. The positive angular momentum of
a particle, £ > 0, means that the particle is revolving in the
counter-clockwise motion around the black hole. If charge
of the particle is considered to be positive, g > 0, the minus
configuration, B < 0, corresponds to the vector of the mag-
netic field B pointing downwards, while plus configuration,
B > 0, corresponds to the vector of the magnetic field B
pointing upwards the z-axis [23].

The charged particle motion is limited by the energetic
boundaries given by

E* = Ve (r, 0; L, B). (13)

The axial symmetry of the background of the combined
gravitational and magnetic fields implies independence of the
effective potential Ve from the coordinate ¢ which allows
us to examine Vegr (7, ) as a 2D function of the spherical
coordinates r, 8, or Cartesian x, z coordinates (9). The effec-
tive potential is positive outside the black hole horizon, and
diverges at the horizon r = 2. The region within the horizon
is excluded from our investigation.

The effective potential (12) enables us to demonstrate
general properties of the charged particle dynamics and has
already been explored in detail in [23] — here we are directly
applying these results.

3 Ionization of the Keplerian disks

For the magnetized Schwarzschild black holes the spherical
symmetry of the spacetime is combined with the axial sym-
metry of the uniform magnetic field. If we assume the lines
of the uniform magnetic field oriented in the direction of the
z-axis (vertical direction) [12], the equatorial plane of the
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Fig. 3 Thin Keplerian accretion disk, created by neutral test particles
following circular geodesics, and its evolution (thickening/destruction)
when the influence of the magnetic field is switched on. The accretion
disk particles following initially circular orbits is located in the central
plane with inclination 6§y = 1.37 to the equatorial plane, while the mag-
netic field lines are everywhere aligned with the z axis (vertical direc-
tion). The uncharged test particles following the innermost stable circu-
lar geodesic (ISCO —depicted by the dashed circle) of the Schwarzschild
spacetime represent the inner edge of the Keplerian accretion disk. If
the disk will remain neutral or the magnetic field is missing (8 = 0
case, middle figure) all the orbits will remain in their circular shape
and we see just inclined razor thin disk. If a slightly strong electromag-
netic interaction is switched-on (B = £0.001 cases, middle row), the
charged particles forming the disk that is originally almost perpendicu-

spacetime has to be perpendicular, i.e., the x — y plane — see
Fig. 2.

3.1 Initial conditions of the motion of particles forming the
ionized disk

In the initial state we consider a Keplerian accretion disk
orbiting the magnetized Schwarzschild black hole that con-

lar to the magnetic field lines start to follow epicyclic oscillations around
the circular orbit in both radial and latitudinal directions; the accretion
disk becomes to be slightly thick. If larger magnetic field is switched-on
(B = £0.01, £0.1 cases), the charged particle motion becomes quite
chaotic and the accretion disk is destroyed or transformed into thick
toroidal structure. The complete destruction of the Keplerian disk can
be seen in the B = — 0.01 case, when all the particles are captured by
the black hole. If the magnetic parameter of the field that is switched-on
islarge (|B] > 1 cases), the Lorentz force dominates the particle motion.
The charged particles are spiralling up and down along the magnetic
field lines, while slowly moving around the black hole in the clockwise
(B > 0) or the counter-clockwise (B8 < 0) direction. The thin Keple-
rian disk has been destroyed and transformed into some special thick
toroidal structure

sists from electrically neutral test particles following cir-
cular geodesics. Due to the spherical symmetry of the
Schwarzschild spacetime the Keplerian disk can be located
in any central plane of the spacetime, being thus inclined to
the equatorial plane of the magnetized Schwarzschild black
hole by a latitudinal angle 6y, giving one of the initial con-
ditions for the motion of particles of the ionized Keplerian
disk, see Fig. 2.

@ Springer
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Fig. 4 The evolution of thin Keplerian accretion disk with various ini-
tial inclinations to the magnetic field lines is demonstrated for the mag-
netic parameter B = 0.1. The accretion disk coexists of many circular
orbits initially located in central plane given by the inclination angle 6
related to the z axis. Neutral particle ISCO represents the inner edge
of the Keplerian disk and is depicted by the dashed circle. For small
inclinations of magnetic field lines to the Keplerian disk, the capture
by the black hole is the only option for charged particles after ioniza-

3.1.1 Ionization scenarios

In order to demonstrate the influence of the magnetic field
on an ionized Keplerian accretion disk, some realistic ion-
ization scenarios for the neutral particles of the disk have to
be considered. As ionization model of a neutral particle, one
can consider the Magnetic Penrose Process (MPP) [33,34],
where the original 1st neutral particle splits into two charged
particles - 2nd and 3rd. Conservation of total charge of par-
ticles entering the ionization process takes the form

0=q>+g3. (14)

and the law of conservation of the canonical momenta (5)

Ta(l) = Ta(2) + Ta@3) (15)

takes due to the charge conservation the form

Pa(l) = Pa2) + Pa@3)- (16)
In many realistic scenarios, like neutron B decay or neu-

tral atom ionization, one of the created charged particles is

@ Springer

tion; the accretion disk is completely destroyed in this case. For middle
inclinations, the ionized particles enter quite chaotic behaviour, mov-
ing up and down along the magnetic field lines - in such case the inner
region of the thin disk is transformed into a quasi-spherical structure.
For Keplerian disk almost perpendicular to the magnetic field lines, the
ionized particles follow regular epicyclic trajectories in vicinity of the
equatorial plane, increasing slightly the disk thickness

much more massive then the other one, m/m3 > 1-as fol-
lows from the proton/electron orion/electron mass ratios. The
more massive charged particle (proton or ion) takes almost all
the initial momentum of the original neutral particle, and the
dynamical influence of the lighter charged particle (electron)
can be neglected

Pa(l) = Pa@) > Pa(3)- a7

In another realistic scenario one can consider the Keple-
rian accretion disk created by a plasma that can be considered
as a quasi-neutral soup of charged particles — electrons and
ions — orbiting around the central black hole along circular
geodesic orbits. If the accretion disk is dense enough, the
main free path of the charged particles will be very short in
comparison to the length of the orbit around the central hole.
This means that the influence of the magnetic field on the
charged particle motion is effectively suppressed, and they
move as acomposite neutral body. However, when the density
of plasma of such accretion disks significantly decreases, the
charged particles start to feel effectively the influence of the
magnetic field that modifies substantially their trajectories.
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Of course, such kind of effective ionization of the Keple-
rian disks is restricted to the regions located near their inner
edge corresponding to the marginally stable circular geodesic
(ISCO).

Both previously mentioned scenarios enable a simplified
ionization model, where the neutral particle just obtains an
electric charge while its mechanical momentum remains con-
served. Such an ionization model (17) has been already stud-
ied, but in the field of rotating Kerr black hole [8,25], where
the charged particle escape velocities and structure of escape
zones were explored. Here we focus our attention on the com-
plementary study of measure of chaos of the ionized particle
motion in dependence on the particle initial conditions related
to the inclination of the Keplerian disk, and the particle ini-
tial position (radius). We test which initial conditions lead to
destruction of the Keplerian disk, or to transitions between
the regular and chaotic motion.

3.1.2 Initial conditions of the charged particle motion

We thus study the simplified particle ionization model (17)
that considers only the heavy particles in the Magnetic Pen-
rose Process, and can be characterized by simple conditions
of the mass conservation and kinetic momentum conserva-
tion

p(u) (18)

The test particle kinetic momenta before (I) and after (II)
ionization are thus equal and the canonic momentum of the
ionized particle is given by the relation

mqy = m, P(l)

() = Pa) + qAa- (19)

At the moment of ionization, the neutral or charged test
particle is considered to be located on inclined circular orbit
with initial position x* and initial four-velocity u

¢ =(t,r,0,¢) = (0,rp, 6, 0), (20)
Ug = (Us, ur, ug, ugy) = (£,0,0, L). 21

The specific angular momentum £ and the specific energy
£ of the neutral test particles on the inclined circular orbits of
the Keplerian accretion disk are given by the relations [32]

ro sin 90
Lay = oy =

r()—

1/ —3]’0

The simplified ionization condition (19) and use of the
definitions of the energy (7) and the angular momentum (8)
enable to write the formulas of the ionized test particle spe-
cific angular momentum £ and specific energy € in the form

5(1[) = 5(1). (23)

(22)

Lany =La + Bré sin’ 6y,

The magnetic field has in the Schwarzschild metric
only one non-vanishing component, Ay (3), hence only the

(canonical) specific angular momentum L is changed due to
the ionization, while the particle specific energy £ remains
constant. The energy of the neutral particles on the circu-
lar geodesic orbits, given by (22), is always £ < 1, but
energy £ > 1 is needed for the charged particle to escape
to infinity along the z-axis. Therefore, no escape to infinity
of ionized matter from the Keplerian disks is possible in the
Schwarzschild spacetime [8].

4 Motion of charged particles forming ionized disk

Since in the Schwarzschild metric the ionized particle follow-
ing originally a circular geodesic cannot escape to infinity,
the capture by the black hole, or bound motion in vicinity of
the original circular orbit are the only options. If the charged
particle is not captured, its motion remains bounded in some
closed region around the black hole — the motion of such a
bounded charged particle is in general chaotic. The charac-
ter of the bounded motion depends mainly on the inclination
of the original Keplerian disk, and on the magnitude of the
electromagnetic interaction. As we shall see, for large incli-
nation angles of the Keplerian disks to the magnetic field
lines, 6y ~ 7/2, the bounded motion could be regular.

Our study of the simplified ionization of the Keplerian
disks is related to the heavier charged particles resulting
from the considered scenarios of the MPP process, i.e., to
the motion of protons and ions, not to the electron motion in
general. However, we have to note that in some special situ-
ations our results could be applied with reasonable precision
also for the electron motion — these situations have to corre-
spond to the case when the electron has initially the specific
energy and specific angular momentum close to those of the
circular geodesic motion. Such a condition can be clearly
satisfied for some ionized atoms, or while the electron fol-
lowing the circular geodesics starts to feel the influence of
the magnetic field due to decreasing density of the disk.

4.1 Typical trajectories of charged particles: chaos and
regularity

Due to the spherical symmetry of the Schwarzschild space-
times, the Keplerian disk can be located in any central plane,
contrary to the case of the Kerr black hole spacetimes where
the inner parts of the Keplerian disks have to be located in
the equatorial plane of the spacetime due to the so called
Bardeen-Peterson effect reflecting the interplay of the disk
viscous stresses and the frame dragging of the spacetime [35].
We thus first discuss properties of the ionized disks orbiting
the magnetized Schwarzschild black hole with large enough
initial inclination angle, 6p ~ /2, in dependence on the
magnetic parameter characterizing the intensity of the elec-
tromagnetic interaction. As a second case we discuss the role

@ Springer
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of the inclination angle for the case of the magnetic interac-
tion parameter giving the strongest chaotic behaviour for the
near-equatorial disks. Finally, we study the combined role
of the magnetic parameter B and the inclination angle for
charged particles located initially at the ISCO.

The influence of the magnitude of the magnetic field
(parameter) on the character of the ionized near-equatorial
accretion disk is demonstrated in Fig. 3. When the mag-
netic field is missing (B = 0 case), all the orbits of the
ionized Keplerian disk keep their circular shape and we see
just inclined razor thin disk. When a slight magnetic field
is switched-on (B = % 0.001 cases), the charged particles
forming the ionized disk become to be unsettled, and the cir-
cular orbits are perturbed, but the ionized particle orbits are
still bounded in vicinity of the equatorial plane, following
oscillatory motion in the radial and latitudinal coordinates,
and the accretion disk becomes slightly thick. Notice that in
the case B = — 0.001 the particles starting very close to the
ISCO are captured by the black hole, while such trapping is
not possible for the case B = 0.001. When a larger magnetic
field is switched-on (B = % 0.01 cases), the charged particle
trajectories become chaotic and a lot of trajectories finishes
inside the black hole. The complete destruction of the ionized
Keplerian disk can be seen for the B = — 0.01 case, when all
the orbits are captured by black hole. For even larger mag-
netic field (B = £0.1 cases), the Lorentz force becomes
more influential and charged particle trajectories start to be
strongly chaotic creating a toroidal structure, and demon-
strate tendency to wind up and down along the magnetic field
lines, especially in the case of B = — 0.1 when the structure
of orbiting particles resembles a sphere. When the magnetic
field parameter is large (B = = 1 cases), the Lorentz force
becomes to be the dominant force for the particle motion.
The charged particles wind up and down along magnetic field
lines, demonstrating simultaneously slow shifting around the
black hole in the clockwise (B > 0) or counter-clockwise
(B < 0) direction. Once again, the thin Keplerian disk has
been transformed into some thick structure spread around
the equatorial plane of the magnetized black hole. For larger
values of the magnetic parameter, |B| > 1, similar behaviour
is demonstrated by the ionized Keplerian disk.

The influence of the initial inclination angle 6y of the
Keplerian accretion disk to the magnetic field lines on the
character of the motion of particles of the ionized disk is
demonstrated in Fig. 4 for the magnetic parameter fixed to
the value of B = 0.1 corresponding to the case when the ion-
ized near-equatorial Keplerian disks demonstrate the most
chaotic behaviour. Our goal is to demonstrate clearly how the
modifications of the inclination angle influence the chaotic
character of the particle motion of the ionized disk.

Clearly, for large inclinations angle of a near-equatorial
Keplerian disk, 8) = 1.51 case, we can see that the charged
particle trajectories remain close to the equatorial plane,

@ Springer

demonstrating epicyclic oscillations in the radial and ver-
tical directions — this kind of regular motion around mag-
netized black holes has been discussed in detail for both
Schwarzschild [23] and Kerr [24] black holes and can
be related to the high-frequency quasiperiodic oscillations
observed in microquasars [11,36]. For Keplerian disks that
are slightly off-equatorial, 6y = 1.21 case, we observe after
ionization a transition to the chaotic particle motion demon-
strating slight tendency to wind up and down along the mag-
netic field lines — the disk seems to be deformed into a
toroidal structure. For Keplerian disks with middle inclina-
tion, 6y = 0.91 case, the particles of the ionized disk demon-
strate strongly chaotic motion with extension comparable in
both radial and vertical dimensions, causing that the trans-
formed disk resembles a quasi-spherical structure of orbiting
charged particles. If the initial inclination of the Keplerian
disk is slightly lowered, 8) = 0.61 case, we observe a clear
tendency of the charged particle motion to follow the direc-
tion of the magnetic field lines, but the transformed disk still
resembles a quasi-spherical structure. On the other hand, for
small and very small initial inclination angles of the Kep-
lerian disk, g = 0.31, 0.01 cases, we observe fall of the
charged particles into the black hole (direct fall in the case of
very small inclination angle) — in such situations the internal
region of the Keplerian disk becomes unstable after ioniza-
tion, being completely destroyed and captured by the black
hole.

4.2 Non-linear methods determining chaos-regularity
transition

Using various non-linear methods for determination of chaos
and its measure, we realize detailed study of the stability
of the Keplerian disks orbiting a magnetized Schwarzschild
black hole, and the measure of chaos in the motion of par-
ticles of the ionized disk, in dependence on the initial incli-
nation angle between the disk plane and the magnetic field
lines direction 6, and the position of the particles at the Kep-
lerian disk ro. We shall study the cases presented above, for
the characteristic values of the magnetic parameter determin-
ing the intensity of the electromagnetic interaction between
the ionized particles and the external magnetic field B. We
first study the case of the magnetic parameter B = 0.1, test-
ing the efficiency of a large variety of the non-linear meth-
ods. The results are presented in Figs. 5 and 6. We test the
following non-linear methods: Box-Counting, Correlation
Dimension, Lyapunov Exponent, Reccurence Quantification
Analysis with variants RR (recurrence rate), DET (determin-
ism — predictability of the system), LL (diagonal line length),
ENTR (Shannon entropy — probability distribution of the
line lengths), and Machine Learning with variants Random
Forest, Neural Network, Linear Regression, Nearest Neigh-
bours, Gradient Boosted Trees. (All of these non-linear meth-
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Fig. 5 Determination of chaotic behaviour of ionized particle motion.
The charged particle motion is represented by time series created from
the time dependence of its radial component r (7). The equi-distance
sequence of points r(t;) is used to determine the measure of the chaos in
the ionized particle motion by applying the non-linear method of Cor-
relation dimension. Every point in this figure represents one charged
particle trajectory for which the chaos-measure is determined. The ion-
ized particles are represented by the initial disk radius rg, given on the
horizontal axis, and the initial disk inclination angle 6, given on the
vertical axis; the magnetic parameter has been chosentobe 5 = 0.1. We
consider the range of disk radii ro € [6, 12] corresponding to the inner
region, and whole the range of the inclination angles 6y € [0, r/2]. The
chaos measure of the particle trajectory is represented by the colour of
the point, white area represents the particle trajectories captured by the
black hole. The colour scale related to the quantity giving the measure
of chaos is shown on the bar — increasing number means increasing
chaos-measure. The gray colour thus means the upper degree of chaos.
Since the chaos-measure quantities are defined in different ways for
different non-linear methods, and their ranges are also different, in the
following figures the colour mode is chosen in a way that tends to nor-
malize the results obtained by different methods. In the present and all
the following figures an initial Keplerian disk with given inclination
angle 6 is determined by the horizontal slice with constant inclination
6 =6

ods of detecting chaos are presented and tested by a simple
logistic map function in the Appendix.) Finally, we study in
detail the cases of B = £+0.001, £0.01, £0.1, &1, com-
paring the application of the Correlation Dimension method
and the Machine Learning method with the Random Forest
algorithm.

4.2.1 Description of the numerical methods

For numerical trajectory calculations, the Wolfram Mathe-
matica software was used with fixed step size fourth order
explicit Runge-Kutta method. The size of the step has been
set to 10~2 and the time of integration to 10*, then every 100-
th point was taken; therefore, all trajectories which have not
fallen into the black hole are of the length of 10* points. The
fixed step method has been used to ensure that the non-linear

methods for calculation of the chaos-measure of every pair
of the initial conditions take the input of the same length. All
the trajectories that fall into the black hole were not taken as
input for calculation of the chaos-measure, and are denoted
by white colour in the final Figs. 5, 6, 7, and 8. Initial con-
ditions for the charged particles from the ionized Keplerian
disk radius rg have been taken from interval ry € [6, 12],
while inclination between the disk plane and the magnetic
field lines Oy has been taken from interval 8y € [0, 7 /2].
Both these intervals have been evenly distributed among 102
points; all their combinations lead to 10* couples of condi-
tions for particle trajectories, plotted for every figure from
Figs. 5, 6,7, and 8. All the computations have been realized
on DELL 7577 with processor Intel Core i7-7700HQ and
16GB 2400MHz DDR4 SDRAM.

As can be seen from Fig. 5, the ionized particle trajectories
are mostly regular when the Keplerian disk is near the equato-
rial plane, i.e., the inclination angle is of the value 6 ~ 7 /2
and the magnetic field is almost perpendicular to the disk
plane. As the inclination angle is gradually decreased, we
see gradual increase of the chaotic character of the charged
particle motion. Near the inclination angle & ~ 1.1, we enter
a fractal like zone, where the strongly chaotic trajectories are
located in close vicinity to those not so much chaotic (or
regular). Finally, when the inclination angle is small enough
(say 8 ~ 0.7 for r = 7) all the trajectories will eventually
end being captured by the black hole. This “capture inclina-
tion angle” depends on the radial position inside the disk —
trajectories with initial position closer to the black hole get
captured for larger inclination angle. When the magnetic field
will be parallel (almost parallel) to the ionized Keplerian disk
(6 ~ 0), all the trajectories will be captured by BH. But one
can argue, that such configuration is not so realistic, since
the currents inside the ionized accretion disk always produce
some internal magnetic field with component parallel to the
disk plane.

Except the fate of the captured parts of the ionized Kep-
lerian disks, we have to follow the fate of the rest of such
disks whose charged particles remain bound in vicinity of
the black hole, following generally chaotic trajectories with
possible exceptions of special regular motions. The measure
of the chaotic character of the motion, and existence of pos-
sible “islands of regularity” can be treated by the non-linear
methods of determination of deterministic chaos.

All the non-linear methods we have used are revealing
similar structures at the Figs. 6, 7, and 8. The colour scale
(colour palette) is different for each method, because each of
the non-linear methods denotes trajectories by different scale
of the chaos-measure estimation — see section A. Therefore,
the sensitivity of different non-linear methods to the chaotic
behaviour is different, so it seems to be quite complex task
to use one common colour scale for all methods. Moreover,
when plotting various chaos estimations in one figure, the
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Fig. 6 Comparison of the considered non-linear methods of chaos
determination and measurement, as applied on the charged particle tra-
jectories from initially Keplerian accretion disk as described in Fig. 5.
Every figure corresponds to the disk (initial position of ionized particle)
radii r9 € [6, 12] and inclination of magnetic field lines to the Keple-
rian disk plane 6 € [0, 7/2]. Name of the used non-linear method, and
total time for construction of the whole figure in format (hh/mm/ss), are

presence of outreach values is inconvenient — if there is some
value far away from the others, then it is problematic to cover
the differences between closer values by visible colour dif-
ferences. AtFigs. 5, 6,7, and 8, we should focus on structures
produced by different colours - such structures will indicate
transition between regular and chaotic motion.
Box-Counting method Ala (see Appendix) is clearly the
fastest method and that is a big advantage while studying
large datasets. The reason is the simplicity of the algorithm
which does not need to make many numerical operations,
and therefore does not need much computing power. We
also have used only one-dimensional input in the sense of
non-embedding dimension (for the Box-Counting, but for
the Correlation Dimension we did use it), which non-linearly
enlarges the computing, while its application did not seem
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also presented. The range of the quantities giving the chaos-measure in
various methods are different, the colour scale is chosen accordingly,
to reflect the maximum of the chaos-measure by a specific colour. The
RQA methods have been reversed by transformation. We subtracted
the calculated data from the corresponding maximal data value, for
RQA - LL we also have lowered one outreach maximal value to the
second maximum in order to make the structure visible

to improve our final figures. The Correlation Dimension
method Alb is, along with the Lyapunov Exponent Alc
method, the most time dependent, when we consider the
fact that from Recurrence Quantification Analysis (RQA)
method Ald computation we get four figures. This property
varies also with the density of points in time series. For the
Lyapunov Exponent method, together with ML methods, the
colour range seems to be highly continuous, while the Cor-
relation Dimension method shows some structure details,
similarly to the RQA methods. RQA demonstrates similar
structure for all the tools (RR —recurrence rate, DET — deter-
minism, LL — line length, ENTR — entropy). Time needed
for the RR variant could be shorter than for the DET vari-
ant, which also needs lower computing time than the ENTR
and LL variants. This is caused by the necessary numeri-
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cal operations needed for computing each of them — while
more complicated numerical operations for the ENTR and LL
variants are already done, the RR and DET variants can be
derived from them, but not vice versa. As already mentioned,
sometimes in the results of these non-linear methods a big
gap between the most and the least chaotic trajectory occurs,
implying that the trajectories in some interval of the chaos-
measure are not distinguished by distinct colours, and the
chaotic structure is not observable with sufficient precision.
This case can be handled by adjusting of the outreach values,
or by defining special rules for plotting. The implementation
of the ML models Ale is also very fast, as the time needed
to build up a model has not been counted in Figs. 6, 7, and
8. When considering time to build up such a model, several
factors have to be taken into account, like choice of the pro-
gramming language and its library, concrete algorithm and
its parameters, data preprocessing, model validation, etc. We
can observe that different ML algorithms are producing struc-
tures which are not so similar, as in the case of the previous
methods (with the same training set input). This is affected
by the fact that behind each ML algorithm is different prin-
ciple of achieving the goal (data classification or regression).
It has been proved that some of them are relevant mostly for
some specific tasks — by this not only the specific application
for particular tasks like, e.g., image recognition is meant, but
also the usage according to available data, the model general-
ization (bias — variance trade-off), memory consumption, or
the possibility of additional customization (neural network).

4.2.2 Evolution of ionized Keplerian accretion disk

We have assumed simple ionization scenario for particles
from a neutral Keplerian disk, where the neutral particles
will split into two oppositely charged particles, and the newly
charged particles start to feel influence of an inclined exter-
nal uniform magnetic field. In the most common process
of such ionization, the produced charged particles have quite
different masses - proton for example is by three orders more
massive than electron, and hence takes almost whole initial
momentum of the former neutral particle, see (17). On the
other hand, the electron, with specific charge g /m by three
orders higher than that of the proton, experiences the influ-
ence of the magnetic field due to the Lorentz force by three
orders of magnitude stronger than the proton, i.e., for elec-
trons the magnetic parameter B will be higher by three orders
in comparison with those related to protons — see Eq. (10).
In order to consider all possible inclinations of the disk to
the magnetic field lines, we restrict our attention to the mag-
netized non-rotating Schwarzschild black holes when parti-
cle energy after ionization process remains constant. In the
present paper we have studied the motion of the heavier par-
ticles (protons, ions) after the ionization, such particles at
bounded orbits around black hole will mix with neutral par-

ticles of the Keplerian disk and form new deformed lightly
charged accretion disk, or the inner region of the disk could
be ionized completely. The electrons are assumed to escape
from the black hole neighbourhood in the form of wind, or
form a corona around the accretion disk.

In Fig. 7 all possible inclinations of magnetic field vector
to the accretion disk plane 6 € (0, w/2) are considered for
various characteristic values of the interaction with the mag-
netic field B. As shown in Fig. 3, the accretion disk destiny
strongly depends on the magnetic field strength.

For very small magnetic field magnitudes | 5| = 0.001 the
motion of ionized particles is almost regular for any inclina-
tion and surprisingly it is more regular when the inclination
of the magnetic field is small. Also almost all particle trajec-
tories will remain in disk, only the inner edges of the disk in
B = —0.001 case are captured by the Schwarzschild black
hole.

For larger magnetic field magnitudes, the situation is com-
pletely different and more complicated - the ionized accre-
tion disk has completely different evolution in the B > 1
and B < 1 cases. For B = —0.01 (and B = —0.1) all (and
almost all) ionized trajectories are captured by the black hole,
and the disk (inner parts of the disk) will be destroyed. For
B = 0.01, only the disks with small and large inclinations are
preserved, for large inclinations some thick disk of ionized
particles will be formed, for small inclinations the ionized tra-
jectories are forming some sphere around the central black
hole. The case B = 0.1 has been already shown in Figs. 5
and 6 — disks with small inclination are destroyed, mildly
inclined disks are formed by particles following strongly
chaotic trajectories creating a (quasi-)spherical configura-
tion, and charged particles from disks with almost perpen-
dicular inclination of magnetic field will remain near the disk
plane.

If the magnetic field parameter is really large, |B| > 1,
as it could be for elementary particles with large specific
charge g /m, the Lorentz force is leading force in the system.
The charged particles are winding up and down in vertical
direction along the magnetic field lines, while slowly moving
along the central black hole. Both cases B= —1and B =1
are giving the same resulting trajectories, differing only in
the direction of slow motion around the central black hole —
see Fig. 3.

Our numerical study thus determines the relation between
regions of regular and chaotic motion of the charged parti-
cles of the ionized Keplerian disk. Moreover, also the critical
“capture inclination angle” is determined in dependence on
the initial position in the Keplerian disk for fixed values of
magnetic field parameter B.

In order to illustrate in detail the role of the com-
bined effect of the magnetic field parameter 5 and the
disk inclination angle, we study distribution of the cap-
ture by the black hole, and the relation of the
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Fig. 7 Evolution of an ionized Keplerian accretion disk in an exter-
nal magnetic field characterized by typical magnetic parameters B =
+0.001, £0.01, £0.1, £ 1. Asin Figs. 5 and 6, the Keplerian disk (ini-
tial position of the ionized particle) radius ro € [6, 12] is given on the
horizontal axis, while magnetic field inclination to disk 6y € [0, /2]
is given on the vertical axis. Two non-linear methods of the Correlation

regular and chaotic motion, for charged particles located
initially at the ISCO. The results are given in Fig. 8 for
B € [—1,1] and inclination 8y € [0, 7/2]. All the non-
linear methods of chaos determination give again the same
results clearly reflecting the asymmetry of the capturing
process in relation to the sign of the magnetic parame-
ter.
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Dimension (upper row), and the Machine Learning with Random Forest
algorithm (lower row) has been applied and their results are compared.
The presented results are similar for both methods, the Machine Learn-
ing method takes considerably less amount of computer time for the
calculation

4.3 Astrophysical relevance

We have studied the influence of an external uniform mag-
netic field showing that even small 3 parameter has signif-
icant influence on the thin Keplerian accretion disk, if the
particles of the disk become ionized, as shown in Fig. 3.
Such qualitative description should be followed by qualita-
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Fig. 8 Similarly as in Fig. 6, comparison of the considered non-linear
methods of chaos determination and measurement is applied on the
charged particle trajectories from initially Keplerian accretion disk as
described in Fig. 5, but instead of the radial coordinate, the magnetic
field parameter B is used. Therefore every figure corresponds to the
disk magnetic field parameter B € [—1, 1] and inclination of magnetic
field lines to the Keplerian disk plane 6y € [0, 7r/2], while the initial
position of ionized particle is fixed to the ISCO value ro = 6. For both
parameters 13 and 6 we used 101 equidistantly distributed values. Name

tive analysis to clear up if all these effect are astrophysically
relevant.

In this article we assume the magnetic field to be uniform,
but real magnetic fields around microquasar or supermassive
black holes, and their accretion disks, are far away from being
completely regular and uniform. The Wald uniform magnetic
field solution is used as a useful approximation describing
properly at least the magnetic field magnitude. Moreover,
the magnetic parameter 3 contains, together with the field
strength, also the specific charge of the ionized test particles,
see Eq. (10). This implies that in order to make proper esti-
mation of the magnetic field magnitude, one needs to identify
first the type of matter inside accretion disk.

of the used non-linear method, and total time for construction of the
whole figure in format (hh/mm/ss), are also presented. The range of the
quantities giving the chaos-measure in various methods are different,
the colour scale is chosen accordingly, to reflect the maximum of the
chaos-measure by a specific colour. As in Fig. 6, the RQA methods have
been reversed by transformation. We subtracted the calculated data from
the corresponding maximal data value, for RQA - RR, ENTR, LL we
also have lowered some outreach maximal values in order to make the
structure visible

In our approach, the “charged particle” can represent mat-
ter ranging from electron to some charged inhomogeneity
orbiting in the innermost region of the accretion disk. The
specific charges g/m for any of such structures will then
range from the electron maximum to zero. Recalling the
physical constants in the dimensionless magnetic parameter
as B = |q|BGM /(2mc*), we get from Eq. (10) the magnetic
field strength in Gauss

2mc*B
B =
qGM

where the quantities are given in CGS units, see Table 1.

[G], (24)
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Table 1 Magnitudes of magnetic fields B in Gauss units for magnetic
parameter B = 0.01 and stellar M = 10 My and supermassive M =
108 M, black holes. Test particles with different specific charges ¢/m
ratios are assumed - from electron and proton to charged dust grain (one
electron lost, m =2 x 10~18 kg)

B =0.01 Electron Proton Charged dust
M =10 Mg 2-107°G 0.04 G 2-108G
M =108 Mg 2-10712G 4.107°G 20G

The range of the magnetic field magnitude for B = 0.01
magnetic parameter and stellar M = 10 M, or supermas-
sive M = 108 M, BH and various specific charges of ion-
ized material from accretion disk is quite wide and hence it
should not be complicated to find astrophysically relevant sit-
uation for presented model of ionized disk. Even weak mag-
netic field, like for example Galactic magnetic fields 1075G,
could have strong impact on ionized accretion disks. Another
point to address is the difference of Lorentz force magnitude
action on electron and proton. For the same magnitude of
magnetic field B in Gauss, the electron magnetic field param-
eter Be will be 1836 time bigger then the proton magnetic
field parameter B, hence we can assume the protons should
stay in accretion disk plane while electrons will escape disk
plane along magnetic field lines in properly tuned magnetic
field.

5 Conclusions

When the inclination of the magnetic field to the neutral
Keplerian disk is almost perpendicular, the ionized particle
motion can be almost completely regular. As the magnetic
field inclination to the field decreases, the charged particle
motion becomes chaotic with chaos-measure increasing with
decreasing inclination to middle angles, until some limit-
ing value of the inclination after which the charged particle
is captured by the black hole. The most chaotic behaviour
of the ionized particles, and the originally Keplerian disk
destruction can be expected for magnetic field strength |B| €
(0.01, 1), weaker magnetic fields, with 5 € (0, 0.01), are not
strong enough to destroy the disk. The very strong magnetic
fields, with |B| > 1, which is from the astrophysics points of
view also the most relevant case for the elementary particles,
will take complete control over the particle dynamics due
to the dominating Lorentz force, and the charged particles
mainly follow the magnetic field lines.

All presented non-linear methods have been used for chaos
determination in the charged particle motion - all methods are
giving similar results, but the CPU time consumption differs
for different methods. This could be due to algorithm pro-
gramming, but it is dominantly caused by the fact that dif-
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ferent numerical methods have different computational com-
plexity requiring different computational times. One of the
most promising methods is the Machine Learning, which can
determine distinction between regular/chaotic trajectory very
fast. All the considered methods are giving similar results
while measuring the chaos in the charged particle motion —
the structures presented in Fig. 6 are similar. They have dif-
ferent scales for the chaos-measure and thus they also differ
in the colour palette reflecting different ranges of the chaos
measure given by different non-linear methods.

Variety of phenomena related to the combined gravo-
magnetic effects on charged test particle motion around
rotating Kerr black holes is much richer than for the
Schwarzschild black holes, especially, the black hole rota-
tion allows the ionized particles to escape to infinity along
the direction of the external magnetic field [8]. The study of
charged particles "kicked’ from the innermost stable circular
orbit (ISCO) in the equatorial plane, and hence escaping to
infinity, has been treated in [19,22,37]. Actually, for some
large enough magnetic field parameter |B| > 1, the charged
particles must escape from the equatorial plane even with
zero kick [8]. The reason for such an effect is that the parti-
cle orbit is stable in the radial r/x direction, being unstable in
the vertical 6 /z direction, and the particle is forced to escape
in the vertical direction — see the second trajectory in Fig. 11
from [24]. The exploration of MPP effect in such configura-
tion, and the possibility of the black hole rotational energy
extraction due to the discharge of the Wald black hole charge
is an interesting new phenomenon governing acceleration of
the ultra-relativistic jets.

It will be also interesting to examine how the chaos of the
charged particle motion will be modified, and how the ion-
ized Keplerian disk will be influenced by the external mag-
netic field, when the charged particle radiation reaction [38]
will be taken into account. As one can expect, the radiation
reaction force will act as dumping in harmonic oscillator,
forcing the chaotic particle trajectory to become more reg-
ular. As related to the observational data, we have to recall
the argument that the signal from the accretion disks orbiting
neutron stars with magnetic field having much larger magni-
tude than those related to black holes tends to be more chaotic
in comparison with the signal from the accretion disks orbit-
ing magnetized black holes [28]. We plan to develop both
detailed theoretical models of observational effects related
to the ionized accretion disks and more complex structures,
and further testing of non-linear methods of measuring the
level of chaotic motion applied in the more detailed treatment
of theoretical data, and the related real observational data.
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Appendix A: Methods of determination of chaotic behav-
iour in time series

The motion of charged particles in the field of a magne-
tized black hole demonstrates a mixture of regularity and
deterministic chaos. Deterministic chaos is a hardly pre-
dictable and apparently random behaviour which can appear
in dynamical systems, being detectable by non-linear meth-
ods only. We first present a short survey of the methods
detecting the deterministic chaos, and transitions between
the regular and chaotic behaviour of dynamical systems, and
then we test these methods in the case of so called logistic
map representing one of the simplest dynamical systems.

1 Methods detecting chaos

Dynamical systems, represented by time series of data,
can demonstrate regular behaviour, completely random
behaviour, or the so called deterministic chaos. The stan-
dard linear methods as the Fourier analysis are not relevant
in distinguishing these three types of data, therefore, non-
linear methods of treating such data samples are necessary.
Such methods are able to give even a measure of chaos in the
detected data. Here we give a survey of these methods.

a Box-counting

Box-counting (Dg) or box dimension is one of the most
widely used methods of estimations of fractal dimension.
The calculation and empirical application of this method is
simple as compared to other methods. We present here the
general idea behind this method, for detailed description see
[39]. For a set S in a Euclidean space R", we define the
Box-counting measure as

In N (¢)
l 9
€

Do = lim

Al
e—>0 In ( )

where N (€) is the number of boxes of side length € required
to cover the set. The dimension Dy of the set S is estimated by
seeing how the logarithmic rate of N (¢) increases as € — 0,
or in other words, as we make the grid finer.

b Correlation dimension

Very popular tool for detecting chaos in experimental data is
calculation of the Correlation dimension (D;). The general
idea behind computing correlation dimension is to find out
for some small € the number of points C (¢) (correlation sum),
which Euclidean distance is smaller than €. The definition of
the Correlation dimension takes the form

(A2)

and one can compute the number C for various values of €
and D, can be approximated again by fitting the logarithmic
values.

It is worth to mention that D, and Dg are subclasses of
the general definition of D, determining the family of fractal
dimensions [39]. The fractal dimensions are defined by the
relation

1 In H
Dy = lim — 2k Pi

—00 <qg <00,
e~>0qg — 1 Ine

(A3)

where, pj denotes relative frequency with which the fractal
points are falling inside the k-th cell.

For ¢ = 0 we obtain the Box-counting dimension, for
g — 1 we obtain the so called information dimension, the
numerator of which is denoted as Shannon’s entropy, and for
g = 2 we obtain the Correlation dimension.

There is several approaches to the calculation procedure of
the correlation dimension — let us mention the approximation
of C(¢) by the algorithm of Grassberger and Procaccia [40]

A . 2

Clo = lim w5 ) He—li—xih. (A4
i<j

where H is the Heaviside step function.

When counting correlation dimension (fractal dimension),
one should not omit importance of the embedding dimen-
sion, and also the close connection to Takens’s theorem about
reconstruction of state space from sequence of observations.
The embedding dimension is created from series of length
N + m — 1 for some given m series of N vectors, where i-th
component takes the form

Xi = (Xi—mt1, Xiemag2s - .-, X)) € R™. (AS)

One of the purposes of the embedding dimension is to distin-
guish between chaotic and random time series. In the chaotic
series, for increasing m € N, the fractal dimension stabilizes
at some value D < m, while in the random series, the fractal
dimension goes along with m to infinity.

¢ Lyapunov exponent

In short, a Lyapunov exponent is a number giving the measure
of separation of trajectories that are initially infinitesimally
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Fig. 9 Comparison of different nonlinear methods for time series generated by logistic map. For different parameter » we generate 10,000 points

series with initial value use xg = 0.1

close. Near trajectories in chaotic systems diverge exponen-
tially, what corresponds to positive Lyapunov exponents. The
amount of separation can differ for various directions of the
initial separation vector. Because of this fact, there is a spec-
trum of the Lyapunov exponents, which corresponds to the
phase space dimension.

For example, if we consider the logistic map f(x) =
rx(1 —x),r € [0, 4] as a typical example of simple chaotic
system, which represents one-dimensional non-linear differ-
ence equation, the maximal Lyapunov exponent can be cal-
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culated directly from the expression of the f function from
the formula

1 N-1
A = lim_ m ; In[ | f'(f" (xo)I]. (A6)

However, we assume here handling with time series inputs
only, forbidding application of such a formula. This approach
leads us to use method, which is determining the Lyapunov
exponents from time series, being described in [41]. The
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maximal Lyapunov exponent characterizes the spectrum, and
therefore denotes amount of predictability for the considered
dynamical system.!

The Lyapunov exponents can be calculated without
knowledge of a model behind the dynamical system, being
based only on the observed time series. We use the method
based on the statistical properties of the divergence of the
neighbouring trajectories, introduced by Kantz (1994) [41].
We denote our numerical estimation by A, which is actually
sophisticated way of estimating true Lyapunov exponent as
the average of maximal effective exponents A, along the tra-
jectory. The algorithm is well explained in Kantz’s article, it
is quite fast and powerful method. The result of this numer-
ical approach applied to logistic map is very similar to the
result of A6 as one can compare in Fig. 9. The observable
differences appears in this case by non-chaotic or even con-
stant time series, which are negligible for the purposes of our
study.

d Recurrence quantification analysis

The recurrence quantification analysis (RQA) is a widely
used tool for investigation of the state space trajectories —
it determines the number and duration of recurrences of a
dynamical system. RQA was developed since 1992 by Zbi-
lut and Webber [42] and Marwan [43]. Recurrence plots (RP)
provide a graphical tool for observing periodicity of phase
space trajectories and was introduced by Eckmann et al. in
1987 [44]. This observing is possible through visualization
of a symmetrical square matrix, in which the elements corre-
spond to times at which a state of a dynamical system recurs.

We can define a RP which measures recurrences of a tra-
jectory x; € R? in phase space

Rij=H(e—|xi—x;llD) i,j=1,...,N, (A7)

where N is the number of measured points x;, € is a threshold
distance, and || - || is a norm. From this equation we obtain
the already mentioned symmetrical square matrix of zeroes
and ones. When we represent the two repeating elements
with different colours in a plot, we obtain the discussed RP.
Threshold value parameter determines density of the RP plot.

For investigating of the chaotic trajectories we use the
following RQA variant tools:

1. RR - The recurrence rate is simplest tool, measuring the
density of the recurrence points in the RP — in another
words, it divides the number of the recurrence points in
the RP by the number of all elements in the matrix. RR

! Note that the Lyapunov coefficients have a crucial role also in other
branches of physics, e.g., they characterize instability of quasinormal
modes of perturbation fields around black holes [56-58].

tool reflects the chance that some state of the system will
recur

(A8)

2. DET - Determinism is the rate of the recurrence points
which build the diagonal lines. DET determines how pre-
dictable the system is being formally defined as

DET =

N 1pd
Zl#mm ()7 (A9)

Zi,j:l Rij

where P (/) denotes the frequency distribution of the
lengths [ of the diagonal lines.

3. LL - Line length tool represents average diagonal line
length, which is in relation with the time of predictability
of the system. It reflects the average time for which any
two parts of the considered trajectories are close — this
time can be denoted as mean prediction time

0

LL = .
2:II\LIWLM P (l)

(A10)

4. ENTR - Entropy (or the Shannon entropy) of the proba-
bility distribution of the diagonal line lengths p(l), which
are reflecting complexity of the system deterministic
structure. The definition reads

N
ENTR = — Z p()1n p(l),

[=lnin

(A11)

where p(/) is the probability that a diagonal line is exactly
of the length / — it can be estimated from the frequency
distribution P (/) with

) e g—d O N—
j40) S

min

e Machine learning

Machine learning is a very powerful tool, which finds appli-
cation in many quite diverse fields — language translating
algorithms, computer vision, beating best Go player in the
world [45], or Chess programs with different architecture
[46]. The purpose of this paper is to briefly introduce its basic
principles and application to the study the chaotic motion.
Roughly speaking, machine learning (ML) is a field of
computer science, which is strongly connected with another
fields of mathematics as optimization, statistics, linear alge-
bra, etc. Its beginning goes to 1950’s and as many inventions
in computer science, or in science generally, the ML was
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not invented by a single person, but we mention at least A.
Samuel, who used for the first time the term “Machine learn-
ing”. The ML is using algorithms on data samples to discover
known or unknown patterns in data. This dividing of patterns
leads to basic divisions of the ML, namely the supervised,
semi-supervised and unsupervised learning. The wide range
of applications announces the good ability of handling non-
linear dynamical systems data.

Our intention of using the ML method is to decide whether
a trajectory of a charged particle is chaotic or not. For this
purpose we use the supervised ML, where we train various
ML algorithms with examples from the non-linear methods
we have already described. The training set consists over-
all of 4725 examples. Chaos is very complex phenomenon
which is reflected by various another phenomena like sensi-
tivity to initial conditions, fractal dimension of coordinates
time series, attractors, or the predictability of the dynamical
system. We include into our training data set the results from
all the already mentioned methods (Box-counting, Correla-
tion dimension, Lyapunov exponent, RQA - RR, DET, LL,
ENTR ) with effort to use all the different properties of them.
The appropriate number of trajectories has been assigned to
evenly weighted sum of previously calculated chaos-measure
estimations based on previously mentioned methods. Various
types of the ML algorithms has been trained with these data,
the most of them are presented in Fig. 6.

The ML algorithms considered in our study are the follow-
ing; the description is exactly taken from the cited sources:

1. Decision Tree [47] — A decision tree is a flow chartlike
structure in which each internal node represents a “test”
on a feature, each branch represents the outcome of the
test, and each leaf represents a class or value distribution.

2. Neural Network [48] — A neural network consists of
stacked layers, each performing a simple computation.
Information is processed layer by layer from the input
layer to the output layer. The neural network is trained to
minimize a loss function on the training set using gradient
descent.

3. Linear Regression [49] — The linear regression predicts
the numerical output y using a linear combination of
numerical features. The conditional probability P (y|x)
is modeled according to
P(ylx) o exp(=(y = £(8.2))%/20)°), (A12)

with f(6,x) =x-6.

The estimation of the parameter vector 6 is done by min-

imizing the loss function

1 m n )\’2
5 2 i = FO.x)? + 0 Y10+ 7167, (Al3)

i=1 i=1
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where m is the number of examples and 7 is the number
of numerical features.

4. Random Forest [50] — Random forest is an ensemble
learning method for classification and regression that
operates by constructing a multitude of decision trees.
The forest prediction is obtained by taking the most com-
mon class or the mean-value tree predictions. Each deci-
sion tree is trained on a random subset of the training set
and only uses a random subset of the features (bootstrap
aggregating algorithm).

5. Gaussian Process [51] — The “GaussianProcess’” method
assumes that the function to be modeled has been gener-
ated from a Gaussian process. The Gaussian process is
defined by its covariance function (also called kernel). In
the training phase, the method will estimate the param-
eters of this covariance function. The Gaussian process
is then conditioned on the training data and used to infer
the value of a new example using a Bayesian inference.

6. Nearest Neighbours [52] — Nearest neighbors is a type
of instance-based learning. In its simplest form, it picks
the commonest class or averages the values among the k
nearest neighbors.

7. Gradient Boosted Trees [53] — Gradient boosting is a
machine learning technique for regression and classifi-
cation problems that produces a prediction model in the
form of an ensemble of trees. Trees are trained sequen-
tially with the goal of compensating the weaknesses
of previous trees. The current implementation uses the
LightGBM framework in the back end.

In the final stages of our study, represented by Fig. 7,
we decided to compare the results of the Correlation dimen-
sion method with the efficient ML - Random Forest method,
applied to the sample of 10* pairs of initial conditions for
various magnetic field parameters values.

2 Test of the non-linear methods detecting chaos

Classical example of a simple non-linear dynamical system is
the so called logistic map, given by the quadratic recurrence
equation

Xn1 = rx, (1 — xp). (A14)

If the initial value of the variable is given, xg € (0, 1),
the logistic map (A14) generates sequences of real numbers
Xn € (0,1) in dependence on the map parameter r. The
behaviour of such sequence x, strongly depends on logistic
map parameter that is considered in the interval r € [2, 4].
Roughly speaking, the behaviour on the interval r € (2, rg)
is regular (rather predictable) and on the interval r € [rg, 4]
it is chaotic (hardly predictable or rather unpredictable),
with some occasional “islands of regularity”. The transition
between regular and chaotic behaviour happens for logistic
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Table 2 Comparison of values of different nonlinear methods applied
on regular, chaotic and pseudo-random generated series of the length
10,000

Met./ Type Regular Weak ch.  Strongch.  P-rand.
Box-count 0.0969 0.8343 1 1

Corr. dim. 5x 1071 0.8943 0.8735 0.9978
Lyap. exp. —7x 10716 0.1889 0.3289 0.0842
RQA-RR 0.4999 0.0183 0.0116 0.0057
RQA-DET 1 0.6959 0.6114 0.0113
RQA-ENTR 8.5152 0.8951 0.8202 0.0296
RQA-LAM 5001 5.6299 2.8507 2.0006
ML-Rand. For. ~ 0.5915 0.6917 0.7869 0.3788

map parameter r = ro ~ 3.56995. Bifurcation diagram for
the logistic map, with asymptotically approached values of
the sequence, is shown in Fig. 9 by gray background points.

For chaos determination and chaotic behaviour descrip-
tion in sequences of numbers, the following methods have
been tested: Box-Counting (section Ala), Correlation Dimen-
sion (A1b), Lyapunov Exponent (A lc), Recurrence Quantifi-
cation Analysis (RQA) with variants (Ald), and Machine
Learning with various algorithms (Ale). All of the algo-
rithms we use in this article are capable to be applied for
one dimensional sequences of real numbers (time series)
taken as an input. From the point of observation, it is impor-
tant to distinguish between chaotic sequences ruled by some
(unknown) laws, and random sequences, where the numbers
are chosen randomly. The theoretical boundary of distin-
guishing between chaos and random sequences is sequence
length [54]. For the non-linear dynamical system having
many degrees of freedom, short sequences are not sufficient
for any decision.

To clear up how the non-linear methods work, we use four
representative sequences of length 10%

xtD = {0.842154,0.451963, 0.842154, 0.451963, . . .}
x'2) =1{0.1, 0.324, 0.788486, 0.600392, 0.863717, .. .}
x3 =10.1,0.36,0.9216, 0.289014, 0.821939, .. .}

xP = {0.180463, 0.757133, 0.699205, 0.535334, . ...},
(A15)

where x,ﬁl) is a regular sequence, x,(,z) is a weakly chaotic

sequence generated by the logistic map withr = 3.6, x,(,3) isa
strongly chaotic sequence generated by the logistic map with
r =4, and x,(l4) is a sequence of pseudo-random distribution
of numbers. The results are presented in Table 2.

We have tested in detail all the introduced non-linear meth-
ods of chaos determination on sequences of numbers gener-
ated by the logistic map for various values of the parameter

Table 3 Comparison of time in seconds required for different nonlinear
methods applied on time series generated by logistic map. For parameter
r varying from 2 to 4 with the step of 0.01 leads to 200 time series, with
initial value xo = 0.1 we did set up the iterations to length 100, 1000
and 10,000 and compared the time needed for the calculation for given
methods

Method/length 100 1000 10,000
Box-count 0.354 0.416 3.519
Correlation dim. 4.155 26.54 2353
Lyapunov exp. 3.294 119.5 12574
RQA-RR 0.164 6.332 507.8
RQA-DET 0.209 6.069 916.9
RQA-ENTR 0.197 7.247 1128
RQA-LAM 0.197 7.248 1128
ML-Rand. For. 0.677 1.212 7.479

r — for results see Fig. 9. The important common sign of
all these methods is that they are able to detect higher chaos-
measure when divergence of the trajectories in the bifurcation
point of the diagram at » = 3 occurs, i.e., when there is more
than one fixed point. However, this is not undeniable true
for all the cases, what leads to different estimations of the
chaos-measure for different non-linear methods. The Box-
counting and Lyapunov exponent methods show approxi-
mately linear behaviour when moving to the point, where the
divergence of the trajectories begins — while moving to this
point, the chaos-measure is increasing, and it is decreasing
while leaving it. The Correlation dimension method demon-
strates little bit different behaviour, where non-chaotic region
is denoted by values close to zero, and the level of chaos
starts to rapidly grow only in small distance from the region
of divergence of trajectories in the bifurcation point — this
type of the behaviour is also demonstrated by the RQA tools,
however, in a reversed way. The determination of chaotic
behaviour for r > 3.56995, when all the non-linear meth-
ods are showing the highest values of the chaos-measure,
can be considered as highly satisfactory. However, as in this
region also the “islands of regularity” are present, not all of
the chaos-measure estimations should be high there.

As expected, different ML algorithms produce different
results. The Random Forest algorithm, used also in [31]
seems to produce quite reliable results — our estimation of
the chaos-measure is getting higher as the r parameter grows,
with exceptions that could be explained by the fact there are
also “islands of regularity” in the chaotic region. This is the
reason why we decided to include the ML Random Forest
algorithm to the Fig. 7; but we have to stress that the oth-
ers ML algorithms seem to produce interesting and relevant
results as well.

The time spent for the calculations of every single fig-
ure from Fig. 9 is presented in Table 3. From here we can
see that the Box-counting method is the fastest, but when
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looking on the results, the other non-linear methods seem
to be more precise. The time spent on the calculations also
strongly depends on the sequence length — such dependence
18 non-linear in the case of almost all the methods, but we
should point out that Box-counting and ML seem to behave
generally in rather linear way while working with larger data
sets (however, this general conclusion is not fully confirmed
by the results presented in Table 3).

For most of the non-linear chaos detecting methods we
have programmed and tested several variants according to the
algorithm architecture, and settings of the adjustable param-
eters, for the code see [55]. The goal was to obtain relevant
results and acceptable computing time.
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